用户名: 密码: 验证码:
直接液体(乙醇、甲酸)燃料电池电催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决当前世界面临的能源短缺和环境污染两大难题,直接液体燃料电池以其具有燃料来源广、能量转化率高、低污染、储存和运输方便等优点,在便携式电源、电动机车和野外电站等领域具有广阔的应用前景,已经得到了世界范围的关注和重视。但是,电极电催化剂的活性较低及高昂的价格仍是阻碍燃料电池商业化发展的关键问题之一。提高催化剂活性、降低贵金属用量是推动燃料电池商业化发展的重要途径。
     为了降低燃料电池常用催化剂的用量从而降低催化剂的成本,提高催化剂的电催化性能,本论文开展了用于乙醇氧化、甲酸氧化和氧还原的新型电催化剂探索研究。从添加辅助催化剂,制备新结构催化剂,更换新型载体等方面入手,改进了电催化剂的电催化性能,并通过傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量散射光谱(EDS)、X射线衍射(XRD)、循环伏安法(CV)、线性扫描法(LSV)、计时-电流法、计时-电位法等分析测试技术,对催化剂的形貌、结构、电化学性质等进行了详细研究。
     (1)利用SiO_2在酸性介质中的稳定性,将SiO_2通过HF刻蚀后,采用化学还原法,制备了Pt/SiO_2纳米催化剂,在相同金属催化剂载量下,以石墨片为电极,用CV、计时-电流法、计时-电位法考察了Pt/SiO_2纳米催化剂与商业催化剂E-TEK Pt/C、E-TEK PtRu/C及自制的Pt纳米催化剂在酸性介质中对乙醇的电催化氧化性能。发现乙醇在Pt/SiO_2催化剂上的氧化峰电流值分别是E-TEK Pt/C、E-TEK PtRu/C和自制的Pt纳米催化剂的3.4倍、2倍和4.4倍。而且通过500圈连续循环伏安扫描研究了催化剂的长期稳定性,发现Pt/SiO_2纳米催化剂具有更好的抗中毒能力和长期循环稳定性。
     (2)采用简单研磨热分解法以碳纳米管为载体,制备了Pt-MgO-CNTs纳米催化剂,通过用CV、计时-电流法、计时-电位法详细考察了Pt-MgO-CNTs /石墨电极在碱性介质中对乙醇的电催化氧化性能。结果表明,在相等Pt负载量下,当Pt与MgO的加入质量比为4/1时,Pt-MgO-CNTs纳米催化剂对乙醇的电催化氧化具有最好的电催化活性。发现在经过500圈连续循环伏安扫描后,乙醇氧化的峰电流值只下降为最初的84.5%,远远优于Pt/CNTs催化剂的60%,说明Pt-MgO-CNTs催化剂具有很好的长期电化学稳定性。
     (3)利用碳纳米管的特殊结构,通过高锰酸钾与碳纳米管直接反应,制备了一维纳米结构的MnO_2-C复合催化剂,并通过CV和LSV方法考察了MnO_2-C复合催化剂在碱性介质中对氧还原的电催化活性,结果表明,碳纳米管:高锰酸钾:硝酸的质量比为20:1:4时,得到的MnO_2-C复合催化剂的氧还原电催化活性最好。计算得出氧在MnO_2-C/玻碳电极上电化学还原的电子数为3.4,接近于4,说明氧还原在该电极上的主要反应产物为H2O。
     (4)采用石墨烯(G)为催化剂载体,利用三苯基膦为石墨烯与Pt纳米粒子的中间连接体,经煅烧后,制备了Pt/G纳米催化剂,并通过CV和LSV考察了Pt/G纳米催化剂在酸性介质中对氧还原的电催化活性。结果发现,在相同Pt负载量下,在电位为0.6 V时,Pt/G/玻碳电极的的质量比活性达17.6 mA mg-1,是E-TEK Pt/C/玻碳电极(2.03 mA mg-1)的8倍。依据旋转环盘测试,得出氧在Pt/G/玻碳电极上电化学还原的电子数为3.94,说明氧还原在该电极上主要以四电子还原方式进行。
     (5)采用石墨烯为催化剂载体,制备了PtPd/G纳米催化剂,在0.5 M H2SO4+0.5 M HCOOH溶液中,考察了PtPd/G纳米催化剂对甲酸的电催化氧化性能。发现同碳纳米管做载体的催化剂相比,电位在0.35 V时,PtPd/G/玻碳电极的电流值为1.71 mA,大于Pt-Pd-CNTs/玻碳电极的电流值(1.29 mA),说明PtPd/G纳米催化剂对甲酸电催化氧化的活性更好。经长期稳定性考察后发现,以石墨烯为载体的PtPd/G纳米催化剂具有更好的长期稳定性
     (6)采用牺牲Co核化学还原法,制备了PtPd纳米空心球,并得到1-PtPd/CNTs纳米催化剂,在0.5 M H2SO4+0.5 M HCOOH溶液中,考察了1-PtPd/CNTs纳米催化剂对甲酸的电催化氧化性能。发现同通常制备的不具有空心球结构的2-PtPd/CNTs纳米催化剂相比,1-PtPd/CNTs纳米催化剂对甲酸的电催化氧化性能更高,长期稳定性更好。并且同商用催化剂相比,发现1-PtPd/CNTs纳米催化剂在0.35 V处出现的氧化锋电流值分别是E-TEK PtRu/C的5.0倍, E-TEK Pt/C的10.7倍,表明1-PtPd/CNTs纳米催化剂比商业催化剂E-TEK Pt/C和E-TEK PtRu/C的电催化氧化甲酸的性能更好。
To solve the problems of energy shortage and environmental pollution in the world, the direct liquid fuel cell were paid much attention and investigated widely. They have wide applications in the portable equipment, electric car and field power etc. due to the low-pollution, abundant sources, high energy efficiency, the easy storage and transportation of the fuel. However, the low electrochemical activity and high cost of the electrocatalysts are still the key issues hindering the commercial application of fuel cell. Therefore, the improvement of the electrocatalytic activity of the electrocatalysts and the decrease of the loading mass of noble metals are the effective routes for the commercial application of fuel cells.
     In this dissertation, the assistant catalysts, new structure of classical catalysts and new catalyst supports in fuel cells have been developed and investigated. The micrographs, structure and properties of the catalysts applications have been investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry and polarization method, etc. The main points in this dissertation are summarized as follows:
     (1) Based on the good stability of SiO_2 in acid solution, SiO_2, as the second catalyst, was introduced into the preparation of Pt catalyst for ethanol electrooxidation and the resulted catalyst was investigated by electrochemical methods. For the same loading mass of catalyst, the peak current of ethanol oxidation on the Pt/SiO_2/graphite electrode is about 3.4, 2 and 4.4 times as high as that on the E-TEK Pt/C/graphite, E-TEK PtRu/C/graphite and Pt/graphite electrodes, respectively. Moreover, Pt/SiO_2 catalyst shows excellent anti-poisoning ability and long-term cycle stability.
     (2) MgO was introduced in the anodic electrocatalyst system for ethanol oxidation in alkaline solution and the resulting Pt-MgO-CNTs/graphite electrode was investigated by electrochemical methods. For the same loading mass of platinum catalyst, the best electrocatalytic activity on Pt-MgO-CNTs/graphite electrode is obtained when the mass ratio between Pt and MgO is 1:4. And the better long-term cycle stability can be obtained at the Pt-MgO-CNTs/graphite electrode, as compared to the electrode without MgO.
     (3) Based on the special structure of CNTs, MnO_2-C hybrid catalyst with 1D nanostructure was prepared by the redox reaction between CNTs and KMnO4. And the electrocatalytic activity of the MnO_2-C/glassy carbon electrode for oxygen reduction reaction (ORR) in alkaline solutions was investigated by electrochemical methods. The results indicate that the MnO_2-C composite shows good electrochemical properties for ORR when the mass ratio of CNTs, KMnO4 and HNO3 is 20: 1: 4。The electron number (n) involved in the O_2 reduction was calculated to be 3.4, which is close to the theoretical value for four-electron-reduction of O_2.
     (4) With the organic molecule triphenylphosphine as the linker, Pt nanoparticles were assembled uniformly on the graphene sheets and used as the electrocatalyst for oxygen reduction reaction (ORR). The electrocatalytic properties of the Pt/G catalyst for ORR have been evaluated by typical electrochemical methods. With the same Pt mass loading, the current of ORR at the Pt/G catalyst (70.4μA) was about 8 times as high as that at the Pt/C catalyst (8.1μA) at 0.6 V. The results indicate that the Pt/G catalyst has excellent electrocatalytic properties for ORR and the number of electrons involved in ORR is 3.94 based on the results from the rotating ring-disk electrode (RRDE) investigation.
     (5) Graphene was used as the catalyst support for catalytic oxidation of formic acid in acidic solution and investigated by electrochemical methods. The PtPd nanoparticles loaded on the surface of the graphene exhibit higher electrocatalytic activity for formic acid oxidation than the Pt catalyst supported on CNTs. With the equivalent loading mass of Pt, the current at 0.35 V on PtPd/G catalyst (1.71 mA) is higher than that of the PtPd/CNTs (1.29 mA). The corresponding results imply that the electrochemical performance (high electrocatalytic activity, better long-term cycle stability) of PtPd nanoparticles for formic acid oxidation is improved by the new graphene support.
     (6) Carbon nanotubes supported PtPd hollow nanospheres have been prepared by a replacement reaction between sacrificial cobalt nanoparticles and PtCl62-, Pd2+ ions. The electrocatalytic properties of the PtPd hollow nanospheres have been investigated by typical electrochemical methods, respectively. The results indicate that the CNTs supported PtPd hollow nanospheres have excellent electrochemical properties for the electrooxidation of formic acid (high electrocatalytic activity and excellent stability) due to the high surface area resulted from the hollow nanosphere structure with porous shell. For the same loading mass of catalyst, the peak current of formic acid oxidation on the PtPd hollow nanospheres catalyst supported on the CNTs is about 5 and 10.7 times as high as that on the E-TEK PtRu/C and E-TEK Pt/C catalysts, respectively. Moreover, PtPd hollow nanospheres catalyst supported on CNTs showed excellent long-term cycle stability.
引文
[1]衣宝廉.燃料电池——原理?技术?应用.第一版.北京:北京化学工业出版社, 2000, 1-4
    [2]崔爱玉,付颖.燃料电池——新的绿色能源.应用能源技术, 2006, 7: 14-48
    [3]刘雁.燃料电池人类未来的能源终极解决方案.资源与人居环境, 2007, 34: 28-31
    [4] Kordeseh K V, OliVera J C. Fuel cells. Ulmattn’s Encyelopedia of industry Chemistry, Fifth
    [5]鲍德佑.氢能技术的最新发展.全国第二届氢能学术会议论文集.北京: 1992, 11
    [6] EG&G. Technical Service Inc.. Science application international service. Fuel Cell Handbook (Sixth Edition), U.S.Department of energy (DOE). 2002. 11
    [7]王明涌.碳纳米管基直接醇类燃料电池电极研究: [湖南大学硕士学位论文].长沙:湖南大学, 2005, 3
    [8] Carrette L, Friedrich K A, Stimming U. Fuel cells-fundamentals and applications. Fuel cell, 2001, 1: 5-39
    [9] Urban P M, Funke A, Muller J T, et al. Catalytic processes in solid polymer electrolyte fuel cell systems. Applied Catalysis A: General, 2001, 211: 459-470
    [10] Chunshan S. Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century. Catalysis Today, 2002, 77: 17-49
    [11] Estevam V S, Almir O N, T R R, et al. Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. Journal of Power Sources, 2004, 137: 17-23
    [12] Wang H, Jusys Z, Behm R J. Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. The Journal of Physical Chemistry B, 2004, 108: 19413-19424
    [13] Liu J, Barnett S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics, 2003, 158: 11-16
    [14] Rice C, Ha S, Masel R I, et al. Direct formic acid fuel cells. Journal of Power Sources, 2002, 111: 83-89
    [15] Zhang J, Wilkinson D P. Electro-oxidation of dimethyl ether in apolymer-electrolyte-membrane fuel cell. Journal of Electrochemical Society, 2000, 147: 4058-4060
    [16] McNicol B D, Rand D A J, Williams K R. Direct methanol-air fuel cells for road transportation. Journal of Power Sources, 1999, 83: 15-31
    [17] Antonucci V. Direct methanol fuel cells for mobile applications: A strategy for the future. Fuel Cells Bulletin, 1999, 2: 6-8
    [18] Blum A, Duvdevani T, Philosoph M, et al. Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications. Journal of Power Sources, 2003, 117: 22-25
    [19]沁梦.诺基亚推出使用燃料电池的蓝牙耳机. www.mc21st.com/information/newproduct/shownewproduct.asp?id=2635, 2004-07-12
    [20] Neto A O. The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Journal of the Electrochemical Society, 2002,(149): A272-A279.
    [21]王卫平,吕功煊. Co/Fe化剂乙醇裂解和部分氧化制氢研究.分子催化,2002,16(6): 434-437
    [22] Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. Journal of Electroanalytical Chemistry, 1999, 472: 120-125
    [23] Leger J–M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. Journal of Applied Electrochemistry, 2001, 31: 767-771
    [24] Zhou W J, Zhou Z H, Song S Q, et al. Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003, 46: 273-285
    [25] Souza J P I, Queiroz S L, Bergamaski K, et al. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes: a study using DEMS and in-situ FTIR techniques. The Journal of Physical Chemistry B, 2002, 106: 9825-9830
    [26] Iwasita T, Pastor E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochimica Acta, 1994, 39: 531-537
    [27] Iwasita T, Nart F C. Identification of methanol adsorbates on platinum on In situ FT-IR investigation, Journal of Electroanalytical Chemistry, 1991, 317: 291-299
    [28] Beden B, Lay C, Bewick A, et al, Electrosorption of methanol on a platinum electrode/IR spectroscopic evident for adsorbed CO species. Journal of Electroanalytical Chemistry, 1981, 121: 343-351
    [29]彭程,程璇,张颖等.直接甲醇燃料电池中阳极催化剂的研究进展.电源技术, 2003, 27: 470-474
    [30] Attwood P A, Mcniwl B D, Short R T. Temperature programmed reduction and cyclic voltammetry of Pt/carbon-fiber paper catalyst for methanol electrooxidation. Journal of Catalysis, 1987, 67: 287-295
    [31] Ocon E P, Leger J M, Lamy C, et al. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. Journal Applied Electrochemistry, 1989, 19: 462-464
    [32] Burstein G T, Barntt C J, Kucernak A R J, et al, Anodic oxidation of methanol using a new base electrocatalyst. Journal of Electrochemical Society, 1996, 143: L139-L140
    [33] Taraserich M R, Karichev Z R, Bogdanrovskaya V A, et al. Kinetics of ethanol electrooxidation at RuNi catalysts. Electrochemistry Communications, 2005, 7: 141-146
    [34] Iwasita T, Rasch B, Cattanel E, et al. A sniftirs study of ethanol oxidation on platinum. Electrochimica Acta, 1989, 34: 1073-1079
    [35] Delime F, Leager J M, Lamy C. Optimization of platinum dispersion in Pt-PEM electrodes: application to the electrooxidation of ethanol. Journal of Applied Electrochemistry, 1998, 28: 27-35
    [36] Souza J P I, Botelho R F J, Moraes D, et al. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy. Journal of Electroanalytical Chemistry, 1997, 420: 17-20
    [37] Hikita S, Yamane K, Nakajima Y. Influence of cell perssure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell. Review of Automotive Engineering, 2002, 23: 133-135
    [38] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Taday, 1997, 38: 445-457
    [39] Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platimum electrodes in strong alkal and strong acid. Journal of Power Sources, 1998, 74: 54-61
    [40] Kabbabi A, Faure R, Durand R, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry, 1998, 444: 41-53
    [41] Kardash D, Huang J, Korzeniewski C. Surface electrochemisty of CO and methanol at 25-75℃probed in situ by infrared spectroscopy. Langmuir, 2000, 16: 2019-2023
    [42]陈煜.直接醇类燃料电池阳极催化剂的研究: [南京师范大学硕士学位论文].南京:南京师范大学, 2006, 20-21
    [43] Gasteiger H A, Markovic N M, Ross P N, et al. CO electrooxidation on well-characterized Pt-Ru alloys. Journal of Physical and chemistry, 1997, 98: 617-625
    [44] Gasteiger H A, Markovic N M, Ross P N, et al. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. rotating disk electrode studies of the pure gases including temperature effects. Journal of Physical and Chemistry, 1995, 99: 8290-8301
    [45] Gasteiger H A, Markovic N M, Ross P N, et al.Methanol electrooxidation on well-characterized Pt-Ru alloys. Journal of Physical and Chemistry, 1993, 97: 12020-12029
    [46] Gasteiger H A, Markovic N M, Ross P N, et al. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. rotating disk electrode studies of CO/H2 mixtures at 62℃. Journal of Physical and Chemistry, 1995, 99: 16757-16767
    [47] Faubert G, Lalande G, C?téR, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 1996, 41: 1689-1701
    [48] Frelink J, Visscher W, Van Veen J A R. The effect of Sn on Pt/C catalyst for the methanol electro-oxidation. Electrochimica Acta, 1994, 39: 1871-1875
    [49] Luo J, Maye M M, Kariuki N N, et al. Electrocatalytic oxidation of methanol: carbon-supported gold/platinum nanoparticle catalysts prepared by two-phase protocol. Catalysis Today, 2005, 99: 291-297
    [50] Zhu Y M, Cabrera C R. Methanol oxidation at the electrochemical codeposited Pt-Os composite electrode. Electrochemical and Solid-State Letters, 2001, 4: A45-A48
    [51] Kadirgan F, Beden B, Leger J M, et al. Synergistic effect in the electrocatalytic oxidation of methanol on platinum alloy electrodes. Journal of Electroanalytical Chemistry, 1981, 125: 89-103
    [52] Shukla A K, Raman R K. Methanol-resistant oxygen reduction catalysts for direct methanol fuel cells. Annual Review of Materials Research, 2003, 33: 155-168
    [53] Hamnett A, Kennedy B J, Weeks S A. Base metal oxides as promoters for the electrochemical oxidation of methanol. Journal of Electroanalytical Chemistry,1988, 240: 349-353
    [54] Chen K Y, Tseung A C C. Anodic oxidation of methanol on Pt/WO3 in acidic media. Journal of the Electrochemical Society, 1994, 141: 3082-3089
    [55] Wang Y, Fachini E R, Cruz G, et al. Effect of surface composition of electrochemically codeposited Platinum/Molybdenum oxide on methanol oxidation. Journal of the Electrochemical Society, 2001, 148: C222-C226
    [56] Antolini E. Platinum-based ternary catalysts for low temperature fuel cells Part I. Preparation methods and structural characteristics. Applied Catalysis B: Environmental, 2007, 74: 324–336
    [57] Ley K L, Liu R X, Pu C, et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. Journal of The Electrochemical Society, 1997, 144: 1543 -1548
    [58] Xion L, Kanna A M, Manthiram A. Pt-M(M=Fe, Co, Ni and Cu)electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002, 4(3): 898-903
    [59] Kyung-Won P, Jong-Ho C, Boo-Kil K, et al. chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. Journal of Physical and Chemistry B, 2002, 106: 1869-1877
    [60] Jusys Z, Schmidt T J, Dubau L, et al. Activity of PtRuMeOx(Me=W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources, 2002, 105: 297-304
    [61] Arico A S, Poltarzewski Z, Kim H, et al. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells, Journal of Power Sources, 1995, 55: 159-166
    [62] Joongpyo S, Duck-Young Y, Ju-seong L. Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000, 45: 1943-1951
    [63] Raghuveer V, Viswanathan B. Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells. Fuel, 2002, 81: 2191–2197
    [64]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展.电源技术, 2007, 31: 167-170
    [65] Kinoshita K. Electrochemical oxygen technology. A Wiley-Interscience Publication, 1992.
    [66] Burstein G T, Barntt C J, Kucernak A R J, et al. Anodic oxidation of methanol using a new base electrocatalyst. Journal of the Electrochemical Society, 1996, 143: L139-L140
    [67]周卫江,周振华,李文震,等.直接甲醇燃料电池阳极催化剂研究进展.化学通报, 2003, 4: 228-234
    [68] Mcintyre D R, Vossen A, Wilde J R, et al. Electrocatalytic properties of a nickel-tantalum-carbon alloy in an acidic electrolyte. Journal of Power Sources, 2002, 108: 1-7
    [69] Burstein G T, Mcintyre D R, Vossen A. Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol. Electrochemical and Solid-State Letters, 2002, 5: A80-A83
    [70] Brunelli K, Dabala M, Magrini M. Cu-based amorphous alloy electrodes for fuel cells. Journal of Applied Electrochemistry, 2002, 32: 145-148
    [71] Sistiaga M, Pierna A R. Application of amorphous materials for fuel cells. Journal of Non-Crystalline Solids, 2003, 329: 184-187
    [72] Deng J, Li H, Wang W. Progress in design of new amorphous alloy catalysts. Catalysts Today, 1999, 51: 113-125
    [73] Yang C C, Hsu S T, Chien W C, et al. Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. International Journal of Hydrogen Energy, 2006, 31: 2076-2087
    [74] Mcewen R S. Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 1971, 75(12): 1782-1789
    [75] Ogrady W E, Pandya K I, Swider K E, et al. In situ X-ray absorptiion near-edge structure evidence for quadrivalent nickel in nickel batteryelectrodes. Journal of the Electrochemical Society, 1996, 143: 1613-1622.
    [76] Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. Journal of the Electrochemical Society, 1990, 137: 845-848
    [77] Yang H, Coutanceau C, Léger J M, et al. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. Jouranl of Electroanalytical Chemistry, 2005, 576: 305-313
    [78] Li W Z, Zhou W J, Li H Q, et al. Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 2004, 49: 1045-1055
    [79] Yang H, Alonso-Vante N, Léger J M, et al. Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. The Journal of Physical Chemistry B, 2004, 108: 1938-1947
    [80] Antolini E, Passos R. R, Ticianelli E. A. Electrocatalysis of oxygen reduction ona carbon supported platinum–vanadium alloy in polymer electrolyte fuel cells. Electrochimica Acta, 2002, 48:263-270
    [81] Seo A, Lee J, Han K, Kim H. Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochimica Acta, 2007, 52: 1603-1611
    [82] Shim J, Yoo D, Lee J. Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000, 45: 1943-1951
    [83] Takako T, Hiroshi I, Hiroyuki U, et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. Journal of the Electrochemical Society, 1999, 146: 3750-3756
    [84] Li H Q, Xin Q, Li W Z, et al. An improved palladium-based DMFCs cathode catalyst. Chemical Communications, 2004, 23: 2776-2777
    [85] Tamizhmani G, Capuanoga I. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy oxide in solid polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1994, 141:41-45
    [86] Min M, Cho J, Cho K, et al. Particle size and aoolying effects of Pt-based alloy catalysts for fuel cell applications. Electrochimica Acta, 2000, 45: 4211-4217
    [87] Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloy. Journal of Electroanalytical Chemistry, 1999, 460: 258-262
    [88] Shim J, Yoo D, Lee J. Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000, 45: 1943-1954
    [89] Shim J, Lee C, Lee H. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Journal of Power Sources, 2001, 102: 172-177
    [90] Manoharan R, Goodnough J B. Oxygen reduction on CrO2 bonded to a proton-exchange membrane. Electrochimica Acta, 1995, 40: 303-307
    [91] Sun Z, Chiu H C, Tseung C C. Oxygen reduction on teflon bonded Pt/WO3 in acidic media. Electrochemical and Solid-State Letters, 2001, 4: E9-E12
    [92] Xiong L, Manthiram A. Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel Cells. Electrochimica Acta, 2004, 49: 4163-4170
    [93] Gustavsson M, Ekstr?m H, Hanarp P, et al. Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell. Journal of Power Sources, 2007, 163: 671-678
    [94] Kjellin P, Ekstr?m H, Lindbergh G, et al. On the activity and stability of Sr3NiPtO6 and Sr3CuPtO6 as electrocatalysts for the oxygen reduction reaction in a polymer electrolyte fuel cell. Journal of Power Sources, 2007, 168: 346-350
    [95] Xu Z, Qi Z, Arthur K. Effect of oxygen storage materials on the performance of proton-exchange membrane fuel cells. Journal of Power Sources, 2003, 115:40-43
    [96] Raghuveer V, Ravindranathan K, Xanthopoulosc N, et al. A rare earth cuprates as electrocacalysts for methanol oxidation, Solid State Ionics, 2001, 140: 263-274
    [97] Shobba T, Mayann M S, Sequeir C. Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells. Journal of Power Sources, 2002, 108: 261-264
    [98] Wei Z D, Huang W Z, Zhang S T. Carbon-based air electrodes carrying MnO2 in zinc-air batteries. Journal of Power Sources, 2000, 91: 83-85
    [99] Zhang G Q, Zhang X G. MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells. Electrochimica Acta, 2004, 49: 873-877
    [100] Zhang G Q, Zhang X G, Wang Y G. A new air electrode based on carbon nanotubes and Ag–MnO2 for metal air electrochemical cells. Carbon, 2004, 42: 3097-3102
    [101] Hu F P, Zhang X G, Xiao F, et al. Oxygen reduction on Ag–MnO2/SWNT and Ag–MnO2/AB electrodes. Carbon, 2005, 43: 2931-2936
    [102] Lima F H B, Calegaro M L, Ticianelli E A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochimica Acta, 2007, 52: 3732-3738
    [103] Ja?in D, Abu-Rabi A, Mentus S, et al. Oxygen reduction reaction on spontaneously and potentiodynamically formed Au/TiO2 composite surfaces. Electrochimica Acta, 2007, 52: 4581-4588
    [104] Kim J H, Ishihara A, Mitsushima S, et al. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochimica Acta, 2007, 52: 2492–2497
    [105] Prakash J, Tryk D A, Yeagerc E B. Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts. Journal of the Electrochemical Society, 1999, 146: 4145-4151
    [106]唐致远,宋世栋,刘建华.钙钛矿型双功能氧电极催化剂的研究进展.电源技术, 2003, 27: 233-237
    [107] Heller N, Prestat M, Gautier J L. Oxygen electroreduction mechanism at thinNixCo3-xO4 spinet films in a double channel electrode flow cell (DCEFC). Electrochimica Acta, 1997, 42: 197-202
    [108] Nguyen C H, El Abbassi K, Chartier P. Electrically Conductive Polymer/Metal Oxide Composite Electrodes for Oxygen Reduction. Electrochemical and Solid-State Letters, 2000, 3: 192-195
    [109] Hayashi M, Uemura H, Shimanoe K. Enhanced Electrocatalytic Activity for Oxygen Reduction over Carbon-Supported LaMnO3 Prepared by Reverse Micelle Method. Electrochemical and Solid-State Letters, 1998, 1: 268-270
    [110] Suresh K, Panchapagesan T S, Patil K C. Synthesis and properties of La1-xSrxFeO3. Solid State Ionics, 1999, 126: 299-305
    [111] Singh R N, Malviya M, Anindita, et al. Polypyrrole and La1-xSrxMnO3 (0≤x≤0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electrochimica Acta, 2007, 52: 4264-4271
    [112] Mclntyre D R, Vossen A, Wilder J R, et al. Electrocatalytic properties of a nickel-tantalum-carbon alloy in an acidic electrolyte. Journal Power Sources, 2002, 108: 1-7
    [113] Trapp V, Christensen P A, Hamnett A. New catalysts for oxygen reduction based on transition-metal sulfides. Journal of the Chemical Society, Faraday Transactions, 1996, 92: 4311-4319
    [114] Alonso-Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 1986, 323: 431-432
    [115] Reeve R W, Christensen P A, Hamnett A, et al. Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. Journal of The Electrochemical Society, 1998, 145: 3463-3471
    [116] Reeve R W, Christensen P A, Dickinson A J, et al. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation, Electrochimica Acta, 2000, 45: 4237-4250
    [117] Solorza-Feria O, Citalán-Cigarroa S, Rivera-Noriega R, et al. Oxygen reduction in acid media at the amorphous Mo–Os–Se carbonyl cluster coated glassy carbon electrodes. Electrochemistry Communications, 1999, 1: 585-589
    [118] Pattabi M, Castellanos R H, Sebastian P J. A Novel Electrocatalyst Based on Wx(CO)n for Oxygen Reduction Reaction. Electrochemical and Solid-State Letters, 2000, 3: 431-432
    [119] Sebastian P J. Chemical synthesis and characterization of MoxRuySez-(CO)n electrocatalysts. International Journal of Hydrogen Energy, 2000, 25: 255-259
    [120]孙艳,苏伟,周理.燃料电池.北京:化学工业出版社, 2005, 1-2.
    [121] Narayanan S R, Vamos E, Surampudi S, et al. Direct Electro-oxidation of Dimethoxymethane, Trimethoxymethane, and Trioxane and Their Application in Fuel Cells. Journal of the Electrochemical Society, 1997, 144: 4195-4201
    [122] Lamy C, Li M A, Lerhun V, et al. Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 2002, 105: 283-296
    [123] Andrian S V, Meusinger J. Process analysis of a liquid-feed direct methanol fuel cell system.Journal of Power Sources, 2000, 91: 193-201
    [124] Rice C, Ha S, Masel R I, et a1.Direct formic acid fuel cells.Journal of Power Source, 2002, 111: 83-89
    [125] Rhee Y W, Ha S, Rice C, et al. Crossover of formic acid through Nafion? membranes. Journal of Power Sources, 2003, 117: 35-38
    [126] Capon A, Parsons R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. Journal of the Electrochemical Society, 1973, 45: 205-231
    [127] Wieckowski A, Sobkowski J. Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution. Journal of the Electrochemical Society, 1975, 63: 365-377
    [128] Rice C, Ha S, Masel R I, Wieckowski A. Catalysts for direct formic acid fuel cells. Journal of Power Sources , 2003, 115: 229-235
    [129] Yang Y Y, Sun S G, Gu Y J, et al. Surface modification and electrocatalytic properties of Pt(100), Pt(110), Pt(320) and Pt(331) electrodes with Sb towards HCOOH oxidation. Electrochimica Acta, 2001, 46: 4339-4348
    [130] Lee J Y, Strasser P, Eis W, et al. On the origin of oscillations in the electrocatalytic oxidation of HCOOH on a Pt electrode modified by Bi deposition. Electrochimica Acta, 2001, 47: 501-506
    [131] Macia M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified stepped electrodes. Journal of Electroanalytical Chemistry, 2001, 500: 498-509
    [132] Waszczuk P, Barnard T M, Rice C, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochemistry Communications, 2002, 4: 599-603
    [133] Napporn W T, Laborde H, Lager J M, et al. Electro-oxidation of C1 molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation. Journal of Electroanalytical Chemistry, 1996, 404: 153-159
    [134] Arenz M, Schmidt T J,Wandelt K, et al. The Oxygen Reduction Reaction on Thin Palladium Films Supported on a Pt(111) Electrode. The Journal of Physical Chemistry B, 2003, 107(36): 9813-9819
    [135] Lu, G Q, Crown A, Wieckowski A. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes. The Journal of Physical Chemistry B, 1999, 103(44): 9700-9711
    [136] Bartlett P N, Marwanw J. The effect of surface species on the rate of H sorption into nanostructured Pd. Physical Chemistry Chemical Physics, 2004, 6(11): 2895-2898
    [137] Babu P K, Kim H S, Chung J H, et al. Bonding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd. The Journal of Physical Chemistry B, 2004, 108: 20228-20232
    [138] Arenz M, Stamenkovic V, Schmidt T J ,et al. The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Physical Chemistry Chemical Physics, 2003, 5: 4242-4251
    [139] Arenz M, Stamenkovic V, Ross P N, et al. Surface (electro-)chemistry on Pt(1 1 1) modified by a Pseudomorphic Pd monolayer. Surface Science, 2004, 573: 57-66
    [140] Thomas F S, Masel R I . Formic acid decomposition on palladium-coated Pt(1 1 0). Surface Science, 2004, 573: 169-175
    [141] Hernandez F, Baltruschat H. Electrochemical characterization of gold stepped surfaces modified with Pd. Langmuir, 2006, 22: 4877-4884
    [142] Ayman K, Travis C, Abhaya D. The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. Journal of Catalysis, 2006, 243: 420-427
    [143] Penner S, Jenewein B, Gabasch H, et al . Growth and structural stability of well-ordered PdZn alloy nanoparticles. Journal of Catalysis, 2006, 241: 14-19
    [144] Cárdenas G, Oliva R, Reyes P, et al. Synthesis and properties of PdSn/Al2O3 and PdSn/SiO2 prepared by solvated metal atom dispersed method. Journal of Molecular Catalysis A: Chemical, 2003, 191: 75-86
    [145] Ryszard P, Roman S. Influence of external stretching on hydrogen electromigration in Pd and PdCu, PdAg alloys. Physica B: Condensed Matter, 2005, 367: 165-171
    [146] Zhou W J, Lee J Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochemistry Communications, 2007, 9:1725-1729
    [147] Diaz R, Arbiol J, Cirera A, et al. Electroless addition of catalytic Pd to SnO 2 nanopowders. Chemistry of Materials, 2001, 13: 4362-4366
    [148] Xie B P, Xiong Y, Chen R M, et al. Catalytic activities of Pd–TiO2 film towards the oxidation of formic acid. Catalysis Communications, 2005, 6: 699-704
    [149] Zhang L L, Tang Y W, Bao J C, et al. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. Journal of Power Sources, 2006, 162: 177-179
    [150]贾荣利,王成扬.炭材料作为电催化剂载体在PEMFC中的应用.化工进展, 2004, 23(9): 943-947
    [151] Iijima S. Helical microtubles of graphite carbon. Nature, 1991, 354: 56-58
    [152] Ivanov V, Nagy J B, Lambin P, et al. The study of carbon nanotubes produced by catalytic method. Chemistry Physical Letters, 1994, 223: 329-335
    [153] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature,1992, 356: 776-778
    [154] Coq B, Planeix J M, Brontoms V. Fullerene-based materials as new support media in heterogeneous catalysis by metals. Applied Catalysis A: General, 1998, 173: 175-183
    [155] Nugent J M, Santhanam K S V, Rubio, et al. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Letter, 2001, 1(2): 87-91
    [156] Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letter, 2002, 2(3): 231-234
    [157] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40: 787-803
    [158]陈卫祥,赵杰,刘昭林等. XC-72碳和碳纳米管负载PtRu纳米粒子的微波快速合成及其对甲醇的电化学氧化.化学学报, 2004, 62(17): 1590-1594
    [159] Bessel C A, Laubernads K, Rodriguez N M, et al. Graphite nanofibers as an electrode for fuel cell applications. The Journal of Physical Chemistry B, 2001, 105, 1115-1118
    [160] Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes. Advance Materials, 1999, 11: 154-157
    [161] Che G L, Lakshmi B B, Fisher E. R, et al. Carbon nanotube membranes for electrochemical energy storage and production. Nature, 1998, 393: 346-349
    [162] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40(5): 791-794
    [163]褚有群,马淳安,朱红英.纳米碳管电极上氧的电催化还原.物理化学学报, 2004, 20(3): 331-335
    [164]赵峰鸣,马淳安. Pt/纳米碳管空气电极氧还原反应的电催化性能.电化学, 1996, 10(4): 384-390
    [165]黄辉,张文魁,赵峰鸣等.纳米碳管空气电极在氧还原反应中的电催化性能.应用化学, 2002, 19(8): 760-763
    [166] He Z B,Chen J H,Liu D Y, et al. Deposition an delectrocatalytic properties of platinum nano particals on carbonnanotubes for methanol electrooxidation. Materials Chemistry and Physics, 2004, 85: 396-401
    [167] Rajesh B,Bonard J M,Viswanathan B, et al. Preparation of Pt-Ru bimetalliccatalyst supported on carbonnanotubes. Bulletin of Materials Science, 2000, 23 (5): 341-344
    [168] Novoselov K S, Geim A K, Morozov S V, et al. Electroc field effect in atomically thin carbon films. Science, 2004, 306: 666-669
    [169] Editoria1. Graphene calling. Nature Materials, 2007, 6: 169-169
    [170] McCann E, Kechedzhi K, Falko V I, et a1. Weak localisation magnetoresistance and valley symmetry in graphene. Physical Review Letters, 2006, 97: 146805-146808
    [171] Dikin D A, Stankovich S, Zimney E J, et a1. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457-460
    [172] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6: 183-191
    [173] Schedin F, Geim A K, Morozov S V, et a1. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6: 652-655
    [174] Kou R, Shao Y Y, Liu J. et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11(5): 954-957
    [175] Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications 2009, 11: 846-849
    [176]李旭光,邢巍,扬辉等.活性炭载体对聚合物电解质膜燃料电池中炭载铂电催化剂性能的影响.分析化学, 2002, 30(7): 788-791
    [177] Park G G, Yang T H, Yoon Y G, et al. Pore size effect of the DMFC catalyst supported on porous materials. International Journal of Hydrogen Energy, 2003, 28: 645-650
    [178] Liu Y C, Qiu X P, Huang Y Q, et al. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts. Carbon, 2002, 40: 2375-2380
    [179] Steigerwalt E S, Deluga G A, Cliffel D E, et al. A Pt?Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst. The Journal of Physical Chemistry B, 2001, 105: 8097-8101
    [180] Steigerwalt E S , Deluga G A , Lukehart C M. Pt?Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance. The Journal of Physical Chemistry B, 2002 , 106: 760-766
    [181] Neto A O, Giz M J, Perez J, et al. The electro-oxidation of ethanol on Pt-Ru and Pt-Mo particles supported on high-surface-area carbon. Journal of the Electrochemical Society, 2002, 149: A272-A279
    [182]王卫平,吕功煊. Co/Fe化剂乙醇裂解和部分氧化制氢研究.分子催化, 2002, 16: 434-437
    [183] Schmidt V M, Ianniello R, Pastor E, et al. Electrochemical reactivity of ethanol on porous Pt and PtRu: oxidation/reduction reactions in 1 M HClO4. Journal of Physical Chemistry B, 1996, 100: 17901-17908
    [184] Iwasita T, Pastor E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta, 1994, 39: 531-537
    [185] Leger J M, Rousseau S, Coutanceau C, et al. How bimetallic electrocatalysts does work for reactions involved in fuel cells: Example of ethanol oxidation and comparison to methanol. Electrochimica Acta, 2005, 50: 5118-5125
    [186]杨辉,卢文庆.应用电化学.北京:科学出版社, 2001, 122-123
    [187] Ren X M, Zelenay P, Thomas S, et al. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 2000, 86: 111-116
    [188]张兵,钟起玲,章磊等.乙醇电氧化的研究进展.江西化工, 2003, 2: 16-20
    [189] Radmilovic V, Gasteiger H A, Ross P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. Journal of Catalysis, 1995, 154: 98-106
    [190] He Z B, Chen J H, Liu D Y, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond and Related Materials, 2004, 13: 1764-1770
    [191]李中军,贾汉东,申小清.水玻璃—乙酸乙酯体系的成胶特性及SiO2凝胶粉末的制备.硅酸盐学报, 2000, 28(1): 77-79
    [192] Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification. Chemistry of Materials, 1998, 10: 718-722
    [193] Page T, Johnson R, Hormes J, et al. A study of methanol electro-oxidation reactions in carbon membrane electrode and structural properties of Pt alloy electro-catalysts by EXAFS. Journal of Electroanalytical Chemistry, 2000, 485: 34-41
    [194] Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry, 1975, 60: 267-273
    [195] Yajima T, Wakabayashi N, Uiroyuki H, et al. Adsorbed water for the electro-oxidation of methanol at Pt–Ru alloy. Chemical Communication 2003, 7: 828-829
    [196] Watanable M, Motoo S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry, 1975, 60: 275-283
    [197] Lee J, Eickes C, Eiswirth M. Electrochemical oscillations in the methanol oxidation on Pt. Electrochimica Acta, 2002, 47: 2297-2301
    [198] Chen J, Wang M, Liu B, et al. Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and Its Improved Catalytic Performance for Methanol Oxidation. The Journal of Physical Chemistry B, 2006, 110: 11775-11779
    [199] Krausa M, Vielstich W. Potential oscillations during methanol oxidation at Pt-electrodes Part 1: experimental conditions. Journal of Electroanalytical Chemistry, 1995, 399: 7-12
    [200] Kua J, Goddard III W A. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells. Journal of the American Chemical Society, 1999, 121: 10928-10941
    [201] Liu Z L, Ling X Y, Su X D, et al. Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 2005, 149:1-7
    [202] Cao D X, Bergens S H. Pt–Ruadatom nanoparticles as anode catalysts for direct methanol fuel cells. Journal of Power Sources, 2004, 134: 170-180
    [203] Kordesch K, Hacker W, Bachhiesl U. Direct methanol-air fuel cells with membranes plus circulating electrolyte. Journal of Power Sources, 2001, 96: 200-203
    [204]乐天.日立燃料电池手机问世. www.sol.net.cn/et/modern/news_Show.asp? ArticleID=54609, 2005-01-25
    [205] Xu C W, Shen P K. Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts. Journal of Power Sources, 2005, 142: 27-29
    [206] Ioroi T, Siroma Z, Fujiwara N, et al. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochemistry Communications, 2005, 7: 183-188
    [207] Xu C W, Shen P K, Ji X H, et al. Enhanced activity for ethanol electrooxidation on Pt–MgO/C catalysts. Electrochemistry Communications, 2005, 7: 1305-1308
    [208] Li W Z, Liang C H, Zhou W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. Journal of Physical Chemistry B, 2003, 107: 6292-6299
    [209] Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 2004, 42: 191-197
    [210] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003, 253: 337-358
    [211] Shen P K, Xu C W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochemistry Communications, 2006, 8: 184-188
    [212] Honda K, Yoshimura M, Rao T N, et al. Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. Journal of Electroanalytical Chemistry, 2001, 514: 35-50
    [213] Nicholson R S, Shain I. Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 1964, 36: 706-723
    [214] Klapste B, Vondrak J, Velicka J. MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides. Electrochimica Acta, 2002, 47: 2365-2369
    [215] Zhou D B, Poorten V H. Electrochemical char5acterisation of oxygen reduction on teflon-bonded gas diffusion electrodes. Electrochimica Acta, 1995, 40: 1819-1826
    [216] Hasan M A, Zaki M I, Pasupulety L, et al. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts. Applied Catalysis A: General, 1999, 18l(1): 171-179
    [217] Mao L Q, Zhang D, Sotomura T, Nakatsu K, et al. Mechanistic study of thereduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochimica Acta, 2003, 48(8): 1015-1021
    [218] Zoltowski P, Drazic D M, Vorkapic L. Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide. Journal of Applied Electrochemistry, 1973, 3(4): 271-283
    [219] Brenet J P, Electrochemical behaviour of metallic oxides. Journal of Power Souces, 1979, 4: 183-190
    [220] Ohsaka T, Mao L, Arihara K, et al. Bifunctional catalytic activity of manganese oxide toward O2 reduction: novel insight into the mechanism of alkaline air electrode. Electrochemistry Communications, 2004, 6(3): 273-277
    [221] Cao Y L, Yang H X, Ai X P, et al. Hydrodynamic voltammetry at the liquidliquid interface: facilitated ion transfer and the rotating diffusion cell. Journal of Electroanalytical Chemistry, 2003, 557: 127-133
    [222] Yang J, Xu J J. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaine solutions. Electrochemistry Communication, 2003, 5: 306-311
    [223] Matsuki K, Kamada H. Oxygen reduction electrocatalysis on some manganese oxides. Electrochimica Acta, 1986, 31(1): 13-18
    [224] Brenet J P. Electrochemical behaviour of metallic oxides. Journal of Power Sources, 1979, 4(3): 183-190
    [225] Lima F H B, Calegaro M L, Ticianelli E A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. Journal of Electroanalytical Chemistry, 2006, 590(2): 152-160
    [226] Raymundo-Pinero E, Khomenko V, Frackowiak E, et al. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. Journal of the Electrochemical Society, 2005, 152(1): A229-A235
    [227] Fan Z, Chen J H, Wang M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials. Diamond and Related Materials, 2006, 15: 1478-1483
    [228] Zhou Y K, Zhang B L, Li H L. Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. Journal of Solid State Electrochemistry, 2004, 8: 482-487
    [229] Lee C Y, Tsai H M, Chuang H J, et al. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. Journal of the Electrochemical Society, 2005, 152(1):A716-A720
    [230] Kawaoka H, Hibino M, Zhou H, et al.Socochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. Journal of Power Sources, 2004, 125: 85-89
    [231] Hibino M, Kawaoka H, Zhou H, et al. Corrigendum to“Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate”. Electrochimica Acta 2004, 49(27): 5029-5029
    [232] Wu M, Snook G A, Chen G Z, et al. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochemistry Communications, 2004, 6: 499-504
    [233] Ma S B, Lee Y H, Ahn K Y, et al. Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. Journal of the Electrochemical Society, 2006, 153: C27-C32
    [234] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon, 2007, 45: 375-382
    [235] Huang X P, Pan C X, Huang X T, et al. Preparation and characterization ofγ–MnO2/CNTs nanocomposite. Materials Letters, 2007, 61: 934-936
    [236] Chen Y, Liu C G, Liu C, et al. Growth of single-crystalα–MnO2 nanorods on multi-walled carbon nanotubes. Materials Research Bulletin, 2007, 42: 1935-1941
    [237] Xie X F, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon, 2007, 45: 2365-2373
    [238] Ding Y S, Shen X F, Gomez S, et al. Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoar chitectures. Advanced functional materials, 2006, 16: 549-555
    [239] Gong K P, Yu P, Su L, et al. Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocayalytic activity toward reduction of oxygen. Journal of Physical Chemistry C, 2007, 111: 1882-1887
    [240] Calegaro M L, Lima F H B, Ticianelli E A, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solution. Journal of Power Sources, 2006, 158: 735-739
    [241] Zhang M, Yan Y, Gong K, et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction.Langmuir, 2004, 20: 8781-8785
    [242] Huang M H, Shao Y, Sun X P, et al. Alternate assemblies of platinum nanoparticles and metalloporphyrins as tunable electrocatalysts for dioxygen reduction. Langmuir, 2005, 21: 323-329
    [243] Bard A J, Faulkner L R. Electrochemical Methods, Fundamentals and Applications; Wiley: New York, 1980, 288
    [244] Uchida M, Aoyama Y, Eda V, et a1. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate lonomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1995, 142(12): 4143-4149
    [245] Uchida M, Fukuaka Y, Sugawara Y, et a1. Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1998, 145(1): 3708-3713
    [246] Wilson M S, Gottesfeld S. Thin film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of App1ied Electrochemistry, 1992, 22: 1-7
    [247] Kabbahi A, Gloaguen F, Anddfato F, et a1. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. Journal of Electroana1ytical Chemistry, 1994, 373: 251-254
    [248] Cha S Y, Lee W M. Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of Ultra thin platinum on the membrane surface. Journal of the Electrochemical Society, 1999, 146(11): 4055-4060
    [249] Hirano S, Kim J, Srinivasan S. Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells. Electrochimica Acta, 1993, 38(12): 1661-1669
    [250] Fischer A, Jindra J, Wendt H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. Journal of Applied Electrochemistry, 1998, 28: 277-282
    [251] Jia N Y, Martin R B, Qiz G, et a1. Modification of carbon supported catalysts to improve performance in gas diffusion electrodes. Electrochimica Acta, 2001, 46: 2863-2869
    [252] Tamizhmanl G, Capuano G A. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 1994, 14(4): 968-975
    [253] Li C Z, Wen G Y, Zhang Y, et a1. Electrocatalytic activity of PtCr/C-Nation membrane oxygen electrodes. Journal Power Sources. 1998, 22(5): 201-203
    [254] Schmidt T J, Gasteiger H A, Behm R J. Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst. Journal of the Electrochemical Society, 1999, 146: 1296-1304
    [255] Tang H, Chen J H, Nie L H, et al. High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers(GCNFs). Journal of Colloid and Interface Science, 2004, 269: 26-31
    [256] Chang H, Joo S.H, Pak C. Synthesis and characterization of mesoporous carbon for fuel cell applications. Journal of Materials Chemistry, 2007, 17(30): 3078-3088
    [257] Cao J Y, Du C, Wang S C, et al. The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation. Electrochemistry Communications, 2007, 9: 735-740
    [258] Geim A K, MacDonald A H. Graphene: exploring carbon flatland. Physics Today, 2007, 60(8): 35-41
    [259] Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic dirac billiard in grapheme quantum dots. Science, 2008, 320: 356-358
    [260] Stankovich S, Dikin D A, Dommmett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282-286
    [261] Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. Journal of Physical Chemistry B, 2005, 109: 22212-22216
    [262] Hontoria-Lucas C, Lopez-Peinado A J, Lopez-Gonzalez J D D, et al. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 1995, 33: 1585-1592
    [263] Colthup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy, third ed., Academic Press, London, 1990
    [264] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated grapheme oxide nanoplatelets. Carbon, 2006, 44: 3342-3347
    [265] Deacon G B, Green J H S. Vibrational spectra of ligands and complexes- II Infra-red (3650 - 375 cm-1) of triphenyl phosphine, triphenylphosphine oxide, and their complexes. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 1968, 24(7): 845-852
    [266] Ravindar V, Schumann H, Hemling H, et al. Synthesis and structure determination of some platinum (II) complexes with hydrophilic carboxylated tertiary phosphine ligands. Inorganica Chimica Acta, 1995, 240: 145-152
    [267] Lee S J, Mukerjee S, McBreen J, et al. Effects of nafion impregnation on performance of PEMFC electrodes. Electrochimica Acta, 1998, 43: 3693-3701
    [268] Sarapuu A, Kasikov A, Laaksonen T, et al. Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochimic Acta, 2008, 53: 5873-5880
    [269] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley & Sons, New York, 2000
    [270] Wieckowski A, Sobkowski J. Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution. Journal of Electroanalytical Chemistry, 1975, 63: 365-371
    [271] Capon A, Parsons R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes. Journal of Electroanalytical Chemistry, 1973, 44:239-254
    [272] Jayashree R S, Spendelow J S, Kenis P J A, et al. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochimica Acta. 2005, 50: 4674-4682
    [273] Zhou W J, Lee J Y. Highly active core–shell Au@Pd catalyst for formic acid electrooxidation. Electrochemistry Communications, 2007, 9: 1725–1729
    [274] Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345–352
    [275] Wang S Y, Kristian N, Jiang S P, et al. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochemistry Communications, 2008, 10: 961–964
    [276] Xia X, Iwasita T J. Influence of Underpotential Deposited Lead upon the Oxidation of HCOOH in HClO4 at Platinum Electrodes . Journal of the Electrochemical Society, 1993, 140: 2559–2565
    [277] Markovic N M, Rorr Jr P N. Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 2002, 45: 117–229
    [278] Mrozek M F, Luo H, Weaver M J. Formic acid electrooxidation on platinum-group metals: Is adsorbed carbon monoxide solely a catalytic poison Langmuir, 2000, 16: 8463–8469
    [279] Markovic N, Gaseiger H, Ross P, et al. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochemica Acta, 1995, 40: 91–98
    [280] Jiang J H, Kucernak A. Nanostructured platinum as an electrocatalyst for theelectrooxidation of formic acid. Journal of Electroanalytical Chemistry, 2002, 520: 64–70
    [281] Capon A, Parsons R. The oxidation of formic acid at noble metal electrodes: I. Review of previous work. Journal of Electroanalytical Chemistry, 1973, 44: 1–7
    [282] Lu G Q, Crown A, Wieckowski A. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes. Journal of Physical Chemistry B, 1999, 103: 9700–9711
    [283] Parsons R, VanderNoot T. The oxidation of small organic molecules : A survey of recent fuel cell related research. Journal of Electroanalytical Chemistry, 1988, 257: 9–45
    [284] Lovi′c J D, Tripkovi′c A V, Gojkovi′c S Lj, et al. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. Journal of Electroanalytical Chemistry, 2005, 581: 294–302
    [285] Arenz M, Stamenkovic V, Schmidt T J, et al. The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Physical Chemistry Chemical Physical, 2003, 5: 4242–4251
    [286] Zhang L J, Wang Z Y, Xia D G. Bimetallic PtPb for formic acid electro-oxidation. Journal of Alloys and Compounds , 2006, 426: 268–271
    [287] Chen W, Kim J, Sun S, et al. Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Physical Chemistry Chemical Physical, 2006, 8: 2779–2786
    [288] Leng Y J, Wang X, Hsing I M. Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy. Journal of Electroanalytical Chemistry, 2002, 528: 145–152
    [289] Llorca M J, Feliu J M, Aldaz A, et al. Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes. Journal of Electroanalytical Chemistry, 1994, 376: 151–160
    [290] Baldauf M, Kolb D M. Formic Acid Oxidation on Ultrathin Pd Films on Au(hkl) and Pt(hkl) Electrodes. Journal of Physical Chemistry, 1996, 100: 11375–11381
    [291] Capon A, Parsons R. The oxidation of formic acid at noble metal electrodes : Part III. Intermediates and mechanism on platinum electrodes. Journal of Electroanalytical Chemistry, 1973, 45: 205–231
    [292] Zeng J, Yang J, Lee J Y, et al. Preparation of Carbon-Supported Core?Shell Au?Pt Nanoparticles for Methanol Oxidation Reaction: The Promotional Effect of the Au Core. Journal of Physical Chemistry B, 2006 110: 24606–24611
    [293] Trukevich J, Kim G. Preparation and Catalytic Properties of Particles of Uniform Size. Science, 1970, 169: 873–879
    [294] Mallin M P, Murphy C J. Solution-Phase Synthesis of Sub-10 nm Au?Ag Alloy Nanoparticles. Nano Letters, 2002, 2: 1235–1237
    [295] Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2002, 124: 7642–7643
    [296] Oldenburg S J, Hale G D, Jackson J B, et al. Light scattering from dipole and quadrupole nanoshell antennas. Applied Physics Letters, 1999, 75: 1063–1065
    [297] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angewandte Chemie International Edition, 2004, 43: 1540–1543
    [298] Zande B M I, Bohmer M R, Fokkink L G J, et al. Colloidal dispersions of gold rods: Synthesis and optical properties. Langmuir, 2000, 16: 451-458
    [299] Caruso F, Shi X, Caruso R A. et al. Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Advanced Materials, 2001, 13: 740-744
    [300] Dai Z, D?hne L, M?hwald H, et al. Novel capsules with high stability and controlled permeability by hierarchic templating. Angewandte Chemie International Edition, 2002, 41: 4019-4022
    [301] Pileni M P, Ninham B W, Tanori J, et al. Direct relationship between shape and size of template and synthesis of copper metal particles. Advanced Materials, 1999, 11: 1358-1362
    [302] Sun Y G, Mayers B, Nia Y N. Metal nanostructures with hollow interiors. Advanced Materials, 2003, 15: 641-646
    [303] Zhao J, Chen W X, Zheng Y F, et al. Novel carbon supported hollow Pt nanospheres for methanol electrooxidation. Journal of Power Sources, 2006, 162: 168-172
    [304] Xie X F, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon , 2007, 45: 2365–2373
    [305] Ramgir N S, Hwang Y K, Mulla I S, et al. Effect of particle size and strain in nanocrystalline SnO2 according to doping concentration of ruthenium. Solid State Sciences, 2006, 8: 359–362
    [306]段涛,杨玉山,彭同江等.核壳型纳米复合材料的研究进展.材料导报, 2009, 23: 19-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700