用户名: 密码: 验证码:
PCB空心线圈电子式电流互感器的理论建模及设计实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子式电流互感器以其优异的绝缘性能、无磁饱和的优良特性,适应了电力系统大容量、高电压等级以及自动化发展的需要。但是,复杂的工作环境因素(如温度、振动、电磁干扰等)以及高压区电源的供能问题影响了有源电子式电流互感器的测量准确度、长期稳定性和可靠性,阻碍着大规模商业应用的进程。本论文针对有源电子式电流互感器目前存在的上述主要问题,从理论与实践角度进行了一些探索,提出了高性能PCB(Printed-Circuit Board)空心线圈电流传感器的基础理论和设计方法,研究了有源电子式电流互感器高压区的电源供能理论,在此基础上,研制了PCB空心线圈电子式电流互感器样机,其中,TECT-10型样机通过了型式试验,并已挂网试运行。针对空心线圈电子式电流互感器的测量准确度难以达到0.2S级电力系统计量要求问题,论文从直接影响电流互感器性能的空心线圈一次电流传感器的基础理论研究入手,探索高性能空心线圈电流传感器的设计方法。通过对实用空心线圈的结构特征、制造技术与测量性能之间制约关系的分析,揭示出实用空心线圈细小的骨架截面是影响线圈几何制造精度进而影响测量性能的首要结构因素。为此,基于大截面实用空心线圈的结构和测量原理模型,通过理论建模、仿真和试验方法研究了实用空心线圈大截面结构对测量原理与性能的内在影响关系。研究结论纠正了关于“线圈宽度是产生位置误差的原因之一”的错误认识,解除了空心线圈对骨架截面的限制,对大截面PCB空心线圈的设计与制造具有理论指导意义。论文建立了矩形大截面实用线圈位置误差的精确数学模型和载流导体有效长度对测量准确度影响的数学模型。基于PCB空心线圈和T型积分器构建了PCB空心线圈电流传感器,推导出PCB空心线圈电流传感器的传递函数模型和工频暂态特性数学模型,动模试验表明PCB空心线圈电流传感器具备准确反映电力系统故障电流暂态过程的能力。
     PCB空心线圈具有不同于普通空心线圈的结构特征,突出表现为矩形大截面结构、线匝规律离散分布和线圈导线与骨架为约束耦合关系,由此产生了不同于普通空心线圈的误差特性。基于PCB空心线圈的上述结构特征和制造精度,建立了PCB空心线圈的位置误差、结构误差和温度误差系数的数学模型,仿真分析了影响位置误差的结构因素,试验考核了两种不同内径线圈的结构误差;建立了PCB空心线圈电流传感器的温度误差系数和理论稳态误差的数学模型,提出了PCB空心线圈电流传感器的温度误差控制方法—温度系数匹配法,并通过试验证明了采用该方法可以在-40~70℃温度范围将其温度误差控制±0.1%以内。
     摒弃以往单纯优化负载电阻阻值的方法,采用基于优化配置零极点的PCB空心线圈动态性能优化方法,可有效兼顾PCB空心线圈的稳态温度误差和高频动态性能。建立了T型积分器的低频动态特性优化模型,通过仿真与试验分析了T型积分器的上限截止频率与最大峰值瞬时误差之间的制约关系。基于PCB空心线圈的基础理论分析,提出了PCB空心线圈结构优化设计的基本原则与方法,尤其是提出了PCB空心线圈环径比κ优化的数学模型。提出了PCB空心线圈电流传感器的优化设计流程。
     针对目前实际产品因高压区电源难以连续获取大功率能量而产生长期工作可靠性问题,提出了速饱和电流互感器、磁阀式饱和电流互感器在线取能与激光供能相配合的混合供能方案,以解决大功率供能、电流死区和唤醒时间问题。重点研究了电流互感器在线取能理论。基于速饱和电流互感器的工作特性分析,提出了速饱和电流互感器的设计方法;采用通过铁心磁导率变化自适应于一次电流变化来实现控制铁心磁通变化的方法,研制出一种用于在线取能的新型电流互感器—磁阀式饱和电流互感器,大大拓展了电流互感器0.5W功率在线取能时电流死区的上限;试验数据分析表明,采用速饱和电流互感器和磁阀式饱和电流互感器相配合的方法,当在线取能功率为0.5W时,电流死区下限可达1.5A,上限可达7000A(理论上20000A)。研制了使用电流互感器在线取能的悬浮式开关电源。
     基于PCB空心线圈电流传感器的基础理论与设计方法的研究成果,研制了10KV和110KV以上电压等级的PCB空心线圈电子式电流互感器样机。其中,10KV电压等级TECT-10型样机已通过型式试验和科技成果鉴定,计量准确度达到0.2S,保护准确度达到5P,并实现了小规模产品化和挂网试运行。研究了电子式电流互感器工作环境中主要电磁干扰源及其特性,采取了有效的干扰抑制措施,保证了TECT-10型样机的电磁兼容性。
     基于电子式电流互感器标准GB/T 20840.8-2007,研究了电子式电流互感器测量准确度的校验原理,采用虚拟仪器技术构建了电子式电流互感器校验系统,可应用于电子式电流互感器测量准确度的测试与校验。
Being of excellent insulation and no saturation, electronic current transformer (ECT) meets the needs of the electric power system development towards to large volume, high- level voltage and automation. However, such complicated factors as temperature, vibration and electromagnetic interference in working surroundings and the problem of the power supply on the high voltage side badly affect the measurement accuracy, long-term stability and reliability of active ECT, which baffled its extensive commercial utility in power system. Some major problems of active ECT are discussed from the points of view on theory and practice in this dissertation. The fundamental theory and design methods of high performance current sensor based on printed-circuit board (PCB) air-core coils and the power supply theory are presented. Based on the above research, the prototypes of PCB air-core coils ECT were developed. The TECT-10 prototype had successfully passed through type tests and is operating during the probative period in power system.
     The measurement accuracy of air-core coils ECT cannot meet the requirement of metering application in power system. To solve this problem, this dissertation stars with the fundamental theory study of the primary current sensor based on air-core coils, which directly affects the performances of active ECT, and investigates the design methods of high-performance air-core coils current sensor. By analyzing on the mutual influence relations among the structure characters, manufacturing technology and performances of applied air-core coils, it is discovered that the chief geometric factor affecting the geometric precision and farther the measurement performances of applied air-core coils is the small cross-section of coils’former. Thus, based on the geometric structure models and operating principles of applied air-core coils, the intrinsic influence relations between the large cross-section of applied air-core coils with its operating principles and measurement performances are investigated by theory modeling, simulations and experiments. The research results not only point out the incorrect opinion - the width of air-core coils is one cause of position errors but unfreeze the cross-section dimensions of coils’former, which can be applied to the design and manufacture of PCB air-core coils as instructive theory. It is for the first time that the precise mathematical models of air-core coils position errors and the mathematical models of the influence of current-carrying conductor effective length on measurement accuracy are built. A kind of PCB air-core coils current sensor is designed based on PCB air-core coils and T-integrator. The transfer function and the transient characteristics mathematical models at 50Hz of PCB air-core coils current sensor are educed. The dynamic simulation experiments show that PCB air-core coils current sensor is competent for the accurate reproduction of the fault current transient process in power system.
     The distinct structure characteristics of PCB air-core coils including the large rectangle cross-section, the regular discrete distribution of turns and the constrained coupling relation between wires and former are different from that of conventional air-core coils. And thus, the error characteristics of PCB air-core coils are also different from that of conventional air-core coils. Based on the above structure characteristics and the manufacture precision of PCB air-core coils, it is for the first time that the mathematical models including the position errors, the structure errors and the temperature error coefficient of PCB air-core coils are built. The structure factors causing the position errors are analyzed by simulation. The structure errors of two PCB air-core coils with different radii are tested by experiments. The temperature error coefficient model and steady-state theory error model of PCB air-core coils current sensor are also set up. The temperature-coefficient-match method for controlling the temperature error of PCB air-core coils current sensor is put forward. Tests show that the temperature error of PCB air-core coils current sensor is only±0.1 percent when the temperature of working surroundings varies from -40 centigrade to +70 centigrade by employing the above method.
     The steady-state temperature error and the dynamic characteristic of PCB air-core coils can be considered simultaneously by adopting the dynamic characteristics optimization method based on the optimal zero-pole point configuration and not the conventional optimization method of load resistor. For the first time, the low-frequency characteristic optimization model of T-integrator is set up. The conditionality relation between the upper cut-off frequency limit and the maximum peak instantaneous error of T-integrator is analyzed by simulation and experiment. Based on the analysis on the fundamental theory of PCB air-core coils, a set of more complete optimization principles and methods are put forward and the important mathematical model of the ratio (κ) of the outside diameter to the inside diameter of toroidal coils is set up. The full optimization designs of PCB air-core coils current sensor are shown in a flow chart.
     The hybrid power supplies scheme based on fast-saturation current transformer, magnetic-valve type saturable current transformer and laser-driving power supply is put forward to solve the problems including high-power supply, primary current dead range and wake-up time, which badly affect the long-term working reliability of the applied ECT products owing to the difficulty in acquiring high-power energy continuously of the power supply on the high voltage side. The study focus is on the on-line acquiring-energy using current transformer. The operating characteristics and the design method of fast-saturation current transformer are investigated. By employing a new method– the change of the iron core permeability self-adapts the change of the primary current to control the change of the iron core magnetic flux, it is for the fist time that a new-style magnetic-valve type saturable current transformer for the on-line acquiring-energy is developed, which greatly extents the upper limit of primary current dead range when applied for on-line acquiring 0.5 watt energy. The analysis on the tests data shows that the lower limit of primary current dead range can reach 1.5 ampere while the upper limit can reach 7000 ampere in practice (20000 ampere in theory) by employing fast-saturation current transformer and magnetic-valve type saturable current transformer simultaneously. The floating switch power supply is also developed.
     Based on the fundamental theory and design methods research of PCB air-core coils current sensor, two prototypes of PCB air-core coils ECT were developed, which can run respectively into 10KV and 110KV above power system. The type tests and technical evaluation of TECT-10 prototype (10KV) had been performed successfully. The type tests show that the accuracy of TECT-10 prototype reaches 0.2S in metering and 5P in protection. The applied products had already been developed and are operating during the probative period in power system. The major electromagnetic interference (EMI) sources and their characteristics in working surroundings of ECT are discussed. The corresponding measurements minimizing EMI were taken to ensure the electromagnetic compatibility of TECT-10 prototype.
     According to GB/T 20840.8-2007 standard, the accuracy test principle of ECT is described. The accuracy test system had been set up by employing virtual instrument technique for the accuracy test of ECT.
引文
[1]乔莉.中国电网的现状与发展.电气应用,2007,26(2):12-15.
    [2]刘振亚.特高压输电是中国电力发展的必由之路.国家电网, 2006, (12): 4-5.
    [3]张长浩,李竹,武星.特高压:站在跨越的新起点.国家电网, 2006, (9):14-22.
    [4]郭剑波.我国电力科技现状与发展趋势.电网技术, 2006,30(18):1-7.
    [5]杨昕.电力系统继电保护技术发展.大众用电, 2007, (6):24-25.
    [6]刘彦超.电力系统继电保护基本要求及发展趋势.黑龙江科技信息, 2007, (18):29.
    [7]张冈.光电混合式电流传感器的设计理论及其在电力系统中的应用: [博士论文].华中科技大学, 2000.
    [8]叶妙元,肖霞.光电互感器(一).广东输电与变电技术, 2003, (3):11-16.
    [9]尚秋峰.光学电流互感器实用化方法的研究: [博士论文].华北电力大学, 2004.
    [10]罗承沐,张贵新,王鹏.电子式电流互感器及其技术发展状况.电力设备, 2007,8 (1):20-24.
    [11]夏勇军,苏昊,胡刚等.电子式电流互感器原理及工程应用进展.湖北电力, 2007,31 (4):1-4.
    [12] Emerging Technologies Working Group, Fiber Optic Sensors Working Group.Optical Current Transducers for Power Systems: A Review. IEEE Transactions on Power Delivery, 1994, 9(4):1778-1787.
    [13] Byoungho Lee. Review of the Present Status of Optical Fiber Sensors. Optical Fiber Technology, 2003, 9:57-79.
    [14] M Satioh, T Kimura, Y Minami et al. Electronic Instrument Transformers for Integrated Substation Systems. Transmission and Distribution Conference and Exhibition, 2002, 1: 459-464.
    [15] International Electrotechnical Commission. International Standard: IEC 60044-8 (First edition). 2002.
    [16]全国互感器标准化技术委员会.电子式电流互感器标准: GB/T 20840.8-2007, 2007.
    [17]李维波.基于Rogowski线圈的大电流测量传感理论与实践: [博士论文].华中科技大学, 2005.
    [18]郭晓华. Rogowski线圈的理论分析及有源光电电流互感器研究: [博士论文].华中科技大学, 2003.
    [19]王海明.电子式电流互感器传感头的理论与工艺研究: [博士论文].燕山大学, 2006.
    [20] Klaus Bohnert, Peter Guggenbach. A Revolution in High DC Current Measurement. ABB Review, 2005,1:6-10.
    [21] A J Rogers. Optical Methods for Measurement of Voltage and Current on Power Systems. Optics and Laser Technology, 1977, (12):273-283.
    [22] A M Smith. Optical fibers for Current Measurement Applications. Optics and Laser Technology, 1980, (2): 25-29.
    [23] A Papp, H Harms. Magneto-optical Current Transformer 1: Principles. Applied Optics, 1980, 19(22): 3729-3734.
    [24] H Aulich, W Beck, N Douklias et al. Magneto-optical Current transformer 2: Components. Applied Optics, 1980, 19(22): 3735-3740.
    [25] H Harms, A Papp. Magneto-optical Current transformer 3: Measurement. Applied Optics, 1980, 19(22): 3741-3745.
    [26] J R Qian, Q Guo, L Li. Spun Linear Birefringence Fibers and Theirs Sensing Mechanism in Current Sensors with Temperature Compensation. IEEE Proceedings of Optoelectronics, 1994, 41(6):373-380.
    [27] P Menke, T Bosselmann. Temperature Compensation in Magneto-optic AC Current Sensors Using an Intelligent AC-DC Signal Evaluation. Journal of Lightwave Technology, 1995, 13(7):1362-1370.
    [28] A J Rogers, J Xu, J Yao. Vibration Immunity for Optical-fiber Current Measurement. Journal of Lightwave Technology, 1995, 13(7):1371-1377.
    [29] P Tantaswadi. Simulation of Birefringence Effects in Reciprocal Fiber-optic Polarimetric Current Sensor. Proceedings of SPIE, 2001, 4517:158-164.
    [30] G A Sanders, J N Blake, A H Roser et al. Commercialization of Fiber-optic Current and Voltage Sensors at Nxtphase. IEEE Proc, 2002, 7289:31-34.
    [31]李坚. NX系列新型光电互感器.电力设备, 2004, 5(10):69-71.
    [32]王少奎.电子式电流互感器的发展现状及研制难点.变压器, 2003, 40(5):20-25.
    [33] T W Cease, Driggans, Weikel. Optical Voltage and Current Sensors Used in a Revenue Metering System. IEEE Transactions on Power Delivery, 1991, 6(4):1374-1379.
    [34]王政平,康崇,张雪原等.光学玻璃电流互感器研究进展.激光与光电子学进展, 2004, 41(11): 41-45.
    [35] Z P Wang, Q B Li, Y Qi et al. Wavelength Dependence of the Sensitivity of a Bulk-glass Optical Current Transformer. Optics and Laser Technology, 2006, 38(2):87-93.
    [36] Z P Wang, Q B Li, Y Qi et al. Joint Effect of Dispersions of Reflection-induced Retardance and Verdet Constant upon the Sensitivity of an Optical Current Transformer. Optics and Laser Technology, 2004, 36:233-237.
    [37] Z P Wang, Q B Li, Y Qi et al. Effect of Dispersion of Linear Birefringence upon the Sensitivity of an Optical Current Sensor. Optics and Laser Technology, 2004, 36(7):587-590.
    [38] Z P Wang, Q B Li, Y Qi et al. A Magnetic Field Sensor Based on Orthoconjugate Reflection Used for Current Sensing. Optics and Laser Technology, 2007, 39(6):1231-1233.
    [39]李岩松,郭志忠,杨以涵等.自适应光学电流互感器的基础理论研究.中国电机工程学报, 2005, 25(22):21-26.
    [40] W.lain Madden, W.Craig Michie, Andrew Cruden. Temperature Compensation for Optical Current Sensors. Optical Engineering, 1999,38(10):1699~1707.
    [41] Choong Soo Lim,Kijang Oh,Dalwoo Kim1 and Kyuman Cho2. Hybrid Fiber-Optic Current Sensor Using Two Faraday Glass-Slab Magnetic Field Sensors.(Japanese) Journal of Applied Physics, 2004,43(5A):2737-2741.
    [42]张贵新,赵清姣,罗承沐.电子式电流互感器的现状与发展前景.电力设备, 2006,7(4):108-109.
    [43]郭志忠.电子式电流互感器研究评述.继电器, 2005, 33(14):11-14.
    [44]叶妙元,肖霞.光电互感器(二).广东输电与变电技术, 2003, (4):4-8.
    [45]王政平,康崇,张雪原等.有源型光学电流互感器研究进展.激光与光电子学进展, 2004, 41(10): 34-38.
    [46]张君正,刘彬,张秋婵.光纤高压电流互感器传感头的设计.自动化仪表, 2002, (1):5-8.
    [47]乔卉,刘会金,王群峰等.基于Rogowski线圈传感的光电电流传感器的研究.继电器, 2002, 30(7):40-43.
    [48]徐雁,朱明钧,郭晓华等.空心线圈作为保护用电流互感器的理论分析和试验.电力系统自动化, 2002, 26(16):52-55.
    [49] L A Kojovic. Rogowski Coils Suit Relay Protection and measurement. IEEE Computer Applications in Power, 1997, 10(3): 47-52.
    [50] D A Ward, J LaT Exon. Using Rogowski Coils for Transient Current Measurement. Engineering Science and Education Journal, 1993, 2(3):105-113.
    [51] P N Murgatroyd, D N Woodland. Geometrical Properties of Rogowski Sensors. Low Frequency Power Measurement and Analysis, IEE Colloquium on 2 Nov 1994:9/1-9/10.
    [52] Kang-Won Lee, Jeong-Nam Park, Seong-Hwa Yang et al. Geometrical Effects in the Current Measurement by Rogowski Sensor. Proceedings of 2001 International Symposium on Electrical Insulating materials, 2001:419-422.
    [53]申烛,钱政,罗承沐等. Rogowski线圈测量误差分析和估计.高电压技术, 2003, :29(1):6-7,27.
    [54]钱政,申烛,罗承沐.插接式智能组合电器中电子式电流传感器的结构特性分析.仪器仪表学报, 2004, 25(6):787-790.
    [55]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析.中国电机工程学报, 2004, 24(3):108-113.
    [56] Luka Ferkovi?, Damir Ili?, Roman Malari?. Analysis of the Mutual Inductance of a Precise Rogowski Coil. Proceedings of Instrumentation and Measurement Technology Conference, 2007:1-4.
    [57] L A Kojovic. PCB Rogowski Coils Benefit Relay Protection. IEEE Computer Applications in Power, 2002, 15(3):50-53.
    [58] L A Kojovic. PCB Rogowski Coils Designs and Performances for Novel Protective Relaying. Proceedings of 2003 IEEE Power Engineering Society General Meeting, 2003:609-614.
    [59] N Karrer, P Hofer-Noser. PCB Rogowski Coils for High di/dt Current Measurement. Proceedings of the 31th IEEE Power Electronics Specialists Annual Conference, 2001:1296-1301.
    [60] L A Kojovic. Split-core PCB Rogowski Coils Designs and Applications for Protective Relaying. Proceedings of 2003 IEEE Transmission and Distribution Conference and Exposition, 2003:269-273.
    [61]陈庆,李红斌,张明明等.采用主副印制电路板构造的Rogowski线圈性能分析及设计.电力系统自动化, 2004, 28(16):79-82.
    [62]杨楠,段雄英.一种新型的Rogowski线圈-PCB罗氏线圈.高压电器, 2005, 41(3):209-211.
    [63] Q Chen, H B Li, M M Zhang et al. Design and Characteristics of Two Rogowski CoilsBased on Printed Circuit Board. IEEE Transaction on Instrumentation and Measurement, 2006, 55(3):939-943.
    [64] L A Kojovic. Novel Low-Power Current Sensors for Relay Protection Systems (Part ?). Proceedings of 2004 Eighth IEE International Conference on Developments in Power System Protection, 2004,2:510-513.
    [65] L A Kojovic. Application of Rogowski coils used for protective relaying purposes. Proceedings of 2006 2006 IEEE/PES Power Systems Conference and Exposition, 2006:6/1-6/6.
    [66] L A Kojovic, M T Bishop, V Skendzic. Coiled for Protection. IEEE Power and Energy Magazine, 2003, 1(3):43-48.
    [67] J D Ramboz. Machinable Rogowski Coil Design and Calibration. IEEE Transactions on Instrumentation and Measurement, 1996,45(2):511-515.
    [68] A Rautiainen, P Helisto, T Mansten et al. 50Hz Current Measurement with Rogowski Coils. Proceedings of Precision Electromagnetic Measurement, 2002:230-231.
    [69] X H Guo, J S Liao, M J Zhu et al. Improved Performance Rogowski Coils for Power System. Proceedings of 2003 IEEE Transmission and Distribution Conference and Exposition, 2003:371-374.
    [70]李维波,毛承雄,陆继明等.分布电容对Rogowski线圈动态特性影响研究.电工技术学报, 2004, 19(6):12-17.
    [71] V Dubickas, H Edin. High-Frequency Model of the Rogowski Coil with a Small Number of Turns. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6):2284-2288.
    [72] K Draxler, R Styblikova. Determination of Rogowski Coil Constant. Applied Electronics, 2006,9:241-243.
    [73] C R Hewson, W F Ray, R M Davis. Verification of Rogowski Current Transducer’s Ability to Measure Fast Switching Transient. Proceedings of 2006 Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006, 573-579.
    [74] A J Ehsan, M Richard. High-Performance Low-Cost Rogowski Transducers and Accompanying Circuitry. IEEE Transactions on Instrumentation and Measurement, 2007, 56(3):753-759-165.
    [75] W Li, X G Yin, D S Chen et al. The Study of Transient Performance for Electronic Current Transformer Sensor Based on Rogowski Coil.Proceedings of the 41stInternational Universities Power Engineering Conference, 2006, 1:162-165.
    [76]谢彬,尹项根,张哲等.基于Rogowski线圈的电子式电流互感器的积分器技术.继电器, 2007, 35(3):45-50,86.
    [77] H M Wang, F liu, H L Zhang et al. Analysis of the Thermal Expansion Effect on Measurement Precision of Rogowski Coils. Proceedings of 2005 International Conference on Power Electronics and Drive Systems, 2005:1658-1661.
    [78] H M Wang, H L Zhang, S X Zheng. The Compensation Method of Thermal Expansion Effect on Rogowski Coils. Proceedings of the 13st International Symposium Power Electronics, 2005.
    [79]田朝勃,索南加乐,罗苏南等.应用于GIS保护与监测的罗氏线圈电子式电流互感器.中国电力, 2003, 36(10):53-56.
    [80]陈庆,李红斌,张明明等. 3种Rogowski线圈的设计及其性能分析.仪器技术与传感器, 2005, (7):54-58.
    [81] C Hewson, W F Ray. The Effect of Electrostatic Screening of Rogowski Coils Designed for Wide-Bandwidth Current Measurement in Power Electronic Applications. Proceedings of IEEE 35th Annual Specialists Conference on Power Electronics, 2004:1143-1148.
    [82] H M Wang, S X Zheng. Methods for Improving the Measurement Precision of the Rogowski Coils. Proceedings of 6th Intrnational Symposium on Test and Measurement, 2005:2789-2792.
    [83] A Tardy, A Derossis, J P Dupraz. A Current Sensor Remotely Powered and Monitored through an Optical Fiber Link. Optical Fiber Technology, 1995, 1:181-185.
    [84]颜研,张涛,申烛等.激光供能混合式光电电流互感器.电工技术, 2001, (11):36-37.
    [85]李芙英,陈永亭.应用于光电式电流互感器的悬浮式电源的设计.继电器, 1999,27(1):40-42.
    [86]李芙英,朱小梅,纪昆等.一种应用于高压侧测量系统中的电源.高电压技术, 2002, 28(3):46-47.
    [87]刘忠战.电子式电流传感器高压侧自励源供能方法研究.高压电器, 2006, 42(1):55-57.
    [88]沙玉洲,邱红辉,段雄英等.一种高压侧自具源的设计.高压电器, 2007, 43(1):21-24.
    [89]陈应林,黄德祥,孙志杰. OET700电子式电流互感器的结构与性能.变压器, 2006, 43(6):1-5.
    [90]陈应林. OET700系列数字式光电电流电压互感器说明书(V1.1).国电南自新宁自动化有限公司, 2004.
    [91] J D Bull, N A F Jaeger, F Rahmatian. A New Hybrid Current Sensor for High-Voltage Application. IEEE Transaction on Power Delivery, 2005,20(1):32-38.
    [92]王均梅,吴春风,王晓琪.我国电力互感器的发展概况及应用现状.电力设备, 2007, 8(1):5-10.
    [93] W L Madden, W C Miehie, C Andrew. Temperature Compensation for Optical Current Sensors. Optical Engineering, 1999, 38(10):1699~1707.
    [94] David A Weston. Electromagnetic Compatibility Principle and Applications. Marcel Dekker Inc, 1991.
    [95]王海明,郑绳楦,刘丰.电磁干扰产生电压测量误差的分析.测试技术学报, 2004, 18(6):79-83.
    [96] C Y Wang, Y P Chen, G Zhang et al. Design of Printed-circuit Board Rogowski Coil for Highly Accurate Current Measurement. Proceedings of IEEE International Conference on Mechatronics and Automation, 2007:3801-3806.
    [97] C Oates. The Design and Use of Rogowski Coils. Measurement Techniques for Power Electronics. IEE Colloquium on 16 Dec 1991:5/1-5/5.
    [98] P N Murgatroyd, D N Woodland. Geometrical Properties of Rogowski Sensors. Low Frequency Power Measurement and Analysis. IEE Colloquium on 2 Nov 1994:9/1-9/10.
    [99] G R Turner, I W Hofsajer. Rogowski Coils for Short Duration (<10μs) Pulsed Current (>10kA) Measurement. Proceedings of IEEE AFRICON, 1999:759-764.
    [100]吕长荣,刘晓军,高红.电磁学.哈尔滨:哈尔滨工业大学出版社, 2000.
    [101]许立梓.新编电工材料手册.广州:广东科技出版社, 1994.
    [102]张怀武.现代印制电路原理与工艺.北京:机械工业出版社, 2006.
    [103]金鸿,陈森.印制电路技术.北京:化学工业出版社, 2003.
    [104]祝大同. IC封装用基板材料在日本的新发展.覆铜板资讯, 2006(3):4-10.
    [105]林金堵.高性能板对覆铜板的基本要求(上).印制电路信息, 2003, (7):3-9.
    [106] www.rogerscorporation.com.
    [107]张可畏,王宁,段雄英等.用于电子式电流互感器的数字积分器.中国电机工程学报, 2004, 24(12):104-107.
    [108] Q N Narn. A New Approach for the Design of Wideband Digital Integrator and Differentiator . IEEE Transaction on Circuits and Systems II: Express Briefs,2006,53(9):936-940.
    [109]高迎霞,毕卫红,刘丰等.基于Rogowski线圈的电流互感器信号处理中积分算法的研究.电测与仪表, 2006, 43(491):1-5.
    [110]钱政,申烛,罗承沐.电子式光电组合电流/电压互感器中的相位补偿技术.电力系统自动化, 2002, 26(24):40-44.
    [111] W F Ray, R M Davis. Wide Bandwidth Rogowski Current Transducers PartΙΙ:The Integrator. European Power Electronics and Drives Journal, 1993, 3(2):116-122.
    [112]袁季修,盛和乐,吴聚业.保护用电流互感器应用指南.北京:中国电力出版社, 2004.
    [113]祝大同. PCB基板材料走向高性能、系列化(Ι).印制电路信息, 1999, (6):7-12.
    [114]陈诚.覆铜箔层压板尺寸涨缩变化剖析.印制电路信息, 2003, (11):27-29.
    [115] Andrzej Kaczkowski, Walter Knoth. Combined Sensors for Current and Voltage are Ready for Application in GIS. Proceedings of International Conference on power Systems, 1998.
    [116] H W Yu, D H You, X G Yin et al. Study of a Novel CT for Short-Circuited Current Measurement. Proceedings of 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, 5/1-5/5.
    [117] W B Li, C X Mao, J M Lu. Study of the Virtual Instrumentation Applied toMeasure Pulsed Heavy Currents. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1):284-288.
    [118] Howard Johnson, Martin Graham.高速数字设计.沈立,朱来文,陈宏伟等译.北京:电子工业出版社, 2004.
    [119]张艳,李红斌. PCB型Rogowski线圈的可靠性研究.高压电器,2006, 42(6):421-423.
    [120] Q F Shang, Y C Qi, Z Y Xie et al. Hybrid Optical Fiber Current Transformer Based on DSP and Ultra-Low-Power Consumption Micro-Controller. Proceedings of 2002 International Conference on Power System Technology, 2002, 2:1137-1141.
    [121]胡彬.电子式电流互感器高压侧电源的研究与设计: [硕士论文].湖南大学, 2006.
    [122]李澎.光电电流互感器供能电路的研究: [硕士论文].清华大学, 2003.
    [123]付烈.混合式光纤电流互感器电源的研究: [硕士论文].燕山大学, 2004.
    [124]王全保.实用电子变压器材料器件手册.沈阳:辽宁科学技术出版社, 2003.
    [125]陈柏超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,2003.
    [126]张冠生.电气学.北京:机械工业出版社, 1979.
    [127]费鸿俊,张冠生.电磁机构动态分析与计算.北京:机械工业出版社, 1993.
    [128]胡娟,吴贵清,周有庆.不同电压等级下的Rogowski线圈电子式电流互感器的研究.变压器, 2002, 39(10):11-13.
    [129]邓靖武,邓明,魏文博等.抽取滤波在海底大地电磁探测中的应用.吉林大学学报, 2004, 34(2):271-276.
    [130]姚洪涛.电子式电流互感器的数字化处理技术研究: [硕士论文].华中科技大学,2006.
    [131]白同云,吕晓德.电磁兼容设计.北京:北京邮电大学出版社, 2001.
    [132]全国电磁兼容标准化联合工作组等.电磁兼容标准实施指南,北京:中国标准出版社, 1999.
    [133]杨继深.电磁兼容技术之产品研发与认证.北京:电子工业出版社, 2004.
    [134]王守三. PCB的电磁兼容设计技术、技巧和工艺.北京:机械工业出版社, 2008.
    [135]尚秋峰,杨以涵,高桦.一种高准确度有源光学电流互感器的研制与校验.电工技术学报, 2005, 20(3):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700