用户名: 密码: 验证码:
无镉的铜铟镓硒太阳能电池制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄铜矿型铜铟镓硒(CuIn1-xGaxSe2, CIGS)薄膜太阳能电池具有光电转换效率高、成本低、稳定性好等优点,是最有发展前景的薄膜太阳能电池之一,但其多层薄膜制作工艺复杂,包括钼(Mo)背电极层、CIGS光吸收层、硫化镉(CdS)缓冲层、本征氧化锌(i-ZnO)和掺铝氧化锌(AZO)窗口层,任何一层薄膜质量不好都将影响太阳能电池的的光电性能,因此工艺控制至关重要,本论文重点在CIGS吸收层和无镉缓冲层制备工艺控制研究。
     CIGS薄膜是太阳能电池的核心材料。本论文研究了一种工艺简单、可控的CIGS薄膜制备技术:首先,在钠钙玻璃衬底上溅射制备厚度约1微米的钼电极,然后采用双室多靶位磁控溅射沉积系统,通过交替直流溅射CuGa靶(原子比3:1;纯度99.999%)和纯In靶(纯度99.999%),选择不同的叠层方式在钼电极上制备铜铟镓前驱膜;再将前驱膜放入特制的真空炉中选择不同的升温方式进行硒化退火,得到四元化合物铜铟镓硒半导体纳米薄膜,对薄膜进行各项表征(SEM、AFM、XPS、XRD等),分析了前驱膜叠层及硒化升温方式对铜铟镓硒薄膜性能的影响,优化了制备条件:In/CuGa/In多层前驱膜先在250℃恒温20分钟加热预处理,再升温至560℃硒化温度30分钟,制备出致密的黄铜矿结构的多晶铜铟镓硒薄膜,薄膜颗粒直径约1μm,有较好的结晶质量,膜厚2μm,方块电阻为0.11Ω/□,薄膜在波长500-1100nm之间,对可见光及近红外线有很好的吸收。
     缓冲层是位于CIGS吸收层和透明导电窗口层之间的薄膜,用以缓冲吸收层和透明导电层之间的带隙差。传统采用的缓冲层CdS对人体有害,而且带隙偏窄,造成太阳光的短波损失,且CdS的传统化学浴制备方法都是湿法工艺,破坏了溅射后硒化或共蒸发中的真空和干法制造流程,因而无镉缓冲层的干法制备具有重要意义。在CIGS电池中的缓冲层材料很薄,原子层沉积方式是最理想的选择,本文采用原子层沉积ZnO(ALD-ZnO)代替CdS做缓冲层,它是没有采用等离子体的软沉积法,可以避免采用磁控溅射的方法制备ZnO时对CIGS膜的损伤;还可以方便地避免现有CIGS工艺流程中唯一的液相化学浴(CBD)工艺,ALD设备可以与现有CIGS生产线其它真空工艺无缝对接,基底在大气中的暴露将很少;ALD-ZnO还提高了短波和近红外范围的量子效率,具有工业化应用价值。
     本文研究了ALD制备ZnO缓冲层时薄膜厚度与锌源(DEZn)脉冲时间的关系、薄膜表面粗糙度与锌源脉冲时间的关系和温度对薄膜质量的影响、携带DEZn气体流量与平均生长的薄膜厚度关系、不同锌源脉冲时间下ZnO薄膜的光学特性等,在我们的实验范围得出了最佳工艺条件为:DEZn脉冲时间0.1秒,清洗时间3秒;H2O脉冲时间0.1秒,清洗时间4秒,携带气体为高纯N2,DEZn的携带气体流量为150sccm, H2O的携带气体流量为200sccm,衬底温度为250℃,真空度为20hPa时沉积开始,薄膜生长200个周期。
     用原子层沉积法在钠钙玻璃上沉积厚度仅为56.8nm的氧化锌薄膜,利用场发射扫描电镜、AFM和X射线衍射(XRD)、XPS等对样品表面形貌和物相进行分析,得到的ZnO纳米颗粒为六角纤锌矿结构,颗粒的大小约在30-60nm之间;薄膜在波长400-900nm可见光区域透射率达90%以上;使用该原子层沉积氧化锌薄膜做铜铟镓硒太阳能电池的缓冲层,透射电镜TEM显示氧化锌层致密地覆盖在CIGS薄膜上,得到的电池的光电转换效率较高,完全可以替代有毒的CdS做缓冲层。本工艺技术路线环保,简单可控,将有助于无镉的CIGS太阳电池的产业化。
     研究制备了的结构为Glass/Mo/CIGS/ALD-ZnO/i-ZnO/n-ZnO:Al无镉的铜铟镓硒太阳能电池。该电池的开路电压为Voc=0.46V,短路电流密度Jsc=13.8mA/cm2,填充因子FF=0.59,样品在没减反射膜情况下的光电转换效率达到3.84%。
Chalcopyrite CuIn1-xGaxSe2(CIGS) thin-film solar cells has advantages of high photoelectric conversion efficiency, low cost and good stability etc., which is one of the most promising thin film solar cells, But the multilayer film production process is complex, including molybdenum (Mo) back electrode layer, CIGS optical absorbing layer, CdS buffer layer, intrinsic ZnO (i-ZnO) window layer and ZnAlO (AZO) film, any one layer of poor quality will affect the photoelectric properties of the solar cells, so the process control is very important, This paper focuses on the CIGS absorption layer and Cd-free buffer layer preparation process control research.
     CIGS thin film is the core material of solar cells. In this paper, a kind of simple, controllable technology of the CIGS film fabrication is studied, First, sputter about1micron Mo electrodes on the substrate of the soda-lime glass, and then use dual chamber multi-target magnetron sputtering deposition system, by alternately DC sputtering CuGa target (atomic ratio is3:1; purity is99.999%) and pure In target (purity is99.999%), select a different stack method to prepare precursor film of CIGS on Mo electrode layer; and then, place precursor film into a special vacuum furnace to do selenium annealing by different heating mode to obtain quaternary compounds of CIGS semiconductor nanometer thin films. Based on the characterization of the films (SEM、AFM、XPS、XRD), the effect of precursor film lamination and selenizing heating method to the performance of CIGS thin film is analyzed, preparation conditions are optimizatized:In/CuGa/In multiple precursor film is pretreated when heat20minutes at250℃and then keep30minutes selenizing temperature of560℃, poly crystalline CIGS thin-film can be prepared with dense chalcopyrite structure, thin film particle diameter is about1μm, have good crystalline quality, film thickness is2μm, square resistance is0.11Ω/□. Between the wavelength of500-1100nm, film has good absorption to the visible and near infrared.
     The buffer layer is located on the CIGS absorbing layer and transparent conductive window layer, buffer the band gap difference of these two layers. The traditional buffer layer of CdS is harmful to person, and the band gap is narrow resulting in the loss of the short wave of Sunlight. Traditional CdS chemical bath preparation methods are wet technology which destroyed the vacuum after sputtering selenization or co-evaporation and dry manufacturing process, so the development of dry technology of cadmium free (Cd-free) buffer layer has the vital significance. In CIGS cells, the buffer layer material is very thin, the atomic layer deposition method is the best choice, this paper adopts atomic layer deposition of ZnO(ALD-ZnO)to replace CdS to be a buffer layer, it is soft deposition which is no use plasma, so it can avoid the damage of CIGS film when we prepared ZnO film using magnetron sputtering method. ALD technique can easily avoid the only liquid phase chemical bath (CBD) technology of the existing CIGS process, ALD equipment can joint with other vacuum process of the existing production lines seamlessly, the substrate is rarely exposed in the atmosphere; ALD-ZnO also enhances the quantum efficiency of the short wave and near infrared range, it has industrial application value.
     This paper studies the relationship between film thickness and zinc source (DEZn) pulse time; the film roughness degree and zinc source pulse time; temperature and the quality of the films; the thickness per growth cycle and carrying the DEZn gas flow; the optical properties of ZnO thin films with different zinc sources pulse, et al; the optimum technological conditions are obtained in our experimental range:DEZn pulse time is0.1seconds,DEZn cleaning time is3seconds; H2O pulse time is0.1seconds, H2O cleaning time is4seconds, carrying gas is high purity N2, carrying DEZn gas flow rate is150sccm, carrying H2O gas flow rate is200sccm, substrate temperature is250℃deposition vacuum is20hPa, thin film growth200cycle.
     Zinc oxide thin film which thickness of only56.8nm was deposited on soda-lime glass by the means of atomic layer deposition method, the sample surface morphology and phase are analyzed in the use of field emission scanning electron microscopy、AFM and X-ray diffraction (XRD)、XPS, it shows that the obtained ZnO nano-particles are of hexagonal fiber zinc structure, the particle's diameter is between30nm and60nm; transmittance of the thin film Between the wavelength of400-900nm (in the visible region) is90%or more; and use zinc oxide thin film of atomic layer deposition method as the buffer layer of CIGS solar cell, the TEM shows the zinc oxide layer covers the CIGS thin film densely, and the photoelectric conversion efficiency of the cell is higher, which can totally replace the toxic CdS as the buffer layer, the technology of advanced and environmental protection, simple and controllable, will help the Cd-free CIGS solar cell industrialization.
     The structure of Glass/Mo/CIGS/ALD-ZnO/i-ZnO/n-ZnO:Al Cd-Free CIGS solar cells is prepared. The open circuit voltage of the cell is Voc-0.46V, Jsc (short circuit current density)=13.8mA/cm2, FF (fill factor)=0.59, the photoelectric conversion efficiency without antireflection coating reaches3.84%.
引文
[1]王波,刘平,李伟等.铜铟镓硒(CIGS)薄膜太阳能电池的研究进展[J].材料导报A:综述篇,2011,25(10):54-58.
    [2]小长井诚.薄膜太阳电池的基础与应用-太阳能光伏发电的新发展[M].北京:机械工业出版社,2011年.
    [3]霍晓旭,莫晓亮,陈国荣.CIGS薄膜太阳能电池无镉缓冲层制备方法的研究现状[J].真空科学与技术学报,2012,32(9):834—840.
    [4]Neil P. Dasgupta, James F. Mack, Michael C. Langston, et al. Design of an atomic layer deposition reactor for hydrogen sulfide compatibility[J]. Review of Scientific Instruments 81,2010,044102:1-6
    [5]于军胜.太阳能光伏器件技术[M].成都:电子科技大学出版社,2012年.
    [6]Bodegard M, et al. Re-crystallisation and interdiffusion in CGS/CIS bilayers[J]. Thin Solid Films,2008,431:46-52.
    [7]万磊.铜铟硒薄膜太阳能电池相关材料研究[D].合肥:中国科技大学,2010.
    [8]SeJin Ahn, Ki Hyun Kim, Jae Ho Yun, Kyung Hoon Yoon. Effects of selenization conditions on densification of Cu(ln, Ga)Se2 (CIGS)thin films prepared by spray deposition of CIGS nanoparticles[J]. Journal of Applied Physics 105,2009,113533: 1-7.
    [9]Sanjay R.Dhage, Hak Sung Kim, Thomas Hahn. Cu(ln, Ga)Se2 thin films preparation from a Cu(ln, Ga) Metallic Alloy and Se Nanoparticles by an intense Pulsed Light Technique[J]. Journal of Electronic Materials,2011,40(2):122-126.
    [10]戴宝通,郑晃忠.太阳能电池技术手册[M].北京:人民邮电出版社,2012年.
    [11]J.Muller, J.Nowococzin, H.Schmitt. Composition, structure and optical properties of sputtered thin films of CuInSe2[J]. Thin Solid Films,2006,496:364-370.
    [12]In-Hwan Choi, Chul-Hwan Choi. Improvement of the energy conversion efficiency of Cu(In,Ga)Se2 solar cells using an additional Zn(S,O) buffer[J]. Thin Solid Films, 2012,525:132-136.
    [13]Hisao Makino, Aki Miyake, Takahiro Yamada, et al. Influence of substrate temperature and Zn-precursors on atomic layer deposition of polycrystalline ZnO films on glass[J]. Thin Solid Films,2009,517:3138-3142.
    [14]Woo Kyoung Kim. Study of Reaction Pathways and Kinetics in Cu(InxGa1-x)Se2 Thin Film Growth[D]. USA:UMI, University of Florida,2007.
    [15]Arturo Morales-Acevedo, Norberto Hernandez-Como, Gaspar Casados-Cruz. Modeling solar cells:A method for improving their efficiency[J]. Materials Science and Engineering B,2012,177:1430-1435
    [16]谈晓辉.铜铟镓硒太阳电池吸收层的研究[D].杭州:浙江大学,2011.
    [17]李微.铜铟镓硒(CIGS)太阳电池薄膜材料应力的研究[D].天津:南开大学,2007.
    [18]黄惠良等.太阳电池[M].台北:五南图书出版社,2008:283-288.
    [19]Ryan Kaczynksi. Copper Gallium Diselenide Thin Film Absorber Growth for Solar Cell Device Fabrication[D]. USA:UMI, University of Florida,2007.
    [20]王应民.硅基和CIGS基ZnO薄膜生长及CIGS太阳能电池器件的研究[D].南昌:南昌大学,2006.
    [21]颜畅,刘芳洋,赖延清等.直流反应磁控溅射沉积CuInS2薄膜的结构与电学性质[J].无机材料学报,2011,26(12):1287-1292.
    [22]W E Devaney, R A Mickelsen, W S Chen, et al. Cadmiom Sulfidel copper Ternary Heterojunction Cell Research[J]. Final Technical Progress Report for the period, July 2007,21-24.
    [23]Hanna G, et al. Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2[J]. Thin Solid Films,2009,387:71-73.
    [24]阎有花,刘迎春,方玲等.CIS薄膜太阳能电池Cu-In前驱膜结构相变研究[J].稀有金属,2008,32(2),156-159.
    [25]Ramanathan K, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin film solar cells[J]. Prog Photovoltaics,2008,11(4):225-230.
    [26]何炜瑜,孙云,乔在祥等.Culn1-xGaxSe2薄膜太阳能电池的J—V特性[J].半导体学报,2007,28(12),1941-1945.
    [27]Chia HuaHuang. Effects of Ga conienton Cu(In, Ga)Se2:solar cells studied by numerieal modeling[J]. Journal of Physics and Chemistry of Solids,2008,69(2-3): 330-334.
    [28]李欣益.对溅射法制备的铜铟镓硒吸收层与掺铝氧化锌窗口层结构与性能的研究[D].合肥:中国科学技术大学,2012.
    [29]Dhere N G. present status and future prospects of CIGS thin film solar cells [J]. Solar Energy Materials and Solar Cells,2006,90:2181-2190.
    [30]翁敏航.太阳能电池材料制造检测技术[M].北京:科学出版社,2013年.
    [31]潘惠平,薄连坤,黄太武等,铜铟镓硒太阳能电池多层膜的结构分析[J].物理学报.2012,61,(22),228801:1-8.
    [32]M.A.Green. Recent development in photovoltaics[J]. Solar Energy,2007,76:3-8.
    [33]C.Platzer-Bjorkman, T.Torndahl, A.Hultqvist, et al. Optimization of ALD-(Zn, Mg)O buffer layers and (Zn, Mg)O/Cu(In, Ga)Se2 interfaces for thin film solar cells[J]. Thin Solid Films,2007,515:6024-6027.
    [34]Kuo Yi Yen, Kuang Pi Liu, Jyh Rong Gong, et al. Growth and characterization of ZnO films on (11-20) sapphire substrates by atomic layer deposition using DEZn and N2O[J]. Mater Electron,2009, DOI 10.1007/s 10854-009-9861-z.
    [35]Wolfram Witte, Dimitrios Hariskos, Michael Powalla. Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn, Mg)O and CdS/i-ZnO buffers[J]. Thin Solid Films,2011,519:7549-7552
    [36]Wei Liu, Zinc oxide sputter deposition and modeling of copper-indium-gallium-diselenide-based thin film solar cells[D]. USA:UMI, University of Florida,2007.
    [37]Timothy J.Nagle. Quantum Efficiency as a Device Physics InterPretation Tool for Thin Film Solars Cell[D]. USA:UMI, Colorado State University,2007.
    [38]Bergmann R B, et al. Advances in monocrystalline Si thin film solar cells by layer transfer[J]. Solar Energy Materials and Solar Cells,2009,74:213-218.
    [39]Negami T, Hashimoto Y, Nishiwaki S. Cu(In, Ga)Se2 thin-film solar cells with an efficiency of 18%[J]. Solar Energy Materials and Solar Cells,2009,67:331-335.
    [40]Christian D. R. Ludwig, Thomas Gruhn, Claudia Felser. Indium-Gallium Segregation in CuInxGa1-xSe2:An Ab Initio-Based Monte Carlo Study[J]. Physical Review Letters, 2010,025702-4.
    [41]J.Krc, G.Cernivec, A.Campa, et al. Optical and electrical modeling of Cu(In, Ga)Se2 solar cells [J]. Optical and Quantumn Electronics,2006,38:1115-1123.
    [42]Yamaguchi, Masafumi. Radiation-resistant solar cells for space use [J]. Solar Energy Materials and Solar cells,2010,68:31-53.
    [43]刘芳芳,孙云,张力等.Cu(In, Ga)Se2薄膜太阳电池二极管特性的研究[J].人工晶体学报,2009,38(2):455-459.
    [44]Li Wei, Sun Yun, Liu Wei, et al. Fabrication of Cu(In, Ga) Se2 thin films solar Cell by selenization process with Se vapor[J]. Solar Energy,2006,80:191-195.
    [45]Dong Hyun Hwang, Jung Hoon Ahn, Kwun Nam Hui, et al. Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering [J]. Nanoscale Research Letters,2012,7,26:1-7.
    [46]J. H. Shi, S. M. Huang, J. B. Chu, et al. Effect of ZnO buffer layer on AZO film properties and photovoltaic applications [J]. Mater Electron,2010,21:1005-1013.
    [47]方玲等.Cu-In膜的相结构对CuInSe2薄膜性能的影响[J].清华大学学报(自然科学版).2008.44(8):1096-1099.
    [48]谢华木,廖成,焦飞等.基底温度对四元叠层硒化法制备铜铟镓硒(CIGS)薄膜的影响[J].真空.2009,46(4):9-11.
    [49]Berwian P, et al. In situ resistivity measurements of precursor reactions in the Cu-In-Ga system[J]. Thin Solid Films,2007,431:41-45.
    [50]Liu Fang fang, Sun Yun, Li Wanghe, et al. Rapid thermal annealing onCu(In, Ga)Se2 films and solar Cells with Different Content Ratios[J]. Acta Photonica Sinca,2009, 38(9):2188-2191.
    [51]Hanna G, et al. Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2[J]. Thin Solid Films,2009,387:71-73.
    [52]郭杏元,许生,曾鹏举,范垂祯.CIGS薄膜太阳能电池吸收层制备工艺综述[J].真空与低温,2008,14(3):125-133.
    [53]S. Spiering, L. B(u|")rkert, D. Hariskos, et al. MOCVD indium sulphide for application as a buffer layer in CIGS solar cells[J]. Thin Solid Films,2009,517:2328-2331.
    [54]E.Guziewicz, I.A.Kowalik, M.Goldlewski, et al. Extremely low temperature growth of ZnO by atomic layer deposition[J]. Journal of Applied Physics,2008,103, 033515:1-6.
    [55]P. Liska, K. R. Thampi, and M. Gratzel. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency[J]. Applied Physics Letters 88,2006,203103:1-3.
    [56]朱冠芳.磁控溅射氧化锌薄膜的制备和光学性能研究[D].西安:西北大学,2008.
    [57]Azadeh Hemati. Layer by Layer Nanoassembly of Copper Indium Gallium Selenium(CIGS) Nanoparticles for Solar Cell Application[D]. USA:UMI, Purdue University,2011.
    [58]马光耀,康志君,谢元锋.铜铟镓硒薄膜太阳能电池的研究进展及发展前景[J].金属功能材料,2009,116(15),46-49.
    [59]韩东麟,张弓,庄大明等.载气对CIGS薄膜结构和表面形貌的影响[J].真空科学与技术学报,2008,28(3):235-239.
    [60]Miguel A.Contreras, Manuel J.Romero, Noufi R. Characterization of Cu(In, Ga) Se2 materials used in record performance solar cells[J]. Thin Solid Films,2006,511-512: 51-54.
    [61]U.Malm, J.Malmstrom, C.Platzer-Bjorkman. Determination of dominant recombination paths in Cu(ln, Ga)Se2 thin-films solar cells with ALD-ZnO buffer Layers[J]. Thin Solid Films,2005,480:208-212.
    [62]郑麒麟,庄大明,张弓,李秋芳.溅射功率对CIGS吸收层前驱膜成分和结构的影响[J].太阳能学报,2006,27(11):1108-1112.
    [63]W.Liu, Y.Sun, et al. Influence of different precursor surface layers Culn1-xGaxSe2 thin film solar cells[J]. Applied Physics A,2007,88:653-656.
    [64]赵湘辉,魏爱香,招瑜,刘俊.硒化方式对CuInSe2薄膜结构、成分和形貌的影响[J].真空科学与技术学报.2012,32,(2):140-144.
    [65]A.Hultqvist, C.Platzer-Bjorkman, J.Pettersson, T.T(o|")rndahl, M.Edoff. CuGaSe2 solar cells using atomic layer deposited Zn(O, S) and (Zn, Mg)O buffer layers[J]. Thin Solid Films,2009,517:2305-2308.
    [66]周玉.材料分析方法[M].北京:机械工业出版社,2011年.
    [67]Doyoung Kim, Hyemin Kang, Jae-Min Kim, et al. The properties of plasma enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD[J]. Applied Surface Science,2011,257:3776-3779.
    [68]LI Qiufang, Zhang Darning, Zhang Gong, et al. Influence of the selenizationDuration on compositions and microstructures of CIGS absorber[C]. Proceedings of ISES Solar World Congress, Solar Energy and Human Settlement,2007:1015-1018.
    [69]W.Liu, Y.Sun, et al. Influence of different precursor surface layers Culn1-xGaxSe2 thin film solar cells[J]. Applied Physics A,2007,88:653-656.
    [70]李文科,唐振方.预置层退火温度对CIGS薄膜晶体结构与光学性质的影响[J].真空,2010,47(5):16-19.
    [71]O.Volobujeva, M.Altosaar, J.Raudoja. SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals[J]. Solar Energy Materials & Solar Cells, 2009,93:11-14.
    [72]候立婷,刘迎春,方玲等.载气流量对CIS薄膜性能的影响[J].金属功能材料.2010,17(3):32-36.
    [73]褚家宝.铜铟镓硒(CIGS)薄膜太阳能电池研究[D].上海:华东师范大学,2009.
    [74]Keshavanand Jayadevan. Fabrication and Characterization of Novel 2SSS CIGS Thin Film Solar Cells for Large-Scale Manufacturing[D]. USA:UMI, University of South Florida,2011.
    [75]Tom Markvart, Luis Castaner.太阳电池:材料制备工艺及检测[M].北京:机械工业出版社,2011年.
    [76]Ahn SeJin, Kim Ki Hyun, Yun Jae Ho, et al. Effects of selenization conditions on densification of Cu(ln, Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles[J]. Journal of Applied Physics,2009,113533:1-7.
    [77]李春雷,庄大明,张弓等.硒化温度对铜铟镓硒太阳能电池吸收层性能的影响[J].材料研究学报.2010,24(4):358-362.
    [78]E.Guziewicz, M.Godlewski, T.Kajewski. ZnO grown by atomic layer deposition:A material for transparent electronics and organic heterojunctions[J]. Journal of Applied Physics 105,2009,122413:1-5.
    [79]Wei Li, Yun Sun, Wei Liu, Lin Zhou. Fabrication of Cu(In,Ga) Se2 thin films solar cell by selenization process with Se vapor[J]. Solar Energy,2006,80:191-195
    [80]孙云.中国薄膜电池技术与发展概况(下)[J].太阳能,2011,4:52-55.
    [81]LI Qiufang, Zhang Darning, Zhang Gong, et al. Influence of the selenizationDurati on on compositions and micro structures of CIGS absorber[Z]. Beijing:Proceeding of ISES Solar World Congress,2007:1015-1018.
    [82]韩东麟,张弓,庄大明等.预制膜对CIGS薄膜结构和形貌的影响[J].太阳能学报,2009,30(5):607-610.
    [83]Konagai M. Present status of thin film solar cells in Japan[J]. Renewable Energy, 2006,8:410-414.
    [84]韩东麟,张弓,庄大明等.氩气流量对CIGS薄膜结构和形貌的影响[J].太阳能学报,2009,30(4):426-429.
    [85]单玉桥,党鹏,孙绍广,单连中.三源共蒸法制备CIS薄膜及其性能研究[J].东北大学学报(自然科学版),2009,30(2):233-237.
    [86]陆静苹.基于CIGS太阳能电池的吸收层和缓冲层的研究与制备[D].杭州:浙江大学,2013.
    [87]L.Assmann, J.C. Bernede, A. Drici, et al. Study of the Mo thin films and Mo/CIGS interface properties[J]. Applied Surface Science,2005,246:159-166.
    [88]C.Platzer-Bjorkman, T.T(o|")rndahl, D.Abou-Ras, J.Malmstr(o|")m, J.Kessler, L.Stolt. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient[J]. Journal of Applied Physics 100,2006,044506: 1-9.
    [89]Vinh Ai Dao, Tran Le, Tuan Tran, et al. Electrical and optical studies of transparent conducting ZnO:Al thin films by magnetron dc sputtering[J]. J Electroceram,2009, 23:356-360.
    [90]Taizo Kobayashin, Tokio Nakada. Efficient Cu(In,Ga)Se2 thin film solar cells with reduced thickness of ZnS(O,OH) Buffer Layer[J]. Solar Energy Materials & Solar Cells,2013,117:526-530.
    [91]Xiaofeng Ma, Dingquan Liu, Lihong Yang, et al. Molybdenum (Mo) back Contacts for CIGS Solar Cells[C]. Eighth International Conference on Thin Film Physics and Applications. Proceedings of spiedigitallibrary,2013,906814:1-11.
    [92]Shen Can, Liu Xiongying, Huang Guangzhou. Atomic layer deposition and its applications in semiconductor[J]. Vacuum,2006,43(4):1-6.
    [93]Sheng Xu. Atomic Layer Deposition of Oxide Films and Planarization of Small Trenches by Superfilling[D]. USA:UMT, Harvard University,2010.
    [94]Yang Li, Cheng Yongjin, An Daizong, et al. Study of Structure and EmissionSpectraon Preparation Temperature of Quasi-films ZnO Crystals[J]. Materials Review,2010, 24(1):16-18.
    [95]杨黎,程永进,安黛宗等.准薄膜状氧化锌晶体的制备温度与其结构和发射光谱的研究[J].材料导报,2010,24(1):16-18.
    [96]Jian Zhang, Hui Yang, Qilong Zhang, et al. Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition[J]. Applied Surface Science,2013,282:390-395.
    [97]范丽琴.磁控溅射制备掺铝氧化锌薄膜及其特性研究[D].福州:福建师范大学,2009.
    [98]朱继国.直流脉冲磁控溅射制各Mo薄膜及其性能研究[D].大连:大连交通大学,2008.
    [99]张晓科,关勇辉,王可,解晶莹.CIS/CIGS基黄铜矿系光伏材料研究进展[J].稀有金属,2006,30(4):528-533.
    [100]陈立.铜铟硒薄膜太阳能电池相关材料研究[D].郑州:河南大学,2012.
    [101]王丹丹,杨丽丽,孔翠兰等.ZnO纳米线的制备及结构表征[J].吉林师范大学学报(自然科学版),2006,1:35-37.
    [102]吴克跃.ZnO纳米材料的制备、物性及在染料敏化太阳能电池器件中的应用研究[D].合肥:安徽大学,2012.
    [103]In-hwan Choi, Chul-Hwan Choi. Improvement of the energy conversion effi ciency of Cu(In,Ga)Se2 solar cells using additional Zn(S,O) buffer[J]. thin Solid Films,2012, 525:132-136.
    [104]Kandabara Nouhoum Tapily. Synthesis of ALD ZnO and Thin Film Materials Optinization for UV Photodetector Applications[D]. USA:UMI, Old Dominion University,2011.
    [105]许修兵.铜铟镓硒薄膜太阳能电池窗口层材料研究[D].上海:华东师范大学,2008.
    [106]廖成,韩俊峰,江涛等.两步法制备薄膜的工艺研究[J].无机化学学报,2011,27(1):1-5.
    [107]黄飞,孙仲亮,孟凡明,孙兆奇.射频磁控溅射ZnO薄膜的微结构与光学特性[J].真空电子技术.2008(2):1-4.
    [108]Zhonghua Deng, Changgang Huang, Jiquan Huang, et al. Effects of Al content on the properties of ZnO:Al films prepared by Al2O3 and ZnO co-sputtering[J]. Mater Electron,2010,21:1030-1035.
    [109]谢和平,张树人,杨成韬等.退火对射频磁控溅射氧化锌薄膜性能的影响[J].压电与声光.2008,30(1):87-89.
    [110]刘颖丹,苑进社,潘德芳.基于反射光谱的InxGa1-xN半导体薄膜厚度测量[J].重庆师范大学学报(自然科学版),2009,26(4):98-100.
    [111]Marko Nerat, Franc Smole, Marko Topic. A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of poly crystalline Cu(In, Ga)Se2 solar cells [J]. Thin Solid Films,2011, 519:7497-7502.
    [112]何星伟.化学浴沉积法制备铜铟镓硒薄膜太阳能电池缓冲层材料CdS[D].合肥:中国科学技术大学,2012.
    [113]李秋芳,庄大明,张弓等.CIG前驱膜叠层方式对CIGS膜成分和结构的影响[J].真空科学与技术学报,2008,28(1):42-46.
    [114]C.Y.Yena, S.R.Jian, G.J.Chena, et al. Influence of annealing temperature on the structural,optical and mechanical properties of ALD-derived ZnO thin films[J]. Applied Surface Science,2011,257:7900-7905.
    [115]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009年.
    [116]Frank Maldonado, Arvids Stashans. Al-doped ZnO:Electronic, electrical and structural properties[J]. Journal of Physics and Chemistry of Solids,2010,71:784-787.
    [117]Tara Dhakal, Abhishek S. Nandur, Rachel Christian, et al. Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system [J]. Solar Energy,2012,86:1306-1312
    [118]陈希明,马靖,徐晟,吴小国,孙大智,杨保和.测量多层膜结构中薄膜厚度的一种新方法[J].电子·激光,2005,16(4):466-469.
    [119]M.Godlewski, E.Guziewicz, G.Luka, et al. ZnO layers grown by Atomic Layer Deposition:A new material transparent conductive oxide[J]. Thin Solid Films 2009, 518:1145-1148.
    [120]Hongyun Yue, Aimin Wu, Yudong Feng, et al. Structures and properties of the Al-doped ZnO thin films prepared by radio frequency magnetron sputtering [J]. Thin Solid Films,2011,519:5577-5581.
    [121]Xiurong Qu, Wen Wang, Shuchen Lv, et al. Thermoelectric properties and electronic structure of Al-doped ZnO[J]. Solid State Communications,2011,151:332-336.
    [122]欧阳紫靛,刘芳洋,张治安等.生长温度和退火气氛对ZnO:Al薄膜结构与性能的影响[J].粉末冶金材料科学与工程.2011,16(3).
    [123]Kandabara Nouhoum Tapily. Synthesis of ALD ZnO and Thin Film Materials Materials Optimization For UV Photodetector Applications[D]. USA:Old Dominion University,2011
    [124]罗派峰.铜铟镓硒薄膜太阳能电池关键材料与原理型器件制备与研究[D].合肥:中国科学技术大学,2008.
    [125]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2007年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700