用户名: 密码: 验证码:
耗氧型光纤DCP传感器敏感材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,4-二氯苯酚(2,4-dichlorophenol,DCP)是一种毒性较强且难降解的环境污染物。已被美国环保局和我国政府列为必须首先控制的有毒化合物,因此检测DCP含量对环境保护和人类健康具有重要的意义。
     本学位论文分别以磁性壳聚糖纳米复合粒子(magnetic chitosan nanoparticles,MCN)固定化漆酶、酞菁铜仿生酶为生物识别元件,构建了基于固定化漆酶、仿生酶催化的耗氧型光纤DCP传感器,实现了对环境污染物DCP的检测。
     本学位论文在以下几个方面进行了系统的研究。第一,对杂色云芝菌漆酶的培养和纯化条件进行了研究,制备了比活力为28.4 U/mg的漆酶;第二,采用反相悬浮聚合法制备了MCN,以其为载体固定漆酶,研究了固定化的最优条件,以2,2'-连氮-双-(3-乙基苯并噻吡咯啉-6-磺酸)(ABTS)为底物研究了游离漆酶和固定化漆酶的催化性能;第三,分别研究了漆酶催化DCP和漆酶-介体体系中漆酶催化DCP的机理,确定了漆酶和固定化漆酶催化DCP的最适条件以及漆酶-介体体系中漆酶和固定化漆酶催化DCP的最适条件;第四,制备3种金属酞菁,对金属酞菁催化氧化DCP的最适条件和机理进行了研究;第五,设计和构建了基于固定化漆酶、仿生酶催化的光纤DCP传感器,研究了传感器的性能。本学位论文的主要结论包括以下几个方面:
     (1)采用液体发酵法对培养杂色云芝菌漆酶的培养条件进行了优化,分离和纯化了杂色云芝菌漆酶,以ABTS为底物研究了其酶学性质。
     最优培养条件为:土豆汁20%,pH值为5.0,葡萄糖20.0 g/L,蛋白胨4.0g/L,CuSO_4 1.0 mmol/L,KH_2PO_4 3.0g/L,MgSO_4 1.5 g/L,ZnSO_4 0.5g/L,MnSO_40.5 g/L,ABTS 1.0 mmol/L,Tween-80 0.10%,28℃,130 rpm/min摇瓶培养13d。
     采用超滤、硫酸铵分级、DEAE-Sepharose Fast Flow及Sephadex G-100柱层析对漆酶粗酶液进行分离纯化,分离纯化的漆酶酶粉的比活力为28.4 U/mg,分子量为64.4 kD,其同工酶分子量为35.8 kD。
     该漆酶催化ABTS的最佳pH值为2.0,最佳温度为55℃,25℃时漆酶催化ABTS的K_m值为7.78μmol/L,V_(max)为5.11×10~(-5)L·mol~(-1)·min~(-1)。该漆酶储存稳定性能良好,在-18℃放置1个月其酶活仍保持90.2%。
     (2)采用反相悬浮法制备了平均粒径约为104.5 nm的MCN。采用TEM、FI-IR对MCN的结构进行了表征。研究了MCN的磁性能及抗氧化性能。结果表明,MCN具有超顺磁性,矫顽力为10.27 Oe,抗氧化性良好,易于磁分离。
     以MCN为载体固定漆酶,研究了MCN固定漆酶的最适条件。固定化过程分为戊二醛活化和漆酶交联两步。戊二醛活化的最优条件为:50 mg MCN在pH7.0的磷酸缓冲液浸泡12 h,25℃时,在1%的戊二醛中活化2 h;漆酶交联的最优条件为:将活化好的MCN磁分离后,置于漆酶浓度为1.0 mg/mL的pH 6.0的磷酸缓冲液,4℃交联4 h。最优条件下制备的固定化漆酶固载率为28%,比活力为670 U/g。以ABTS为底物研究了固定化漆酶的酶学性质,结果表明,固定化漆酶催化ABTS的最适pH值为2.0,最适温度为50℃,25℃时K_m=23.38μmol/L,V_(max)=3.53×10~(-5)mol·L~(-1)·min~(-1),固定化漆酶具有良好的热稳定性、操作稳定性和储存稳定性。
     (3)研究了漆酶催化氧化DCP的机理以及漆酶和固定化漆酶催化氧化DCP的最适条件,漆酶和固定化漆酶催化DCP的最佳pH均为5.0,最佳温度分别为45℃和55℃。动力学研究结果表明,漆酶对DCP的催化氧化符合一级反应动力学方程。
     在漆酶-ABTS介体体系中,ABTS起到了电子传递的作用,加入介体以后,DCP的氧化速度明显提高。游离漆酶催化DCP氧化的机理研究表明催化反应是由四个化学反应组成的,醌式中间体的生成速度与每个反应的速度常数有关,亦即与漆酶、介体、底物的浓度有关。在漆酶-介体体系中,游离漆酶和固定化漆酶催化DCP的最适pH和最适温度分别为4.5和50℃。
     (4)制备了3种金属酞菁(CuPc、MnPc、CoPc),研究了金属酞菁对DCP的催化性能。金属酞菁催化DCP的最适pH为8.0的磷酸缓冲液,最适温度为55℃,最佳金属酞菁用量为5.0 mg·mL~(-1)。
     (5)分别以固定化漆酶、酞菁铜为生物识别元件,采用锁相放大技术构建了两种光纤DCP传感器,研究了传感器的性能并对DCP含量进行测定。结果表明,基于固定化漆酶催化的光纤DCP传感器的线性检测范围为1.0×10~(-7)-9.0×10~(-5)mol/L,检测下限为4.4×10~(-8)mol/L,响应时间为40 s;基于酞菁铜仿生酶催化的光纤DCP传感器线性检测范围在1.0×10~(-6)-9.0×10~(-5) mol/L,检测下限为7.4×10~(-7)mol/L,响应时间为600 s。两种传感器均有较好的重复性和长期稳定性
     将两种传感器应用于长江水和加入DCP的长江水的检测,并与高效液相色谱的测定结果进行了比较研究。结果表明,2种传感器的检测效果好,精度高。对于基于固定化漆酶催化的光纤DCP传感器,Mg~(2+)、Ca~(2+)的加入使得检测结果偏高,加入EDTA作螯合剂,能消除Mg~(2+)、Ca~(2+)的影响。在基于酞菁铜催化的光纤DCP传感器中加入Mg~(2+)、Ca~(2+)对检测结果没有影响。
2,4-chlorophenol (DCP) is a kind of very toxic substance among the pollutants in the environment and they are widespread, difficult to degrade resistant and toxic refractory. It had been regarded by United States Environmental Protection Agency(US EPA) and our government. as the toxic organic substance to be specially controlled. Therefore, the detection of DCP concerntion is of crucial importance to environmental protection and human health.
     The main goal of this thesis is to investigate the fiber optic DCP biosensors to detect DCP concentration. Immobilized laccase and copper phthalocyanine were used respectively as the bio-recognition element to constructed fiber optical DCP biosensors based on oxygen consumption, and the detection of DCP by fiber optic DCP biosensors was realized.
     In this thesis, the following aspects have been studied systematically. Firstly, the culture and purification conditions of Coriolus versicolor had been investigated. Laccase with the specific activity of 28.4 U/mg was prepared. Secondly, magnetic chitosan nanoparticles(MCN) were prepared by reversed-phase suspension method and used to immobilize laccase. The optimum conditions of immobilization were studied and the catalytic properties of free laccase and immobilized laccase were studied by using ABTS as the substrate. Thirdly, the mechanisms of the DCP oxidation catalyzed in laccase system and laccase-ABTS [2,2-azinobis -(3-ethylbenzthiazoline-6-sulfonat)] mediator system were studied, the optimum conditions for DCP oxidation catalyzed by free laccase and immobilized laccase were investigated. Fourthly, three types of metal phthalocyanine were synthesized by benzene bitter wine-urea Law, the mechanisms and the optimum conditions of DCP oxidation catalyzed by metal phthalocyanine were investigated. Finally, fiber optic DCP biosensors based on enzyme catalysis were designed and constructed. The principle and the performance of the biosensors based on DCP catalysed by laccase or copper phthalocyanine were investigated, respectively.
     The main conclusions of this thesis include the following five aspects:
     (1) By means of liquid fermentation, the culture conditions of Coriolus versicolor were optimized. The laccase was isolated with the specific activity of 28.4 U/mg. The catalytic properties of laccase were studied using ABTS as the substrate.
     The optimal conditions were determined as: potato juice 20%, glucose 20.0 g/L, peptone 4.0 g/L, CuSO_4 1.0 mmol/L, KH_2PO_4 3.0 g/L, MgSO_4 1.5 g/L, ZnSO_4 0.5 g/L, MnSO_4 0.5 g/L, ABTS 1.0 mmol/L, Tween-80 0.10 %, pH 5.0, 130 rpm/min, 28℃,13 days.
     Laccase was isolated and purified through ultra-filtration, followed by ammonium sulphate fractionation, DEAE-Sepharose Fast Flow and Sephedax G-100 column chromatography. The specific activity of laccase was 28.4 U/mg and the molecular mass of laccase was estimated to be 64.4 kDa by SDS-PAGE. The molecular weight of isoenzymes was 35.8 kD.
     The catalytic properties of laccase were studied using ABTS as the substrate. The optimum pH value was 7.0 and the optimum temperature was 55℃. The K_m and V_(max) values of laccase on ABTS at 25℃were 7.78umol/L and 5.11×10~(-5) L·mol ~(-1)·min~(-1), respectively. The purified laccase represents excellent storage stability and could maintain 90.2% of its initial activity after stored at -18℃for 28 days.
     (2) MCN were prepared by reversed-phase suspension method and were characterized by TEM, NMR, FT-IR. The magnetic properties and oxidation resistance were investigated. The results showed that MCN were almost superparamagnetic with Hc of 10.27 Oe. The oxidation resistance of MCN was good. With small Hc, MCN wrer easy to be separated from solution and reused.
     The laccase was immobilized on the surface of MCN by crosslinking method and the process included two steps: MCN activation by glutaraldehyde and cross-linking by laccase. The activation process by glutaraldehyde was under the following conditions: 50 mg MCN were dipped in the PBS(pH 7.0) buffer for 12 hours, then activated with 1% glutaraldehyde for 2h at 25℃. After activation and treatment by magnetic separation method, the crosslinking reaction with laccase was carried out at 4℃. The optimum pH, laccase concentration and reaction time of crosslinking reaction were 6.0, 1.0 mg/mL and 4h, respectively. The immobilization yield and the activity of the immobilized laccase were 28 %, 670 U/g, respectively.
     The catalytic properties of immobilized laccase were investigated by using ABTS as the substrate. The immobilized laccases exhibited the maximum enzyme activity at pH 2.0 and at 50℃. The K_m and V_(max) values of immobilized laccase at 25℃were 23.38μmol/L and 3.53×10~(-5) mol·L~(-1)·min~(-1), respectively. Also, the immobilized laccases had good thermal, store, operation stabilities.
     (3) The mechanism of the DCP oxidation catalyzed by laccase and the optimum catalytic conditions by free laccase and immobilized laccase were studied. For both free laccase and immobilized laccase, the optimum pH was 8.0. The optimal temperature of free laccase and immobilized laccase were 45℃, 55℃, respectively. The kinetic study indicates that the DCP oxidation catalyzed by laccase coincided with first-order kinetic equation.
     In the laccase-ABTS mediator system, ABTS is employed to shuttle electrons from the DCP to laccase. It was shown that by using ABTS as a mediator, laccase from Coriolus versicolor was able to increase the rate of DCP oxidation.
     The mechanism of DCP oxidation catalyzed by laccase indicated that the catalyze process contained four reactions. The producing rate of 2-chloro-1,4-benzoquinon had relations with each reaction's rate constant, namely it was influenced by the concentration of laccase, mediator and substrate. For both free laccase and immobilized laccase in the laccase-ABTS mediator system, the optimum pH and temperature of DCP oxidiation catalyzed by laccase were 8.0, 50℃, respectively.
     (4) Three types of metal phthalocyanine were synthesized by benzene bitter wine-urea law. The mechanism and catalytic properties of DCP oxidation catalyzed by metal phthalocyanine were studied and the optimum catalytic conditions were as follows: pH 8.0, temperature 55℃, amount of metal phthalocyanin 5.0 mg/mL.
     (5) Two types of novel fiber optic DCP biosensors based on the DCP oxidation catalyzed by immobilized laccase or copper phthalocyanine were designed and fabricated. The performance of the biosensors was investigated. The linear detection range, detection limit and response time of the fiber optic DCP biosensor base on the catalysis of immobilized laccase were 1.0×10~(-7)-9.0×10~(-5) mol/L, 4.4×10~(-8) mol/L, 40 s respectively. The linear detection range, detection limit and response time of the biosensor base on the catalysis of copper phthalocyanine were 1.0×10~(-6)-9.0×10~(-5) mol/L mol/L, 7.4×10~(-7) mol/L, 600 s, respectively. Both of them showed good reproducibility and stability.
     Both of biosensors were used to detect the DCP concentration in the water from Yangtze river, and the results were compared those determined by HPLC, indicating that the detection of DCP concentration by these biosensors were reliable. The influences of interference ions Mg~(2+)and Ca~(2+) on the detection of DCP concentration by these biosensors have been studied. For the fiber optic DCP biosensor base on immobilized laccase. The results were higher than the true values. The influences of Mg~(2+)and Ca~(2+) were eliminated when EDTA was added. For the fiber optic DCP biosensor base on copper phthalocyanine, the result wouldn't be influenced by interference ions Mg~(2+)and Ca~(2+).
引文
[1] Ziagova, M., Liakopoulou-Kyriakides, M. Kinetics of 2,4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. cultures in the presence of glucose. Chemosphere, 2007, 68: 921-927
    [2] Sahinkaya, E., Dilek, F.B. Biodegradation of 4-CP and 2,4-DCP mixture in a rotating biological contactor (RBC). Biochem. Eng. J., 2006, 31: 141-147
    [3] Matafonova, G., Shirapova, G., Zimmer, C., et al. Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia). Int. Biodeter. Biodegr., 2006, 58: 209 -212
    [4] Mehrvar, M., Bis, C., Scharer, J.M., et al. Fiber-optic biosensors-trends and advances. Anal. Sci.,2000, 16:677-692
    [5]乔晓艳,贾莲凤.新型生物传感器在生物医学工程中的应用.传感器技术,2002.21(10):62-64
    [6]司士辉.生物传感器.北京:化学工业出版社,2003,18-20
    [7]靳伟,廖延彪.导波光学传感器原理与技术.北京:科学出版社,1998,227-231
    [8]张志鹏,W.A.Gambling.光纤传感器原理.北京:中国计量出版社,1991,1-8
    [9]张先恩.生物传感技术与原理.吉林,吉林科学技术出版社,1990.171-185
    [10]陈国平,寿文德.光纤生物传感器.中国医疗器械杂志.2002,26(2):119-123
    [11] Wang, X. D., Zhou, T.Y., Chen, X., et al. An optical biosensor for the rapid determination of glucose in human serum. Sensor. Actuat. B-Chem., 2008, 129: 866-873
    [12] Baker, S.L.R., Kopelman, R.,Meyer, T.E., et al. Fiber-Optic Nitric Oxide-Selective Biosensors and Nanosensors. Anal. Chem., 1998, 70: 971-976
    [13] Hlavay, J., Haemmerli, S.D., GuilBault, GG Fiber-optic biosensor for hypoxanthine and xanthine based on a chemiluminescense reaction. Biosens. Bioelectron., 1994, 9(3): 189-195
    [14] Cattaneo, M.V., Luong, J.H.T. Monitoring glutamine in animal cell cultures using a chemiluminescence fiber optic biosensor. Biotechnol. Bioeng., 1993,41(6):659-665
    [15] Cattaneo, M.V., Male, K.B., Luong,J.H.T. A chemiluminescence fiber optic biosensor system for the determination of glutamine in mammalian cell cultures. Biosens. Bioelectron., 1992, 7(8): 569-574
    [16] Marazuela, M.D., Cuesta, B., Moreno-Bondi, M.C. Free cholesterol fiber optic biosensor for serum samples with simplex optimization. Biosens. Bioelectron., 1997, 12(3): 233-240
    [17] 闫玉华,徐运华,李世普.基于荧光猝灭原理的胆固醇光纤生物传感器的研制.中国生物医学工程学报,2004,23(1):44-48
    [18] Jiang, D.S., Liu, E., Chen, X., et al. Design and properties study on fiber optic glucose biosensor. Chin. Optic. lett., 2003,1(2): 108-119
    [19] Vidal, M.M., Delgadillo, I., Gil, M.H. et al. Study of an enzyme coupled system for the development of fibre optical bilirubin sensors. Biosens. Bioelectron., 1996,11(4): 347-354
    [20] Choi, J.W., Min, J.M., Jung, J.W., et al. Fiber-optic biosensor for the detection of organophosphorus compounds using AChE-immobilized viologen LB films. Thin Solid Films, 1998, (327-329): 676-680
    [21] Blum, L. J., Gautier, S.M., Bergr, A. et al. Multicomponent organized bioactive layers for fiber-optic luminescent sensors. Sensors and actuators. B, Chemical, 1995,29: 1-9
    [22] Yoshida H. Chemistry of Lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J. Chem. Soc. Trans, 1883,43: 472-486
    [23] Caparr(?)s-Ruiz, D., Fornal(?), S., Civardi, L., et al. Isolation and characterisation of a family of laccases in maize. Plant Sci., 2006,171: 217-225
    [24] Litthauer, D., Vuuren, M.J., Tonder, A. et al. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microb. Tech., 2007, 40: 563-568
    [25] Lin, J.P., Lian, W., Xia, L.m., et al. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (Ⅱ) Decolonization of dyes by laccase containing fermentation broth with or without self-immobilized mycelia. J. Environ. Sci., 2003,15: 5-8
    [26] Alexandre, G, Zhulin, I.B. Laccase are Widespread in Bacteria. Trends Biotechnol., 2000, 18(2): 41-42
    [27] Kramer, K.J., Kanost, M.R., Hopkins, T.L., et al. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 2001, 57: 385-392
    [28] Ewald, S., Hammel, K.E. Degradation of nonphenolic lignin by the laccase/1-hydroxy benzotriazole system. J. Biotechnol., 2000,81: 179-188
    [29] 冯文英,常清荣,李振岩.麦草浆的木聚糖酶和漆酶/介体体系协同生物漂白研究.中国造纸学报,2003,18(2):60-63
    [30] Tavares, A.P.M., Gamelas, J.A.F., Gaspar, A.R. et al. A novel approach for the oxidative catalysis employing polyoxometalate-laccase system: application to the oxygen bleaching of kraft pulp. Catal. Commun., 2004, 5:485-489
    [31] Soares, GM.B., Amorim, M.T.P., Hrdina, R. et al. Studies on the biotransformation of novel disazo dyes by laccase. Process, Biochem., 2002, 37(6): 581-587
    [32] Mousty, C, Vieille, L., Cosnier, S. Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor. Biosens. Bioelectron., 2007, 22: 1733-1738
    [33] Ryan, D., Leukes, W., Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresource Technol., 2007,98 (3): 579-587
    [34] Yaropolov, A.I., Skorobogat'ko, O.V., Vartanov, S.S., et al. Laccase: properties, catalytic mechanism, and applicability. Appl. Biochem. Biotech., 1994,49(3): 257-280
    [35] 季立才,胡培植.漆酶的结构、功能及其应用.氨基酸和生物资源,1996,18(1):25-29
    [36] 韩君莉,郭丽琼,林俊芳.漆酶结构的研究进展.生物加工过程,2006,4(4):1-6
    [37] Ducros, V., Brzozowski, A.M., Wilson, K.S. et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat. struct. Boil., 1998, 5: 310-316
    [38] Garavaglia, S., Cambria, M.C., Miglio, M., et al. The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J. Mol. Biol., 2004, 342: 1519-1531
    [39] 张敏,肖亚中,龚为民.真菌漆酶的结构与功能.生物学杂志,2003,20(5):6-8
    [40] Enguita, F.J., Martins, L.O., Henriques, A.O., et al. Crystal structure of a bacterial endospore coat component. J. Biol. Chem., 2003, 278(21): 19416-19425
    [41] Hakulinen, N., Kiiskinen, L.L., Kruus, K., et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat. struct. Boil., 2002, 9: 601-605.
    [42] Karhunen, E., Niku-Paavola, M.L., Viikari, L., et al. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Lett., 1990, 267 (1): 6 - 8
    [43] Palmieri, G., Cennamo, G., Faraco, V., et al. A typical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb. Tech., 2003, 33: 220 - 230
    [44]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用.植物学通报,2003,20(4):469-475
    [45]万云洋,杜予民.漆酶结构与催化机理.化学通报,2007,9:662-670
    [46] Sundaram, U.M., Zhang, H.H., Hedman, B., et al. Spectroscopic investigation of peroxide binding to the trinuclear copper cluster site in laccase: correlation with the peroxy-level intermediate and relevance to catalysis. J. Am. Chem. Soc., 1997, 119: 12525 - 12540
    [47] Lee, S.K., George, S.D., Antholine, W.E., et al. Nature of the intermediate formed in the reduction of O_2 to H_2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc, 2002,124:6180-6193
    [48]卢蓉,夏黎明.漆酶氧化还原介质系统的作用机理及其应用.纤维素科学与技术,2004,12(1):37-44
    [49] Kumiawati, S., Nicell, J.A. Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb. Tech., 2007,41: 353-361
    [50] Arends, I.W.C.E., Li, Y.X., Ausan, S., et al. Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols. Tetrahedron, 2006,62: 6659-6665
    [51] Osman, A.M., Wong, K.K.Y., Fernyhough, A. The laccase/ABTS system oxidizes (+)-catechin to oligomeric products. Enzyme Microb. Tech., 2007,40: 1272 - 1279
    [52] Shleev, S., Persson, P., Shumakovich, G., Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme Microb. Tech., 2006,39: 841 - 847
    [53] Bendl, R.F., Kandel, J.M., Amodeo, K.D., et al. Characterization of the oxidative inactivation of xylanase by laccase and a redox mediator. Enzyme Microb. Tech., 2008,43: 149 - 156
    [54] Zouari-Mechichi, H.Z., Mechichi, T, Dhouib, A., et al. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb. Tech., 2006, 39: 141 - 148
    [55] Madhavi, S., Lele, R.S.S. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem., 2006,41: 581 - 588
    [56]王宜磊,朱陶.漆酶高产菌株的筛选及产酶条件研究.生态学杂志,2002,21(2):27-29
    [57] Staji(?), M., Persky, L., Friesem, D., et al. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Tech., 2006, 38: 65 - 73
    [58]吴坤,朱显峰,张世敏.杂色云芝漆酶的发酵条件研究.菌物系统,2001,20(2):207-213.
    [59]卢蓉,沈雪亮,夏黎明.彩绒革盖菌产漆酶及其对染料脱色的研究.林产化学与工业,2005,25(1):73-76
    [60] Rosconi, F., Fraguasb, L.F., Martinez-Dretsa, G., et al. Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme Microb. Tech., 2005, 36: 800-807
    [61] Farnet, A.M., Criquet, S., Cigna, M., et al. Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzyme Microb. Tech., 2004, 34: 549 - 554
    [62]郭伟云,汤祥忠,姚朝阳等.云芝漆酶同工酶的分离纯化及酶学性质.河北师范大学学报(自然科学版),2007,31(6):806-809
    [63] Mayer, A.M., Staples, R.C. Laccase: new functions for an old enzyme. Phytochemistry, 2002, 60:551-565
    [64] Strong, P.J., Burgess, J.E. Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters. Bioresource Technol., 2008,99: 6134 - 6142
    [65] Kim, Y.J., Nicell, J.A. Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem., 2006,41: 1029 - 1037
    [66] Rajendran, V., Gupta, G., Appel, D., et al. Laccase-Catalyzed Direct Electron Transfer: Application in Gas-Diffusion Air Cathodes for Biofuel Cells. Abs. 1232, 204th Meeting, (?) 2003 The Electrochemical Society, Inc.
    [67] Baker, W.L., Sabapathy, K., Vibat, M., et al. Laccase catalyzes formation of an indamine dye between 3-methyl-2-benzothiazolinone hydrazone and 3-dimethylaminobenzoic acid. Enzyme Microb. Tech., 1996, 18: 90 - 94
    [68] Srebotnik, E., Hammel, K.E., Degradation of nonphenolic lignin by the laccase: 1-hydroxybenzotriazole system. J. Biotechnol., 2000, 81; 179 - 188.
    [69] Rodriguez, E., Pickard, M.A., Vazquez-Duhalt, R., Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbol., 1999, 38: 27 - 32
    [70] Abadulla, E., Tzanov, T., Costa, S., et al. Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsute. Appl. Environ. Microb., 2000, 66(8): 3357 - 3362
    [71] Peralta-Zamora, D., Pereira, C.M., Tiburtius, E.R.L. Decolorization of reactive dyes by immobilized laccase. Appl. Catal. B: Environ., 2003,42: 131 - 144
    [72]康从宝,李清心,刘瑞田等.一株白腐菌产生的漆酶对RB亮蓝的脱色作用.应用与环境生物学报,2002,8(3):298-301
    [73] D'Annibale, A., Ricci, M., Quaratino, D., et al. Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res. Microbiol., 2004, 155: 596 - 603
    [74] Zhang, J.B., Liu, X.P., Xu, Z.Q., et al. Degradation of chlorophenols catalyzed by laccase. International Biodeterioration & Biodegradation, 2008,61: 351 - 356
    [75] Rodriguez, E., Nuero, O. Guill(?)n, F., et al. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase[J].Soil Biol. Biochem., 2004, 36: 909-916
    [76]陈辉,张剑波,刘小鹏.漆酶催化降解氯酚类有机污染物.北京大学学报(自然科学版),2005,41(4):605-611
    [77] Minussi, R.C., Pastore, GM., Dur(?)n N. elson. Potential applications of laccase in the food industry. Trends Food Sci. Tech., 2002,13: 205 - 216
    [78] Murugesan, GS., Angayarkanni, J., Swaminathan, K. Effect of tea fungal enzymes on the quality of black tea. Food chemistry, 2002, 79(4): 411-417
    [79] Roy, J.J., Abrahama, T.E., Abhijith, K.S., et al. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosens. Bioelectron., 2005,(21): 206-211
    [80]周爱儒.生物化学,北京:人民卫生出版社,2001,2-4
    [81]刘尔.基于荧光猝灭效应的光纤葡萄糖生物传感器的研究:[硕士学位论文].武汉:武汉理工大学,2004,14-15
    [82]辛嘉英,徐毅,胡霄雪等.Candida rugosa脂肪酶同工酶的选择固定化.2002,18(1):17-22
    [83] Markvicheva, E.A., Kuptsova, S.V., Mareeva, T.Y. Immobilized enzyme and cells in poly( N -vinyl caprolactam)based hydrogels . Biochem. Biotechnol., 2000, 88: 145-157
    [84] Itoh, T., Ishii, R., Hanaoka, T., et al. Encapsulation of catalase into nanochannels of an inorganic composite membrane. J. Mol. Catal. B: Enzym., 2009,57: 183-187
    [85] Sharma, S., Mittal, A., Gupta, V.K., et al. Improved stabilization of microencapsulated Cathepsin B in harsh conditions. Enzyme Microb. Tech., 2007, 40: 337 - 342
    [86] L6pez-Gallego, F., Betancor, L., Mateo, C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J. Biotechnol., 2005,119: 70 - 75
    [87] Zhou, Q.Z.K., Chen, X.D. Immobilization of β-galactosidase on graphite surface by glutaraldehyde. J. Food Eng., 2001,48(1): 69 - 74
    [88] Dessouki, A.M., Issa, G, Atia, K.S. Pullulanase immobilization on natural and synthetic polymers. J. Chem. Technol. Biot., 2001, 76: 700 - 706
    [89] Wang, S.L., Chio, S.H. Reversible immobilization of chitinase via coupling to reversibly soluble polymer. Enzyme Microb. Techn., 1998,22(7): 634 - 640
    [90] Mohy, M.Y., Bencivenga, U., Rossi, S., et al. Characterization the activity of penicillin G acylase immobilized onto nylon membranes grafted with different acrylic monomers by means of γ -radiation. J. Mol. Catal. B : Enzym., 2000, 8: 233 - 244
    [91] 李赛,傅皓,罗祥林等.聚醚砜表面光固定脲酶的研究.生物医学工程杂志,2002,19(1):13-16
    [92] Puleo, D.A., Kissling, R.A., Sheu, M.S. A technique to immobilize bioactive proteins, including bonemorphogenetic protein-4(BMP-4), on titanium alloy. Biomaterials, 2002, 23(9): 2079 - 2087
    [93] Delanoy, G, Li, Q., Yu, J. Activity and stability of laccase in conjugation with chitosan. Int. J. Biol. Macromol., 2005, 35: 89 - 95
    [94]朱祥瑞,徐俊良.家蚕丝素固定化α-淀粉酶的制备及其理化特性.浙江大学学报(农业与生命科学版),2002,28(1):64-69
    [95] Altun, G.D., Cetinus, S.A. Immobilization of pepsin on chitosan beads. Food Chem., 2007, 100:964-971
    [96]陈辉,张剑波,王维敬等.壳聚糖固定化云芝漆酶的制备及特性.北京大学学报(自然科学版),2006,42(2):254-258
    [97] Bulmus, V., Kesenci K., Piskin E. Poly(EGDMA/AAm)copolymer beads: a novel carrier for enzyme immobilization. React. Funct. Polym., 1998, 38: 1 - 9
    [98] Wang, W., Deng, L., Peng, Z.H., et al. Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase. Enzyme Microb. Tech., 2007, 40: 255 -261
    [99] Reshmi, R., Sanjay, G, Sugunan, S. Enhanced activity and stability of a-amylase immobilized on alumina. Catal. Commun., 2006, 7: 460 - 465
    [100] Naidja, A., Violante, A., Huang, P.M. Adsorption of tyrosinase onto montmorillonite as influenced by hydroxyaluminum coatings. Clay. Clay Miner 1995, 43: 647 - 55
    [101] Portaccio, M., Martino, S.D., Maiuri, P., et al. Biosensors for phenolic compounds: The catechol as a substrate model[J]. J. Mol. Catal. B: Enzym., 2006,41: 97 - 102
    [102]邱广亮,李咏兰等.磁性琼脂糖复合微球固定化纤维素酶的研究.精细化工,2000,17(2):115-117
    [103] Lei, L., Bai, Y.H., Li, Y.F., et al. Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J. Magn. Magn. Mater., 2009, 321: 252 - 258
    [104]刘有芹,颜芸,沈含熙.模拟酶的研究与发展.化学进展,2005,17(6):1067-1073
    [105]顾娟,黄绍苗,杨永存等.环糊精在模拟酶研究中的应用.现代食品科技,2007,23,(10):97-99
    [106]肖学文,廖双泉,廖建和等.环糊精聚合物的结构与应用.热带农业科学,2004,24(2):73-77
    [107]孙康,李仲辉,陈孝康.主客体葡萄糖、乳糖生物传感器的研制.化学研究与应用,2001,13(4):376-379
    [108]陈文兴,姚玉元,吕素芳等.平面双核金属酞菁衍生物的催化氧化性能.化工学报,2004,55(6):924-928
    [109]李早英,张悦宁,朱训进等.新型金属卟啉的合成及其仿酶活性研究.高等学校化学学报,2002,23(5):756-762
    [110] Wu, L., Li, A.M., Gao, GD., er al. Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. J. Mol. Catal. A: Chem., 2007,269:183-189
    [111]朱昌青,李东辉,郑洪等.利用四磺基锰酞菁催化酪氨酸与过氧化氢荧光反应测定环境水样中的过氧化氢.厦门大学学报(自然科学版),2001,40(1):68-73
    [112] Fu, Y., Finklea, H.O. Quartz Crystal Microbalance Sensor for Organic Vapor Detection Based on Molecularly Imprinted Polymers. Anal. Chem., 2003, 75: 5387 - 5393
    [113] Bhattacharya, S.S., Banerjee, R. Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere, 2008, 73: 81 - 85
    [114] Sahinkaya, E., Dilek, F.B. Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures. J. Biotechnol., 2007,127:716 - 726
    [115] Peng, J.F., Liu, J.F., Hu, X.L., Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A, 2007,1139:165 - 170
    [116]中华人民共和国国家标准:污水综合排放标准.GB 2978-1996
    [117]李金花,庄惠生.环境中荷尔蒙类化合物质2,4-二氯苯酚的紫外光谱法及应用.工业水处理,2004,24(5):57-58
    [118] Akhtar, S., Husain, Q. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, 2006, (65): 1228- 1235
    [119] Gonz(?)lez, P.S., Agostini, E., Milrad, S.R. Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere, 2008,70:982 - 989
    [120]李少旦,李贵荣,王永生等.荧光猝灭法测定水中氯酚类环境雌激素.南华大学学报(医学版),2005,33(1):105-108,111
    [121]刘斌,王京平,刘明亮等.2,4-二氯苯酚气相色谱的内标法测定.光谱实验室,2004,21(3):576-578
    [122]余宇燕,庄惠生.环境激素类物质2,4-二氯苯酚荧光免疫分析方法的建立.分析测试学报,2008,27(6):607-610
    [123] Hendricks, N.R., Waryo, T.T., Arotiba, O., et al. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound. Electrochim. Acta, 2009,54: 1925-1931
    [124] Jantra, J., Zilouei, H., Liu, J., et al. Microbial Biosensor for the Analysis of 2,4-Dichlorophenol. Anal. Lett., 2005,38: 1071-1083
    [125]聂晶磊,刘锋,周春玉等.氯酚类化合物对金鱼的急性和亚急性毒性研究.环境科学研究,2001,14(3):7-8
    [126]蒋洁,陈江宁,于红霞等.多氯酚类化合物对离体培养细胞的QSAR研究及毒性机理初探.科学通报,2004,49(2):125-129
    [127]丁少军,王传槐,叶汉玲等.云芝(Corious versicolor)高木质素降解活性菌株筛选的研究.纤维素科学与技术,1994,2(1):31-38
    [128] Satio, T., Hong, P., Kato, K., et al. Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme and Microbial Technology,2003,33:520-526
    [129]张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版).北京:高等教育出版社,1997.138-140
    [130] Galhaup, C, Haltrich, D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biot., 2001, 56: 225-232
    [131] Palmieri, G, Giardina, P., Bianco, C. Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus. Appl. Environ. Microb., 2000,66: 920-924
    [132]赵华,齐刚,代彦.白腐菌液体深层培养条件的研究.生物技术,2003,13(6):21-24
    [133]饶庆隆.金针菇产漆酶发酵条件研究.[硕士学位论文].南京:南京林业大学,2005,35-39
    [134]胡道伟,朱雄伟,梅运军.白腐菌产漆酶培养条件的研究.华中科技大学学报(自然科学版).2003,31(4):111-113
    [135] Madhavi, S., Lele, R.S.S. Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Bioresource Technol., 2007,98: 775 - 780
    [136] Niladevi, K.N., Prema, P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technol., 2008, 99: 4583 - 4589
    [137]杨建明,张小敏,刑增涛.毛木耳漆酶纯化及其部分漆酶特性的研究.菌物学报,2005,24(1):61-70
    [138] Farnet, A.M., Gil, G., Ferre, E. Effects of Pollutants on Laccase Activities of Marasmius Quercophilus, a White-rot Fungus Isolated from a Mediterranean Schlerophyllous Litter. Chemosphere, 2008, 70: 895-900
    [139]周晓云.酶学原理与酶工程.中国轻工业出版社.2005.62-64,86-90
    [140]涂楚桥,梁宏,王光辉.Hg~(2+)离子与漆树漆酶相互作用的研究[J].光谱学与光谱分析,2000,20(4):572-574
    [141] Krajewska B, Zaborska W, Chudy M. Multi-step Analysis of Hg2t Ion Inhibition of Jack Bean Urease[J]. J. Inorg. Biochem., 2004,98: 1160-1168
    [142]杜崇旭,索朗措姆,范圣第.磁性聚乙二醇微球固定化辅酶维生素B6的研究.大连民族学院学报,2003,5(1):41-43,46
    [143]魏燕芳.胺基化磁性壳聚糖微球固定Ct处理含酚废水研究.[硕士学位论文],福建:福建师范大学,2004:23-24
    [144] Yang, W.Y., Min, D.Y., Wen, S.X, et al. Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan. Process Biochem., 2006,41: 1378-1382
    [145] Joon-Taek, Oh, Jung-Hyun, Kim. Preparation and properties of immobilized amyloglucosidase on nonporous PS/PNaSS microspheres. Enzyme Microb. Tech., 2000, 27 :356-361
    [146] Reddy, K.R.C., Kayastha, A.M. Improved Stability of Urease upon Coupling to Alkylamine and Arylamine Glass and its Analytical Use. J. Mol. Catal. B-Enzym., 2006,38:104 - 112
    [147]龙胜亚.磁性壳聚糖微球的制备及其在漆酶固定化中的应用.[硕士学位论文].武汉:武汉理工大学,2005:37-38
    [148]肖海燕.四氨基金属酞菁-Fe_3O_4纳米复合粒子固定化漆酶及其在光纤肾上腺素传感器中的应用.[博士学位论文],武汉:武汉理工大学,2006:72-73
    [149] Al-Adhami, A.J.H., Bryjak, J., Greb-Markiewicz, B., et al. Immobilization of wood-rotting fungi laccases on modified cellulose and acrylic carriers. Process Biochem., 2002, 37: 1387-1394
    [150] Sanz, V., Marcos, S., Galban, J. Direct glucose determination in blood using a reagentless optical biosensor. Biosens. Bioelectron., 2007, 22: 2876 - 2883
    [151] Couto, S.R., Toca-Herrera, J.L. Laccase production at reactor scale by filamentous fungi. Biotechnol. Adv., 2007, 25 :558 - 569
    [152]水质挥发酚的测定比色法和容量法中华人民共和国国家标准 代替GB/T7490-1987和GB/T7491-1987
    [153] Akhtar, S., Husain, Q. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, 2006, 65: 1228-1235
    [154]李荣,毛陆原,朱敏等.包合锰卟啉的环糊精聚合物作为过氧化物朊酶模型物的研究.分析科学学报,1998,14(2):94-97
    [155] Minard, R.D., Liu, S.Y., Bollag, J.M. Oligomers and Quinones from 2,4-Dichlorophenol. J. Agr. Food Chem., 1981, 29:250 - 253
    [156] McGuirl, M.A., Dooley, D. Copper-containing oxidases. Curr. Opin. Chem. Biol., 1999,3: 138-144
    [157] Solis-Oba, M., Ugalde-Saldivar, V.M.,Gonz(?)lez, I., et al. An electrochemical-spectrophotometrical study of the oxidized forms of the mediator 2,2'--azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccas. J. Electroanal. Chem., 2005, 579: 59 - 66
    [158] Bratkovskaya, I., Ivanec, R., Kulys, J. Mediator-Assisted Laccase-Catalyzed Oxidation of 4-Hydroxybiphenyl. Biochemistry(Moscow), 2006,71(5): 550 - 554
    [159] O'Connell, J.E., Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. Int. Dairy J., 2001,11(3): 103 -20
    [160]陈国珍,黄贤智.荧光分析法.北京:科学出版社,1990:10-15
    [161]吕卫星,王怀兵.相移法测量钌化物氧气猝灭荧光寿命.传感器技术,1998,1:34-36
    [162]张丹,常晓红,张兵等.金属酞菁衍生物催化的模拟酶反应研究进展.辽宁大学学报(自然科学版),2003,30(1):87-92
    [163]卢涌泉,邓振华,实用红外光谱分析.北京:电子工业出版社,1989
    [164]黄俊,官建国,袁润章.酞菁铜-Fe_3O_4纳米复合粒子复合机理及其性能的研究.硅酸盐学报,2000.128(5):432-435
    [165]陈彬,杜锡光,杨树卿等.双核金属酞菁类化合物催化脱硫机理研究Ⅳ-中心金属离子对MPc-PcM催化活性都影响.分子科学学报.1996,12(3):211-217
    [166]汤雁.金属酞菁的仿生酶催化性能及其应用.[硕士学位论文].武汉:武汉理工大学,2008:27-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700