用户名: 密码: 验证码:
仿颅颌面骨再生相关基因调控的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因肿瘤、外伤、放射性骨坏死、骨髓炎、牙周炎或先天疾病等导致的颅颌面骨缺损直接影响口腔颌面部修复,颌骨缺损修复时新骨形成的质量、速度和长期稳定性与种植义齿修复息息相关。多年来,临床医师和研究者们尝试利用自体或异体骨移植、人工骨移植、细胞或/和生长因子介导的组织工程技术、屏障膜及骨牵张等临床技术,在修复颌骨或牙槽骨缺损方面取得了一定的成效。近年来,骨缺损修复的理念更倾向于——结合细胞及活性分子的骨支架材料植入机体后能引导及促进机体自身组织的再生修复,因此,设计模仿骨再生生理机制的骨缺损修复方案至关重要。根据颅颌面膜内成骨的特点,我们选择了在骨缺损修复初期能促进血管再生的碱性成纤维细胞生长因子(bFGF),和在骨缺损修复中后期能调控其下游信号通路促进新骨再生的信号分子SonicHedgehog(Shh),目的是通过对这两种关键因子的调控,模拟机体骨缺损修复过程,探寻理想的促颌骨缺损修复方案。方法是利用腺相关病毒高效稳定的感染效率及四环素调控系统对外源基因的开关作用,构建重组病毒rAAV2-Shh及rAAV2-tet-off-bFGF;将两种病毒共同感染原代培养的大鼠骨髓间充质干细胞;继而将这种转基因细胞与β-磷酸三钙复合形成可调控的基因增强型组织工程骨;并通过在四环素衍生物Dox的调控下,体外检测双因子时序表达和三维培养对细胞生物学性状、胞内成骨因子水平的影响;最后将这种可调控的基因增强型组织工程骨移植到大鼠颅骨缺损区,通过Dox调控使骨缺损修复初期bFGF过表达,中后期以Shh表达为主,组织学观察双因子时序调控对缺损区骨组织再生修复的影响,形态学检测新骨形成面积及新生血管密度。结果显示,bFGF协同Shh的分阶段治疗能促进大鼠颅骨缺损区血管再生及新骨形成,新生血管的密度与新骨面积有显著相关性。说明这种双因子时序调控的基因增强型组织工程技术,可以模拟机体自身骨修复不同阶段的生理过程,能更好的促进大鼠颅骨缺损再生修复。
Craniofacial bone defects resulting from tumor, trauma, osteoradionecrosis, osteomyelitis, periodontitis or congenital deformities present a challenge to prosthetic reconstruction. The quality, speed and biomechanical stability of new bone formation in repair of craniofacial bone defects are closely related to dental implantation. Various methods such as allografting. xenographic bone graft, artificial bone graft, cells- or/and growth factors-based tissue engineering, guided bone regeneration and distraction osteogenesis, are applied for craniofacial bone and alveolar bone reconstruction, and achieve satisfactory effects. Recently, the concepts of bone reconstruction involve the combination of a scaffold with cells and/or biomolecules that promotes the repair and/or regeneration of tissues. Therefore, it is very important to mimic the natural environment in which bone cells grow. Bone regeneration is complexly regulated processes that involve a plethora of different growth and transcription factors which coordinate the interaction of cells and matrix in response to external or internal stimuli. Basic fibroblast growth factor (bFGF) induces angiogenesis, and stimulates mitogenesis of mesenchymal cells and osteoblasts in the early phase of bone defects repair. Sonic hedgehog (Shh) is involved in osteoblast differentiation by a mechanism involving BMPs, and may play an important role in bone formation, especially at later stages of skeletogenesis and fracture repair. In this study, bFGF and Shh were used to mimic natural bone repair processes through artificial regulation, and an optimal osteo-inductive approach for craniofacial bone regeneration was discussed.
     In this study, recombinant viruses rAAV2-Shh and rAAV2-tet-off-bFGF that were controlled by tetracycline regulation system were reconstructed. Rat bone marrow-derived mesenchymal stem cells (BMSCs) were routinely isolated from bone marrow, and co-infected with above two recombinant viruses in vitro. The expression of bFGF was controlled through doxycycline (Dox, a tetracycline analogue) administration, and thus sequential expression of bFGF and Shh was induced. Thereafter, the co-infected BMSCs regulated by sequential delivery factors were seeded on the biodegradable scaffold (β-tricalcium phosphate), and this gene-enhanced tissue engineering bone was cultured in a three-dimensional (3D) in vitro culture system. Cell morphology, viability, and differentiation were studied at different sequential expression periods. Osteogenic potential of BMSCs was evaluated according to the concentration of alkaline Phosphatase and the mRNA expression of osteogenic marker genes. Finally, this regulated gene-enhanced tissue engineering bone was introduced into rat critical sized calvarial defects (8 mm). The sequential expression of angiogenic and osteogenic genes, which mimics the intramembranous bone repair, was regulated through Dox administration. Histological slides, obtained from defect sites at the 2nd, 4th and 8th week, were digitized, and the total two-dimensional amount of new bone area and vascular density in defects were quantitated. It was shown that the increased bone formation accompanied with angiogenesis was induced by sequential key factors delivery in vivo, and a positive correlation between new bone area and blood vessel density was found. This study suggests that stage treatment for craniofacial bone regeneration plays a significant role in enhancing bone regeneration through sequential delivery of osteogenic and angiogenic genes.
引文
1 Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 2006; 10 (1): 7-19.2 Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 2008; 15: 100-14.3 Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 2008; 39 Suppl 2: S9-20.
    4 Cohen MM, Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 2006;140 (23): 2646-706.
    5 Vaananen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys 2008; 473 (2): 132-8.
    6 Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, et ul. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 2001; 114 (11):2085-94.
    7 Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E, et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 2005;12(1): 75-86.
    8 Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfal. Endocr Rev 2000; 21 (4):393-4ll.
    9 Foppiano S, Hu D, Marcucio RS. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev Biol 2007; 312(1): 103-14.
    10 Benazet JD, Bischofberger M, Tiecke E, Goncalves A, Martin JF, Zuniga A, et al. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 2009; 323 (5917): 1050-3.
    11 Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:Nature, biology, and potential applications. Stem Cells 2001; 19 (3): 180-92.
    12 Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering-the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007; 11 (4): 654-69.
    13 Franceschi RT. Biological approaches to bone regeneration by gene therapy. J Dent Res 2005; 84 (12): 1093-103.
    14 Dai J, Rabie AB, Hagg U, Xu R. Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther 2004; 4 (4): 469-85.
    15 Kuznetsov YG. Victoria JG. Low A, Robinson WE, Jr.. Fan H, McPherson A. Atomic force microscopy imaging of retroviruses: human immunodeficiency virus and murine leukemia virus. Scanning 2004; 26 (5): 209-16.
    16 Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80 (1-2): 148-58.
    17 Jiang ZL, Reay D, Kreppel F, Gambotto A, Feingold E, Kochanek S, et al. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle. Mol Ther 2001; 3 (6): 892-900.
    18 Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 1984; 81 (20): 6466-70.
    19 Ulrich-Vinther M, Stengaard C, Schwarz EM, Goldring MB, Soballe K.Adeno-associated vector mediated gene transfer of transforming growth factor-betal to normal and osteoarthritic human chondrocytes stimulates cartilage anabolism. Eur Cell Mater 2005; 10:40-50.
    20 Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, et al. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 2004; 9 (4): 587-95.
    21 McMahon JM, Conroy S, Lyons M, Greiser U, O'Shea C, Strappe P, et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 2006; 15 (1): 87-96.
    22 吴小兵,董小岩,伍志坚,屈建国,侯云德.一种快速高效分离和纯化重组腺病毒伴随病毒载体的方法.科学通报2000;45(19):2071-75.
    23 Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 2008; 118 (2): 421-8.
    24 Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122 (Pt 5): 716-26.
    25 Gautschi OP, Erey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg 2007; 77 (8): 626-31.
    26 Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part Ⅰ (basic concepts). J Tissue Eng Regen Med 2008; 2(1): 1-13.
    27 Koh JT, Zhao Z, Wang Z, Lewis IS, Krebsbach PH, Franceschi RT. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent Res 2008; 87 (9): 845-9.
    28 Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000; 289 (5484): 1501-4.
    29 Srivastava A. Adeno-associated virus-mediated gene transfer. J Cell Biochem 2008;105(1):17-24.
    30 Gallez-Hawkins G, Li X, Franck AE, Thao L, Lacey SF, Diamond DJ, et al. DNA and low titer, helper-tree, recombinant AAV prime-boost vaccination for cytomegalovirus induces an immune response to CMV-pp65 and CMV-IE1 in transgenic HLA A~*0201 mice. Vaccine 2004; 23 (6): 819-26.
    31 张淼,李芳萍,陈黎红,傅静奕,严励,傅祖植.小鼠脂联素重组腺相关病毒载体的构建.中国临床康复2006;10(20):74-76.
    32 Ponnazhagan S, Yoder MC, Srivastava A. Adeno-associated virus type 2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo. J Virol 1997; 71 (4): 3098-104.
    33 Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ, Jr., et al.Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28(2):158-67.
    34 Ishikawa H, Kitoh H, Sugiura F, Ishiguro N. The effect of recombinant human bone morphogenetic protein-2 on the osteogenic potential of rat mesenchymal stem cells after several passages. Acta Orthop 2007:78 (2): 285-92.
    35 Naganawa T, Xiao L, Coffin JD, Doetschman T. Sabbieti MG. Agas D. el al. Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 2008; 103 (6): 1975-88.
    36 Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda M J, et al. Effective bone engineering with periosteum-derived cells. J Dent Res 2007; 86 (1): 79-83.
    37 Walsh S, Jefferiss C, Stewart K, Jordan GR, Screen J, Beresford JN. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibrobtast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone 2000; 27 (2): 185-95.
    38 Zhang X, Sobue T, Hurley MM. FGF-2 increases colony formation, PTH receptor, and IGF-1 mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun 2002;290 (1): 526-31.
    39 Springer IN, Niehoff P, Acil Y, Marget M, Lange A, Warnke PH, el al. BMP-2 and bFGF in an irradiated bone model. J Craniomaxillofac Surg 2008; 36 (4): 210-7.
    40 Awad HA, Zhang X, Reynolds DG, Guldberg RE, O'Keefe RJ, Schwarz EM. Recent advances in gene delivery for structural bone allografts. Tissue Eng 2007; 13 (8):1973-85.
    41 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992; 89 (12): 5547-51.
    42 Freundlieb S, Schirra-Muller C, Bujard H. A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1999; 1 (1): 4-12.
    43 Yang M, Ma QJ, Dang GT, Ma KT, Chen P, Zhou CY. Adeno-associated virus-mediated bone morphogenetic protein-7 gene transfer induces C2C12 cell differentiation into osteoblast lineage cells. Acta Pharmacol Sin 2005; 26 (8): 963-8.
    44 Hauswirth WW, Levvin AS, Zolotukhin S, Muzyczka N. Production and purification of reco mbinant adeno-associated virus. Methods Enzymol 2000; 316: 743-61.
    45 Han G. Li Y, Wang J. Wang R. Chen G. Song L, et al. Active tolerance induction and prevention of autoimmune diabetes by immunogene therapy using recombinant adenoassociated virus expressing glutamic acid decarboxylase 65 peptide GAD(500-585). J Immunol 2005; 174 (8): 4516-24.
    46 Yan H, Guo Y, Zhang P, Zu L, Dong X, Chen L, et al. Superior neovascularization and muscle regeneration in ischemic skeletal muscles following VEGF gene transfer by rAAV1 pseudotyped vectors. Biochem Biophys Res Commun 2005; 336 (1):287-98.
    47 Kruyt MC, Dhert WJ, Yuan H, Wilson CE, van Blitterswijk CA, Verbout AJ, et al.Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res 2004; 22 (3): 544-51.
    48 Rochet N, Loubat A, Laugier JP, Hofman P, Bouler JM, Daculsi G, et al. Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone 2003; 32 (6): 602-10.
    49 Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. Journal of Cellular and Molecular Medicine 2005; 9 (1):72-84.
    50 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143-7.
    51 Arthur A. Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2009; 218 (2):237-45.
    52 Bennett JH, Joyner CJ, Triffitt JT, Owen ME. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991; 99 ( Pt 1): 131-9.
    53 Johnstone B. Hering TM, Caplan AI. Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238 (1):265-72.
    54 Ohgushi H. Dohi Y, Katuda T, Tamai S, Tabata S, Suwa Y. In vitro bone formation by rat marrow cell culture. J Biomed Mater Res 1996; 32 (3): 333-40.
    55 Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW,Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2):211-28.
    56 Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7 (5): 393-5.
    57 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al.Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4):315-7.
    58 Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res 2001; 42 (1):49-58.
    59 Zhang B, Wang F, Deng L, Dun A, Dong L, Li J, et al. [Isolating and culturing rat marrow mesenchymal stem cells and studying their phenotypical and functional properties]. Sichuan Da Xue Xue Bao Yi Xue Ban 2003; 34 (4): 738-41.
    60 Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood 1997; 90 (9): 3471-81.
    61 Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest 1999; 79 (4): 449-57.
    62 都义日,付小兵,李存保.骨髓间充质干细胞的研究进展.中国危重病急救医学2004:16(8):499-501.
    63 Tondreau T, Lagneaux L, Dejeneffe M, Delforge A, Massy M, Morticr C, et al.Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection:phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6 (4):372-79.
    64 Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, et al. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 2008; 9:11.
    65 Movaghar B, Tiraihi T, Mesbah-Namin SA. Transdifferentiation of bone marrow stromal cells into Schwann cell phenotype using progesterone as inducer. Brain Research 2008; 1208: 17-24.
    66 Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7 (6): 509-19.
    67 Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17 (1):160-70.
    68 Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR,et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418 (6893): 41-9.
    69 Chang PC, Cirelli JA, Jin Q, Seol YJ, Sugai JV, D'Silva NJ, et al. Adenovirus Encoding Human Platelet-Derived Growth Factor-B Delivered to Alveolar Bone Defects Exhibits Safety and Biodistribution Profiles Favorable for Clinical Use. Hum Gene Ther 2009.
    70 Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, et al.Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 2001; 3 (4): 449-61.
    71 Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ.Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci U S A 2007; 104 (8): 2973-8.
    72 韩祥永,张富强,傅远飞,陈德敏.用于犬剩余牙槽嵴重建的个性化β-磷酸三钙支架的制备与性能研究.上海口腔医学2008;17(1):51-54.
    73 周爽英,沙月琴,张刚.应用纯相β-磷酸三钙治疗牙周炎骨病损的临床观察.现代口腔医学杂志2005;19(1):29-30.
    74 Zerbo IR, Bronckers AL, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005; 26 (12): 1445-51.
    75 Artzi Z, Weinreb M, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, et al.Biomaterial resorption rate and healing site morphology of inorganic bovine bone and beta-tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants 2004; 19 (3): 357-68.
    76 Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone.Biomaterials 2004; 25 (6): 987-94.
    77 Hille R. Alveolar Ridge Preservation: Knochenaufbau nach Extraktion-Field Study of DGZI. Implantologie Journal 2005; 18 (1): 12.
    78 Soucacos PN, Johnson EO, Bahis G. An update on recent advances in bone regeneration. Injury 2008; 39 Suppl 2: SI-4.
    79 Rosa AL, de Oliveira PT, Beloti MM. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Rev Med Devices 2008; 5 (6): 719-28.
    80 Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials,fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008; 85 (2): 573-82.
    81 Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003;8 (21): 980-89.
    82 Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res 2006; 21 (2): 183-92.
    83 Fujii T, Ueno T, Kagawa T, Sakata Y, Sugahara T. Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria. Microsc Res Tech 2006; 69 (7):580-4.
    84 Rudert M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 2002; 171 (4): 229-40.
    85 Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990; 1(1): 60-8.
    86 Gosain AK, Song L, Yu P, Mehrara BJ, Maeda CY, Gold LI, et al. Osteogenesis in cranial defects: reassessment of the concept of critical size and the expression of TGF-beta isoforms. Plast Reconstr Surg 2000; 106 (2): 360-71; discussion 72.
    87 Hu WW, Wang Z, Hollister SJ, Krebsbach PH. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther 2007; 14(11): 891-901.
    88 Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T, et al. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci 2007; 104 (4): 384-6.
    89 Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng 2006; 12(5): 1137-42.
    90 Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22 (7): 354-62.
    91 Yuasa T, Kataoka H, Kinto N, Iwamoto M, Enomoto-Iwamoto M, Iemura SI, et al.Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol 2002; 193 (2): 225-32.
    92 Straface G, Aprahamian T, Flex A. Gaetani E. Biscetti F, Smith RC, et al. Sonic Hedgehog Regulates Angiogenesis and Myogenesis During Post-Natal Skeletal Muscle Regeneration. J Cell Mol Med 2008.
    93 Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R. Martinez MC. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 2009; 30 (4): 580-8.
    94 Harris WH. A microscopic method of determining rates of bone growth. Nature 1960;188: 1038-9.
    95 Suzuki HK, Mathews A. Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-bis[N,N'-di-(carbomethyl)aminomethyl] fluorescein. Stain Technol 1966; 41 (1): 57-60.
    96 Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O'Brien FJ, et al. Detecting microdamage in bone. J Anat 2003; 203 (2): 161-72.
    97 Roldan JC, Jepsen S, Miller J, Freitag S, Rueger DC, Acil Y, et al. Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic protein-7. Bone 2004; 34 (1): 80-90.
    98 Freitag V, Landau H. Histological findings in the alveolar sockets and tooth roots after experimental mandibular fractures in dogs. J Craniomaxillofac Surg 1997; 25 (4):203-11.
    99 Lee TC, Arthur TL, Gibson LJ, Hayes WC. Sequential labelling of microdamage in bone using chelating agents. J Orthop Res 2000; 18 (2): 322-5.
    100 Nussenbaurn B, Krebsbach PH. The role of gene therapy for craniofacial and dental tissue engineering. Adv Drug Deliv Rev 2006; 58 (4): 577-91.
    101 Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1996; (324): 55-65.
    102 Schliephake H, Jamil MU, Knebel JW. Experimental reconstruction of the mandible using polylactic acid tubes and basic fibroblast growth factor in alloplastic scaffolds. J Oral Maxillofac Surg 1998; 56 (5): 616-26; discussion 26-7.
    103 何大为,金岩,李石保,王容,郑昌琼,宋志国.水凝胶与陶瓷化骨及β-磷酸三钙复合对骨髓基质细胞成骨能力的影响.实用口腔医学杂志2002:18(6):514-17.
    104 翁雨来,曹谊林,VacantiCA.组织工程化人形下颌骨髁状突的实验研究.上海口腔医学2000;9(2):94-96.
    105 Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 2007; 13 (6): 1135-50.
    106 Dawson JI, Oreffo RO. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 2008; 473 (2): 124-31.
    107 Sakata Y, Ueno T, Kagawa T, Kanou M, Fujii T, Yamachika E, et al. Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model. J Craniomaxillofac Surg 2006; 34 (8): 461-5.
    108 Mase J, Mizuno H, Okada K, Sakai K, Mizuno D, Usami K, et al. Cryopreservation of cultured periosteum: effect of different cryoprotectants and pre-incubation protocols on cell viability and osteogenic potential. Cryobiology 2006; 52 (2): 182-92.
    109 Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003; 22 (1): 81-91.
    110 Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells. Gene Ther 2002; 9(10): 642-7.
    111 Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Injury 2005; 36 Suppl 3: S8-SI2.
    112 Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24 (5): 1294-301.
    113 ChiM H. SChantz JT. Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. PLast Reconstr Surg 2006; 117 (2): 468-78.
    114 Hannouche D. Raould A, Nizard RS, Sedel L, Petite H. Embedding of bone samples in methylmethacrylate: a suitable method for tracking LacZ mesenchymal stem cells in skeletal tissues. J Histochem Cytochem 2007; 55 (3): 255-62.
    115 Mylonas D, Vidal MD, De Kok IJ, Moriarity JD, Cooper LF. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. J Prosthodont 2007; 16 (6): 421-30.
    116 Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49 (3):328-37.
    117 Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001; 3 (3): 240-51.
    118 Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, et al. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104 (5): 618 el-12.
    119 Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88 (3): 249-54.
    120 Srouji S, Kizhner T, Ben David D, Riminucci M, Bianco P, Livne E. The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study. Calcif Tissue Int 2009; 84(2): 138-45.
    121 Csaki C, Matis U, Mobasheri A, Shakibaei M. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation.Histochem Cell Biol 2009; 131 (2): 251-66.
    122 Shigeno K. Nakamura T, Inoue M, Ueda H, Kobayashi E. Nakahara T, et al. Regenerative repair of the mandible using a collagen sponge containing TGF-betal. Int J Artif Organs 2002; 25 (11): 1095-102.
    123 Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun's platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: a new grafting protocol. Implant Dent 2009;18(2): 102-11.
    124 Gilbert ME, Kirker KR, Gray SD, Ward PD, Szakacs JG, Prestwich GD, et al. Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 2004; 114(8): 1406-9.
    125 Arosarena O, Collins W. Comparison of BMP-2 and -4 for rat mandibular bone regeneration at various doses. Orthod Craniofac Res 2005; 8 (4): 267-76.
    126 Kurokawa N, Ueda K, Kuroyanagi Y. Improvement of the maxillary bone growth suppression in the cleft palate operation with cultured dermal substitute: animal experiment and patient reports in preliminary clinical application. J Plast Reconstr Aesthet Surg 2009.
    127 Martuscelli R, Maltarello MC, Maraldi NM, Sbordone C, Sbordone L. Histological and clinical survey of polylactic-polyglycolic acid and dextrane copolymer in maxillary, sinus lift: a pilot in vivo study. Int J Immunopathol Pharmacol 2008; 21 (3): 687-95.
    128 Dhol WS, Reyneke JP, Tompson B, Sandor GK. Comparison of titanium and resorbable copolymer fixation after Le Fort Ⅰ maxillary impaction. Am J Orthod Dentofacial Orthop 2008; 134 (1): 67-73.
    129 Abroad N, Lyles J, Panchal J. Outcomes and complications based on experience with resorbable plates in pediatric craniosynostosis patients. J Craniofac Surg 2008; 19 (3): 855-60.
    130 Wang S, Zhang Z, Zhao J, Zhang X, Sun X, Xia L. et al. Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 2009; 30 (13): 2489-98.
    131 Weng D, Poehling S, Pippig S, Bell M, Richter EJ, Zuhr O, et al. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs. lnt J Oral Maxillofac Implants 2009; 24 (1): 31-7.
    132 袁捷,刘广鹏,柴岗,崔磊,刘伟,曹谊林.以自体诱导和无诱导的骨髓基质干细胞复合珊瑚修复犬下颌骨节段缺损的比较研究.组织工程与重建外科杂志2008;4(3):134-37.
    133 Xi Q, Bu RF, Liu HC, Mao TQ. Reconstruction of caprine mandibular segmental defect by tissue engineered bone reinforced by titanium reticulum. Chin J Traumatol 2006; 9 (2): 67-71.
    134 Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph 2009; 33 (1): 58-62.
    135 Roosa SM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A 2009.
    136 Kodama N, Nagata M, Tabata Y, Ozeki M, Ninomiya T, Takagi R. A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation. Bone 2009; 44 (4): 699-707.
    137 Ripamonti U, Petit JC, Teare J. Cementogenesis and the induction of periodontal tissue regeneration by the osteogenic proteins of the transforming growth factor-beta superfamily. J Periodontal Res 2009; 44 (2): 141-52.
    138 Jung RE, Thoma DS, Hammerle CH. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. J Clin Periodontol 2008;35 (8 Suppl): 255-81.
    139 Alam S. Ueki K, Marukawa K, Ohara T, Hase T, Takazakura D, et al. Expression of bone morphogenetic protein 2 and fibroblast growth factor 2 during bone regeneration using different implant materials as an onlay bone graft in rabbit mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103 (1): 16-26.
    140 Srouji S. Rachmiel A, Blumenfeld I, Livne E. Mandibular defect repair by TGF-beta and IGF-1 released from a biodegradable osteoconductive hydrogel. J Craniomaxillofac Surg 2005; 33 (2): 79-84.
    141 Yamada Y, Ueda M, Naiki T, Takahashi M, Hata KI, Nagasaka T. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: Tissue-engineered bone regeneration. Tissue Eng 2004; 10 (5-6): 955-64.
    142 Xu HH, Weir MD, Simon CG. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 2008; 24 (9): 1212-22.
    143 Kleinheinz J, Stratmann U, Joos U, Wiesmann HP. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 2005; 63 (9): 1310-6.
    144 Pieri F, Lucarelli E, Corinaldesi G, Fini M, Aldini NN, Giardino R, et al. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg 2009; 67 (2): 265-72.
    145 Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biollnt 2008; 32 (9): 1150-7.
    146 Steinhardt Y, Asian H, Regev E, Zilber man Y, Kallai I, Gazit D, et al . Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng Part A 2008; 14(11): 1763-73.
    147 Zhang Y, Song J, Shi B. Wang Y, Chen X, Huang C, et al. Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials 2007; 28 (31): 4635-42.
    148 Chen JC. Winn SR. Gong X, Ozaki WH. rhBMP-4 gene therapy in a juvenile canine alveolar defect model. Plast Reconstr Surg 2007; 120 (6): 1503-9.
    149 Zhang Y, Shi B, Li C, Wang Y, Chen Y, Zhang W, et al. The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release 2009.
    150 Lattanzi W, Parrilla C, Fetoni A, Logroscino G. Straface G, Pecorini G, et al. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 2008; 15 (19):1330-43.
    151 Phillips JE, Garcia AJ. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype. Methods Mol Biol 2008; 433:333-54.
    152 Zhao Z, Wang Z, Ge C, Krebsbach P, Franceschi RT. Healing cranial defects with AdRunx2-transduced marrow stromal cells. J Dent Res 2007; 86 (12): 1207-11.
    153 Sutter W, Stein E, Koehn J. Schmidl C, Lezaic V, Ewers R, et al. Effect of different biomaterials on the expression pattern of the transcription factor Ets2 in bone-like constructs. J Craniomaxillofac Surg 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700