用户名: 密码: 验证码:
高等植物长链脂肪醇氧化酶初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一些酵母在以烷烃或长链脂肪酸为碳源进行生长时,首先利用定位在内质网膜上的ω-氧化系统将烷烃或长链脂肪酸氧化形成羧酸或二羧酸,然后进入β-氧化为生物体生长提供碳源及能量。
     在ω-氧化中,烷烃或脂肪酸的亚甲基端依次由P450单加氧酶、产生过氧化氢的长链脂肪醇氧化酶(Long-chain fatty alcohol oxidase, FAO)及醛脱氢酶氧化分别生成ω-醇、ω-醛及ω-脂肪酸。
     研究表明,当酵母利用烷烃或长链脂肪酸为碳源时,催化第一步反应的P450单加氧酶是由CYP52基因家族的成员编码的。已经发现多种植物中存在与CYP52同源的基因,且这一类基因大都和植物的抗病抗逆相关。既然在植物中存在类似于酵母中催化ω-氧化第一步的酶,那么在植物中是否存在类似的FAO?其功能又是什么?
     本研究主要对拟南芥、百脉根及水稻这三种高等植物中的FAO基因进行了基因序列分析、生化功能及生理功能等方面的初步研究。
     首先利用酵母FAO的氨基酸序列对拟南芥全基因组序列进行搜索,发现四个与FAO同源性较高的基因,分别是AtFAO1(At1g03990)、AtFAO3(At3g23410)、AtFAO4a(At4g19380)和AtFAO4b(At4g28570)。通过RT-PCR方法获得了AtFAO1 (At1g03990), AtFAO4a (At4g19380)和AtFAO4b (At4g28570)三个基因的全长ORF。
     接着利用拟南芥的四个FAO全长氨基酸序列搜索百脉根的EST数据库,得到一个EST序列。根据该序列设计引物并以百脉根顶端cDNA为模板进行3’-RACE,得到一个1.4 kb的片段。以该片段为探针筛选百脉根cDNA文库并最终得到了LjFAO1基因。利用PCR方法得到全长为3.6 kb的LjFAO1基因基因组DNA。另外还通过cDNA文库筛选得到了百脉根中的LjFAO2。
     再利用拟南芥中FAO的氨基酸序列对水稻基因组进行tblastn及blastp搜索。结果显示在水稻基因组中存在四个FAO基因,一个位于2号染色体,命名为OsFAO1;另外三个在10号染色体上,分别命名为OsFAO2、OsFAO3和OsFAO4。
     对上述的10个FAO基因做序列分析发现:存在于高等植物中的FAO基因大多为三个外显子和两个内含子的基因结构;其氨基酸序列都具有酵母FAO蛋白的五个保守结构域。进化分析表明FAO在单双子叶植物中的分化是在单双子叶植物分化之后。
     将得到的基因序列用原核表达系统进行蛋白表达后检测酶活,结果只有AtFAO4b和LjFAO1两个蛋白能够催化长链脂肪醇的氧化。酶动力学分析表明,AtFAO4b和LjFAO1都具有底物特异性。利用Ni-NTA柱纯化这两个蛋白后进行电泳检测,结果都得到了单一的蛋白条带。
     对AtFAO3和AtFAO4b的表达模式进行了RT-PCR检测。结果显示:AtFAO3和AtFAO4b基因在整株中均有表达,但是其表达水平在不同组织部位存在差异;AtFAO3和AtFAO4b对低温胁迫响应不同。对AtFAO3和AtFAO4b的T-DNA插入突变体进行病原菌接种,发现病原菌感染对AtFAO3的T-DNA插入突变体生长没有影响,而AtFAO4b的T-DNA插入突变体表现出易感性增高。这些结果说明AtFAO3和AtFAO4b虽然都能够催化长链脂肪醇氧化,但是它们在植物体内的功能不相同。AtFAO4b可能在拟南芥脂肪代谢及细胞壁发育中具有重要的作用。
     RT-PCR分析显示LjFAO1在整株中都有表达,但是在顶端表达水平最高而在果荚中表达量最低。在8日龄的百脉根幼苗的顶端和子叶中,LjFAO1表达水平可被低温诱导下调。
     对公共数据库中水稻FAO基因的表达模式数据进行分析发现OsFAO1和OsFAO4的表达水平较高,OsFAO2和OsFAO3的表达水平较低,而且四个基因对逆境处理有不同的响应。
     上述结果说明,在高等植物中普遍存在FAO基因,拟南芥、百脉根与水稻的研究表明该类基因可能与植物的抗病抗逆相关。
When some industrial yeast species are utilizing alkanes and/or long chain fatty acids as carbon source for growth, they first metabolize alkanes and/or long chain fatty acids to carboxylic acids or dicarboxylic acids throughω-oxidation system located at endoplasmic reticulum membrane, and then provide carbon source or energy to organism byβ-oxidation.
     Duringω-oxidation, the methyl end of the molecule is oxidized successively by a cytochrome P450 alkane/fatty acid hydroxylase, a hydrogen peroxide-generating alcohol oxidase, and an aldehyde dehydrogenase, producingω-alcohol,ω-aldehyde, andω-fatty acid, respectively.
     The P450 gene which encodes the enzyme that catalyzes the first step of the reactions using the alkanes or long-chain fatty acids as carbon source belongs to CYP52 gene family. There exist many homologous genes of CYP52 gene family in plants. Most of this kind of genes are related to resistance against disease and stress. Since the enzymes similar to those catalyzing the first step of theω-oxidation in yeast exist in plants, whether the enzymes similar to FAOs in yeast also exist in plants and what are their functions?
     This research mainly focuses on gene sequences analysis, biochemical and physiological functions of FAOs in three higher plants including Arabidopsis thaliana, Lotus japonicus and Oryza sativa.
     There are four long-chain fatty alcohol oxidase genes found in Arabidopsis thaliana genome using the amino acid sequence of the FAO in yeast to search the data-base of the Arabidopsis thaliana. These four genes are designated as AtFAO1 (At1g03990), AtFAO3 (At3g23410), AtFAO4a (At4g19380) and AtFAO4b (At4g28570). We have obtained the full-length ORF of three AtFAOs except AtFAO3 by RT-PCR.
     The Lotus japonicus EST database was searched against AtFAOs full-length amino acid sequences. One EST fragment was detected. A 1.4 kb fragment was cloned by 3’-RACE using the primers which were designed according to this EST and the cDNA that is from the apexes of Lotus japonicus as template. The corresponding full-length cDNA was obtained by screening a cDNA library of L. japonicus using the 1.4 kb fragment as probe. The LjFAO1 genomic DNA was amplified by PCR, to give a product of 3.6 kb in length. Comparison between the LjFAO1 cDNA and genomic DNA reveals that the LjFAO1 contains 3 exons and 2 introns. In addition, the LjFAO2 was obtained by screening the same cDNA library.
     The genome of Oryza sativa was also searched against the amino acid sequences of FAO genes in Arabidopsis, by tblastn and blastp. It shows that there are four FAO genes in genome of Oryza sativa. One is located at the chromosome 2 and it is designated as OsFAO1. The other three named as OsFAO2, OsFAO3 and OsFAO4 respectively are all at the chromosome 10.
     Analysis of the ten FAO gene sequeces mentioned above indicates that most of the FAO genes which exist in higher plants are composed of three exons and two introns, and they all contain five conserved domains in their amino acid sequences. Evolutionary study shows that the differentiation of FAOs in higher plants follows the differentiation of the monocotyledon and dicotyledon.
     Enzymes assay were carried out after over-expression of the above mentioned genes by BL21(DE3) . The results show that only the AtFAO4b and LjFAO1 have the ability to catalyze the oxidation of the long-chain fatty alcohol. Enzyme kinetics analysis shows that AtFAO4b and LjFAO1 both have substrate specificity. After the proteins purification using Ni-NTA columns and electrophoresis analysis, single protein band was obtained respectively.
     RT-PCR was performed to check the expression patterns of the AtFAO3 and AtFAO4b. The results show that the AtFAO3 and AtFAO4b are both expressed in the whole plant but respective transcription level is variant in different tissues. Semi-quantitative RT-PCR results also show that the AtFAO3 and AtFAO4b have different responses to cold stress. T-DNA insertion mutants of AtFAO3 and AtFAO4b were inoculated with pathogen, P. syringe pv. tomato DC3000. AtFAO3 T-DNA insertion mutant shows no obvious change whereas AtFAO4b T-DNA insertion mutant shows higher susceptibility to infection. These results indicate that AtFAO3 and AtFAO4b both can catalyze the long-chain fatty alcohol oxidation but they may carry out different functions in vivo, and AtFAO4b may have important impact on lipid metabolism and cell wall development in A. thaliana.
     RT-PCR analysis shows that the LjFAO1 is expressed in the whole plant, with the highest expression level in apex and the lowest expression level in the siliques. The LjFAO1 gene is down-regulated by cold stress in both the apexes and the cotelydons of the 8-day old seedlings.
     Analysis of the OsFAO genes expression data downloaded from the public data-base shows that the OsFAO1 and OsFAO4 have higher expression level while OsFAO2 and OsFAO3 have lower expression level. Further more the four FAO genes have different responses to stresses.
     All the results mentioned above indicate that the FAO genes exist ubiquitously in higher plants. Research focusing on the Arabidopsis thaliana,Lotus japonicus and Oryza sativa show that this kind of genes are related with the resistance against disease and stresses.
引文
1.沈同,王静岩,生物化学下册. 1992:高等教育出版社. 160-163.
    2.陈远童,长链二元酸的用途.微生物学通报, 2000. 27(5): p. 389.
    3.陈远童,生物合成长链二元酸新产业的崛起.生物加工过程, 2007. 5(4): p. 1-4.
    4. Vanhanen Sipo, West Mark, Kroon Johan T. M., et al., A Consensus Sequence for Long-chain Fatty-acid Alcohol Oxidases from Candida Identifies a Family of Genes Involved in Lipid omega -Oxidation in Yeast with Homologues in Plants and Bacteria. J. Biol. Chem., 2000. 275(6): p. 4445-4452.
    5. Cheng Qi., Sanglard Dominique., Vanhanen Sipo., et al., Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2005. 1735(3): p. 192-203.
    6. Sumita Toru, Iida Toshiya, Yamagami Setsu, et al., YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Biochemical and Biophysical Research Communications, 2002. 294(5): p. 1071-1078.
    7. Seghezzi Wolfgang., Sanglard Dominique. and Fiechter Armin., Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene, 1991. 106(1): p. 51-60.
    8. Seghezzi W, Meili C, Ruffiner R, et al., Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 1992. 11(10): p. 767-780.
    9. Craft David L., Madduri Krishna M., Eshoo Mark, et al., Identification and Characterization of the CYP52 Family of Candida tropicalis ATCC 20336, Important for the Conversion of Fatty Acids and Alkanes to {alpha},{omega}-Dicarboxylic Acids. Appl. Environ. Microbiol., 2003. 69(10): p. 5983-5991.
    10. Ohkuma M., Muraoka S., Tanimoto T., et al., Cyp52 (Cytochrome-P450alk) Multigene Family in Candida-Maltosa - Identification and Characterization of 8 Members. DNA and Cell Biology, 1995. 14(2): p. 163-173.
    11. Ohkuma M., Tanimoto T., Yano K., et al., Cyp52 (Cytochrome-P450alk) Multigene Family in Candida-Maltosa - Molecular-Cloning and Nucleotide-Sequence of the 2 Tandemly Arranged Genes. DNA and Cell Biology, 1991. 10(4): p. 271-282.
    12. Zimmer T., Kaminski K., Scheller U., et al., In-Vivo Reconstitution of Highly-Active Candida-Maltosa Cytochrome-P450 Monooxygenase Systems in Inducible Membranes of Saccharomyces-Cerevisiae. DNA and Cell Biology, 1995. 14(7): p. 619-628.
    13. Toshiya Iida, Akinori Ohta and Takagi Masamichi, Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast, 1998. 14(15): p. 1387-1397.
    14. Toshiya Iida, Toru Sumita, Akinori Ohta, et al., The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast,Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast, 2000. 16(12): p. 1077-1087.
    15. Gmünder F. K., K?ppeli O. and Fiechter A., Chemostat studies on the hexadecane assimilation bythe yeastCandida tropicalis. Applied Microbiology and Biotechnology, 1981. 12(3): p. 135-142.
    16. Eschenfeldt William H., Zhang Yeyan, Samaha Hend, et al., Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis. Appl. Environ. Microbiol., 2003. 69(10): p. 5992-5999.
    17. Zimmer Thomas, Ohkuma Moriya, Ohta Akinori, et al., TheCYP52Multigene Family ofCandida maltosaEncodes Functionally Diversen-Alkane-Inducible Cytochromes P450. Biochemical and Biophysical Research Communications, 1996. 224(3): p. 784-789.
    18. Scheller Ulrich, Zimmer Thomas, Kargel Eva, et al., Characterization of then-Alkane and Fatty Acid Hydroxylating Cytochrome P450 Forms 52A3 and 52A4. Archives of Biochemistry and Biophysics, 1996. 328(2): p. 245-254.
    19. Ohkuma Moriya, Zimmer Thomas, Iida Toshiya, et al., Isozyme Function of n-Alkane-inducible Cytochromes P450 in Candida maltosa Revealed by Sequential Gene Disruption. J. Biol. Chem., 1998. 273(7): p. 3948-3953.
    20. Zimmer Thomas, Iida Toshiya, Schunck Wolf-Hagen, et al., Relation Between Evolutionary Distance and Enzymatic Properties among the Members of the CYP52A Subfamily ofCandida maltosa. Biochemical and Biophysical Research Communications, 1998. 251(1): p. 244-247.
    21. Zimmer Thomas, Scheller Ulrich, Takagi Masamichi, et al., Mutual conversion of fatty-acid substrate specificity by a single amino-acid exchange at position 527 in P-450Cm2 and P-450Alk3A. European Journal of Biochemistry, 1998. 256(2): p. 398-403.
    22. Kogure Takahisa, Takagi Masamichi and Ohta Akinori, n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa. Biochemical and Biophysical Research Communications, 2005. 329(1): p. 78-86.
    23. Kogure Takahisa, Horiuchi Hiroyuki, Matsuda Hitoshi, et al., Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa. FEMS Microbiology Letters, 2007. 271(1): p. 106-111.
    24. Yamagami Setsu, Morioka Daisuke, Fukuda Ryouichi, et al., A Basic Helix-Loop-Helix Transcription Factor Essential for Cytochrome P450 Induction in Response to Alkanes in Yeast Yarrowia lipolytica. J. Biol. Chem., 2004. 279(21): p. 22183-22189.
    25. Endoh-Yamagami Setsu, Hirakawa Kiyoshi, Morioka Daisuke, et al., Basic Helix-Loop-Helix Transcription Factor Heterocomplex of Yas1p and Yas2p Regulates Cytochrome P450 Expression in Response to Alkanes in the Yeast Yarrowia lipolytica. Eukaryotic Cell, 2007. 6(4): p. 734-743.
    26. Scheller Ulrich, Zimmer Thomas, Becher Dorte, et al., Oxygenation Cascade in Conversion of n-Alkanes to alpha ,omega -Dioic Acids Catalyzed by Cytochrome P450 52A3. J. Biol. Chem., 1998. 273(49): p. 32528-32534.
    27. Nyss E. J., Reactivation by organic solvents of an alcohol dehydrogenase from Candida lipolytica grown on n-hexadecane. Biochimica et Biophysica Acta (BBA) - Enzymology, 1970. 212(2): p. 351-352.
    28. Gallo Michel, Roche-Penverne Bernadette and Azoulay Edgard, Localisation de l'alcool deshydrogenase mitochondriale de Candida tropicalis. FEBS Letters, 1974. 46(1-2): p. 78-82.
    29. Ilchenko A. P. and Komarova G. N., Octanol oxidation by Torulopsis candida mitochondria. Mikrobiologiya, 1981. 50(6): p. 964-972.
    30. Ilchenko A. P., Oxidase of higher alcohols in the yeast Torulopsis candida grown on hexadecane.Mikrobiologiya, 1984. 53(6): p. 903-906.
    31. Kemp Glenwyn D., Dickinson F. Mark and Ratledge Colin, Inducible long chain alcohol oxidase from alkane-grown Candida tropicalis. Applied Microbiology and Biotechnology, 1988. 29(4): p. 370-374.
    32. Blasig R., Mauersberger S., Riege P., et al., Degradation of long-chain n-alkanes by the yeast Candida maltosa. Applied Microbiology and Biotechnology, 1988. 28(6): p. 589-597.
    33. Kemp Glen D., Dickinson F. Mark and Ratledge Colin, Occurrence of fatty alcohol oxidase in alkane-and fatty-acid-utilising yeasts and moulds. Applied Microbiology and Biotechnology, 1994. 40(6): p. 873-875.
    34. Eirich L. Dudley, Craft David L., Steinberg Lisa, et al., Cloning and Characterization of Three Fatty Alcohol Oxidase Genes from Candida tropicalis Strain ATCC 20336. Appl. Environ. Microbiol., 2004. 70(8): p. 4872-4879.
    35. Francis M. Dickinson. Catherine Wadforth, Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis. Biochem J, 1992. 282: p. 325-331.
    36. Kemp Glenwyn D., Dickinson F. Mark and Ratledge Colin, Light sensitivity of then-alkane-induced fatty alcohol oxidase fromCandida tropicalis andYarrowia lipolytica. Applied Microbiology and Biotechnology, 1990. 32(4): p. 461-464.
    37. Mauersberger Stephan. Drechsler, Hannelore. Oehme, Günther. Müller, Hans-Georg, Substrate specificity and stereoselectivity of fatty alcohol oxidase from the yeast Candida maltosa. Applied Microbiology and Biotechnology, 1992. 37(1): p. 66-73.
    38. Kemp Glenwyn D., Dickinson F. Mark and Ratledge Colin, Activity and substrate specificity of the fatty alcohol oxidase of Candida tropicalis in organic solvents. Applied Microbiology and Biotechnology, 1991. 34(4): p. 441-445.
    39. Cavener Douglas R., GMC oxidoreductases : A newly defined family of homologous proteins with diverse catalytic activities. Journal of Molecular Biology, 1992. 223(3): p. 811-814.
    40. Wierenga Rik K., Drenth Jan, Schulz Georg E., et al., Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. Journal of Molecular Biology, 1983. 167(3): p. 725-739.
    41. Wierenga Rik K., Terpstra Peter and Hol Wim G. J., Prediction of the occurrence of the ADP-binding [beta][alpha][beta]-fold in proteins, using an amino acid sequence fingerprint. Journal of Molecular Biology, 1986. 187(1): p. 101-107.
    42. Peter S. J. Cheetham., Peter Dunnill. and Lilly Malcolm D., The characterization and interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous. Biochem Journal, 1982. 201: p. 515-521.
    43. Vrielink Alice, Lloyd Lesley F. and Blow David M., Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 ?resolution. Journal of Molecular Biology, 1991. 219(3): p. 533-554.
    44. Jiayao Li, Alice Vrielink, Peter Brick, et al., Crystal Structure of Cholesterol Oxidase Complexed with a Steroid Substrate:Implication for Flavin Adenine Dinucleotide Dependent Alcohol Oxidase. Biochemistry, 1993. 32: p. 11507-11515.
    45. Croteau Nathalie. and Vrielink Alice., Crystallization and Preliminary X-Ray Analysis of Cholesterol Oxidase fromBrevibacterium sterolicumContaining Covalently Bound FAD. Journal of Structural Biology, 1996. 116(2): p. 317-319.
    46. Kass I. J. and Sampson N. S., Evaluation of the Role of His447 in the Reaction Catalyzed by Cholesterol Oxidase. Biochemistry, 1998. 37(51): p. 17990-18000.
    47. Yue Q. K., Kass I. J., Sampson N. S., et al., Crystal Structure Determination of Cholesterol Oxidase from Streptomyces and Structural Characterization of Key Active Site Mutants. Biochemistry, 1999. 38(14): p. 4277-4286.
    48. Sampson Nicole S., Dissection of a Flavoenzyme Active Site: The Reaction Catalyzed by Cholesterol Oxidase. Antioxidants & Redox Signaling, 2001. 3(5): p. 839-846.
    49. Yin Y., Sampson N. S., Vrielink A., et al., The Presence of a Hydrogen Bond between Asparagine 485 and the π System of FAD Modulates the Redox Potential in the Reaction Catalyzed by Cholesterol Oxidase. Biochemistry, 2001. 40(46): p. 13779-13787.
    50. Raices Manuel, Paifer Edenia, Cremata Jos, et al., Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Letters, 1995. 369(2-3): p. 233-238.
    51. Bin Li, Srinivasa R. Nagalla and Renganathan V., Cloning of a cDNA Encoding Cellobiose Dehydrogenase, a Hemoflavoenzyme from Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1996. 62(4): p. 1329-1335.
    52. Hallberg B. Martin, Bergfors Terese, Bakbro Kristina., et al., A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure, 2000. 8(1): p. 79-88.
    53. Henriksson Gunnar, Johansson Gunnar and Pettersson G?ran, A critical review of cellobiose dehydrogenases. Journal of Biotechnology, 2000. 78(2): p. 93-113.
    54. Martin Hallberg B., Henriksson Gunnar, Pettersson G?ran, et al., Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Journal of Molecular Biology, 2002. 315(3): p. 421-434.
    55. Rotsaert Frederik A. J., Hallberg B. Martin, de Vries Simon, et al., Biophysical and Structural Analysis of a Novel Heme b Iron Ligation in the Flavocytochrome Cellobiose Dehydrogenase. J. Biol. Chem., 2003. 278(35): p. 33224-33231.
    56. Zámocky Marcel., Hallberg Martin, Ludwig Roland, et al., Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene, 2004. 338(1): p. 1-14.
    57. Hecht H. J., Kalisz H. M., Hendle J., et al., Crystal Structure of Glucose Oxidase from Aspergillus niger Refined at 2? ?Reslution. Journal of Molecular Biology, 1993. 229(1): p. 153-172.
    58. Kiess Michael, Hecht Hans-Jurgen and Kalisz Henryk M., Glucose oxidase from Penicillium amagasakiense . Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases. European Journal of Biochemistry, 1998. 252(1): p. 90-99.
    59. Roth Justine P. and Klinman Judith P., Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proceedings of the National Academy of Sciences, 2003. 100(1): p. 62-67.
    60. Cheng Qi, Functional Investigation of Long Chain Fatty Alcohol Oxidases(FAOs)—From Fungi towards Higher Plants. 2005.
    61. Yamada Takao, Nawa Hiroyuki, Kawamoto Susumu, et al., Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane-grown Candida tropicalis. Archives of Microbiology, 1980. 128(2): p. 145-151.
    62. Blasig R., Huth J., Franke P., et al., Degradation of long-chain n-alkanes by the yeast Candidamaltosa. Applied Microbiology and Biotechnology, 1989. 31(5): p. 571-576.
    63. Hommel Rolf K., Lassner Dirk, Weiss Joachim, et al., The inducible microsomal fatty alcohol oxidase of Candida (Torulopsis) apicola. Applied Microbiology and Biotechnology, 1994. 40(5): p. 729-734.
    64. Dickinson Francis M.., Catherine Wadforth, Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis. Biochem J, 1992. 282: p. 325-331.
    65. Matatiele Puleng Rose, Fatty Alcohol and Fatty Aldehyde Dehydrogenases of Yarrowia lipolytica, in Microbial, Biochemical and Food Biotechnology Faculty of Natural and Agricultural Sciences. 2005, University of the Free State Bloemfontein Republic of South Africa.
    66. Cheng Qi. Liu, Huan-Ting., Bombelli, Paolo. Smith, Alison., Slabas, Antoni R., Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Letters, 2004. 574(1-3): p. 62-68.
    67. Bolwell G. Paul, Bozak Kristin and Zimmerlin Alfred, Plant cytochrome p450. Phytochemistry, 1994. 37(6): p. 1491-1506.
    68. Tijet N., Helvig C., Pinot F., et al., Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis. Biochem. J., 1998. 332(2): p. 583-589.
    69. Benveniste Irene, Tijet Nathalie, Adas Fadi, et al., CYP86A1 fromArabidopsis thalianaEncodes a Cytochrome P450-Dependent Fatty Acid Omega-Hydroxylase. Biochemical and Biophysical Research Communications, 1998. 243(3): p. 688-693.
    70. Benveniste Irène, Bronner Roberte, Wang Yong, et al., CYP94A1, a plant cytochrome P450-catalyzing fatty acidω-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings. Planta, 2005. 221(6): p. 881-890.
    71. Duan Hui and Schuler Mary A., Differential Expression and Evolution of the Arabidopsis CYP86A Subfamily. Plant Physiol., 2005. 137(3): p. 1067-1081.
    72. Le Bouquin Renaud, Pinot Franck, Benveniste Irene, et al., Cloning and Functional Characterization of CYP94A2, a Medium Chain Fatty Acid Hydroxylase from Vicia sativa. Biochemical and Biophysical Research Communications, 1999. 261(1): p. 156-162.
    73. Pinot F., Benveniste I., Salaun J. P., et al., Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies. Biochem. J., 1999. 342(1): p. 27-32.
    74. Le Bouquin Renaud, Skrabs Manuela, Kahn Rachel, et al., CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the w-alcohol and to the corresponding diacid. European Journal of Biochemistry, 2001. 268(10): p. 3083-3090.
    75. Wellesen Kirsten, Durst Francis, Pinot Franck, et al., Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega -hydroxylation in development. Proceedings of the National Academy of Sciences, 2001. 98(17): p. 9694-9699.
    76. Petkova-Andonova Mariana, Imaishi Hiromasa and Ohkawa Hideo, CYP92B1, A Cytochrome P450, Expressed in Petunia Flower Buds, That Catalyzes Monooxidation of Long-Chain Fatty Acids. Bioscience, Biotechnology, and Biochemistry, 2002. 66(9): p. 1819-1828.
    77. Kahn Rachel Alice, Bouquin Renaud Le, Pinot Franck, et al., A Conservative Amino Acid Substitution Alters the Regiospecificity of CYP94A2, a Fatty Acid Hydroxylase from the Plant Vicia sativa. Archives of Biochemistry and Biophysics, 2001. 391(2): p. 180-187.
    78. Soliday Charles L. and Kolattukudy P. E., Biosynthesis of Cutin {omega}-Hydroxylation of FattyAcids by a Microsomal Preparation from Germinating Vicia faba. Plant Physiol., 1977. 59(6): p. 1116-1121.
    79. Kolattukudy P. E., Structure, Biosynthesis, and Biodegradation of Cutin and Suberin. Annual Review of Plant Physiology, 1981. 32(1): p. 539-567.
    80. Fangming Xiao, S Mark Goodwin, Yanmei Xiao, et al., Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. The EMBO Journal, 2004. 23: p. 2903-2913.
    81. Moreau Robert A. and Huang Anthony H. C., Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Archives of Biochemistry and Biophysics, 1979. 194(2): p. 422-430.
    82. Graham Ian A. and Eastmond Peter J., Pathways of straight and branched chain fatty acid catabolism in higher plants. Progress in Lipid Research, 2002. 41(2): p. 156-181.
    83. Beisson Frederic, Koo Abraham J. K., Ruuska Sari, et al., Arabidopsis Genes Involved in Acyl Lipid Metabolism. A 2003 Census of the Candidates, a Study of the Distribution of Expressed Sequence Tags in Organs, and a Web-Based Database. Plant Physiol., 2003. 132(2): p. 681-697.
    84. Chinnusamy Viswanathan, Ohta Masaru, Kanrar Siddhartha, et al., ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 2003. 17(8): p. 1043-1054.
    85. Suh Mi Chung, Samuels A. Lacey, Jetter Reinhard, et al., Cuticular Lipid Composition, Surface Structure, and Gene Expression in Arabidopsis Stem Epidermis. Plant Physiol., 2005. 139(4): p. 1649-1665.
    86. Swanson R., Clark T. and Preuss D., Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sexual Plant Reproduction, 2005. 18(4): p. 163-171.
    87. Mandaokar Ajin, Thines Bryan, Shin Byongchul, et al., Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal, 2006. 46(6): p. 984-1008.
    88. Kurdyukov Sergey, Faust Andrea, Trenkamp Sandra, et al., Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chainα-,ω-dicarboxylic fatty acids and formation of extracellular matrix. Planta, 2006. 224(2): p. 315-329.
    89. Fu Zheng Qing, Guo Ming, Jeong Byeong-ryool, et al., A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 2007. 447(7142): p. 284-288.
    90. Wehling Misty D., Guo Ming, Fu Zheng Qing, et al., The Pseudomonas syringae HopPtoV Protein Is Secreted in Culture and Translocated into Plant Cells via the Type III Protein Secretion System in a Manner Dependent on the ShcV Type III Chaperone. J. Bacteriol., 2004. 186(11): p. 3621-3630.
    91. Sumita Toru, Iida Toshiya, Hirata Aiko, et al., Peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1 in Yarrowia lipolytica. FEMS Microbiology Letters, 2002. 214(1): p. 31-38.
    92. Imaishi Hiromasa, Matsuo Satoshi, Swai Eri, et al., CYP78A1 Preferentially Expressed in Developing Inflorescences of Zea mays Encoded a Cytochrome P450-Dependent Lauric Acid 12-Monooxygenase. Bioscience, Biotechnology, and Biochemistry, 2000. 64(8): p. 1696-1701.
    93. Havukkala Ilkka J., Cereal genome analysis using rice as a model. Current Opinion in Genetics & Development, 1996. 6(6): p. 711-714.
    94. Izawa T. and Shimamoto K., Becoming a model plant: the importance of rice to plant science. Trends in Plant Science, 1996. 1: p. 95-99.
    95. Yu Jun, Hu Songnian, Wang Jun, et al., A Draft Sequence of the Rice Genome (Oryza sativa L. ssp.indica). Science, 2002. 296(5565): p. 79-92.
    96. Ahn S. and Tanksley S. D., Comparative Linkage Maps of the Rice and Maize Genomes. Proceedings of the National Academy of Sciences, 1993. 90(17): p. 7980-7984.
    97. Kurata Nori, Moore Graham, Nagamura Yoshiaki, et al., Conservation of Genome Structure Between Rice and Wheat. Nat Biotech, 1994. 12(3): p. 276-278.
    98. Moore G., Devos K. M., Wang Z., et al., Cereal Genome Evolution: Grasses, line up and form a circle. Current Biology, 1995. 5(7): p. 737-739.
    99. Hiei Yukoh, Ohta Shozo, Komari Toshihiko, et al., Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994. 6(2): p. 271-282.
    100. Harushima Yoshiaki, Yano Masahiro, Shomura Ayahiko, et al., A High-Density Rice Genetic Linkage Map with 2275 Markers Using a Single F2 Population. Genetics, 1998. 148(1): p. 479-494.
    101. Sasaki Takuji, The rice genome project in Japan. Proceedings of the National Academy of Sciences, 1998. 95(5): p. 2027-2028.
    102. Goff Stephen A., Ricke Darrell, Lan Tien-Hung, et al., A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002. 296(5565): p. 92-100.
    103. Somers David A., Samac Deborah A. and Olhoft Paula M., Recent Advances in Legume Transformation. Plant Physiol., 2003. 131(3): p. 892-899.
    104. Zhu Hongyan, Choi Hong-Kyu, Cook Douglas R., et al., Bridging Model and Crop Legumes through Comparative Genomics. Plant Physiol., 2005. 137(4): p. 1189-1196.
    105. Asamizu Erika, Kato Tomohiko, Sato Shusei, et al., Structural Analysis of a Lotus japonicus Genome. IV. Sequence Features and Mapping of Seventy-three TAC Clones Which Cover the 7.5 Mb Regions of the Genome. DNA Res, 2003. 10(3): p. 115-122.
    106. Handberg Kurt. and Stougaard Jens, Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal, 1992. 2(4): p. 487-496.
    107. Asamizu Erika, Nakamura Yasukazu, Sato Shusei, et al., Characteristics of the Lotus Japonicus Gene Repertoire Deduced from Large-Scale Expressed Sequence Tag (EST) Analysis. Plant Molecular Biology, 2004. 54(3): p. 405-414.
    108. Cserzo M., Wallin E., Simon I., et al., Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng., 1997. 10(6): p. 673-676.
    109. Zhao Shilan Lin Zhixin , Ma Wei ,Luo Da , Cheng Qi Cloning and Characterization of Long-Chain Fatty Alcohol Oxidase LjFAO1 in Lotus japonicus. Biotechnology Progress, 2008. 24(3): p. 773-779.
    110. Sequencing ProjectInternational Rice Genome, The map-based sequence of the rice genome. Nature, 2005. 436(7052): p. 793-800.
    111.沈同,王静岩,生物化学,上册. 1992: p. 239-243.
    112. Gustavo Bonaventure, Fr, eacute, et al., Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6, cis-9-diene-1,18-dioate as the major component. The Plant Journal, 2004. 40: p. 920-930.
    113. Tanaka Toshihiro, Tanaka Hirokazu, Machida Chiyoko, et al., A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. The Plant Journal, 2004. 37(1): p. 139-146.
    114. Chen Xinbo, Goodwin S. Mark, Boroff Virginia L., et al., Cloning and Characterization of theWAX2 Gene of Arabidopsis Involved in Cuticle Membrane and Wax Production. Plant Cell, 2003. 15(5): p. 1170-1185.
    115. Richmond Todd A. and Bleecker Anthony B., A Defect in {beta}-Oxidation Causes Abnormal Inflorescence Development in Arabidopsis. Plant Cell, 1999. 11(10): p. 1911-1924.
    116. Farkas Tibor, Déri-Hadlaczkyéva and Belea Adonisz, Effect of temperature upon linolenic acid level in wheat and rye seedlings. Lipids, 1975. 10(6): p. 331-334.
    117. Zhang Meng, Barg Rivka, Yin Mingan, et al., Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal, 2005. 44(3): p. 361-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700