用户名: 密码: 验证码:
钛合金电子束焊接接头的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,对航空航天飞行器的性能要求越来越高,这就对航空航天材料及其加工技术提出了新的挑战。能够有效减重的连接技术和轻质、高强的新型材料,已经成为人们在材料开发及应用过程中迫切寻求的目标。TC11钛合金作为一种比较成熟的钛合金材料已经应用于制造航空发动机的鼓筒、压气机盘、叶片、飞机结构件等重量轻、可靠性强的结构。电子束焊接技术作为目前多种焊接工艺中最成熟的高能束流加工方法之一,是航空航天飞行器构件的有效连接方法。本课题以TC11钛合金电子束焊接接头为研究对象,研究了TC11合金电子束焊接接头的显微组织、显微硬度分布以及室温拉伸变形行为,并测定了焊接接头试样及母材试样的高、低周疲劳等性能,为TC11钛合金及电子束焊接技术在航天航空领域的推广应用提供数据支持,并得出以下结论:
     焊接接头熔合区形成的针状马氏体组织提高了接头的硬度,原位拉伸结果显示拉伸过程中应变局部化及断裂位置都在靠近母材的区域。接头母材部分先于熔合区部分进入屈服阶段,熔合区变形与否取决于母材的应变硬化程度,基体合金应变硬化能力的增加有望改善接头整体性能。
     通过对TC11电子束焊接接头及母材样品的高周疲劳、低周疲劳实验,得出了焊接接头及母材样品的S-N、ε-N曲线。焊接接头样品疲劳性能与母材相当,接头样品在母材区断裂。裂纹源均在样品表面形核,断裂方式为解理或准解理断裂。
     进行了纯焊缝试样、纯母材试样和标距段为焊缝熔合区的焊接接头三组板状试样的疲劳实验,和焊接接头样品循环过程中残余应变的累积观察实验。发现接头样品在高应力疲劳实验中,塑性变形在焊接接头母材区累积,焊接接头熔合区、热影响区和母材区三个区域的材料基于应力疲劳的相对强弱为:熔合区>热影响区>母材区。
     电子束焊接接头性能良好,焊接接头具有不低于母材的拉伸、持久、高周疲劳、低周疲劳性能。
The performance of aerospace vehicles have become increasingly demanding with the continuous progress of science and technology. There are new challenges in aerospace materials and the process technology. The connection technology effectively losing weight, the new materials of light weight and super-strength have become the urgent objective in the process of developing and applying materials. TC11 titanium alloy has widely used in light weight and reliable structure, such as drum of engine, compressor dish, blade, aircraft structures and so on. As one of the developed high-energy beam machining methods among various welding process, the electron beam welding technology is an effective connectivity method for aviation aircraft component. TC11 titanium alloy joints by electron-beam welding method are the research objects in the present work. The TC11 alloy joints have been investigated in terms of microstructure, micro-hardness distribution and room-temperature pre-tension deformation behavior. Moreover, we have measured the performances of the welded joints and base metal including high and low cycle fatigues. The results provide data support for the application and dissemination of TC11 titanium alloy and electron beam welding technology in aerospace field. The following conclusions have been obtained:
     Acicular martensite microstructure formed in the region of welding joint bond improved the hardness of joints. The In-situ tensile results showed that both localization and fracture position happened at the field near the side of base metal in the process of tensile strain. The base metal part yields before fusion area. Deformation of fusion area depended on the strain-hardening degree of base metal, so increasing ability of alloy's strain-hardening were expected to improve overall performance of the joints.
     S-N andε-N curves were obtained through high cycle fatigue and low cycle fatigue of TC11 electron beam welding joints and base metal. The fatigue property of welding joints was similar to that of base metal and joints cracked in the base metal zone. The fatigue cracks initiated on the surface of specimens. Fracture were cleavage and quasi-cleavage facets.
     Three fatigue experiments of pure weld specimens, pure base metal and welding joints of gauge segment as weld fusion zone were achieved. Residual strain accumulation in the circulation process of welding joints was observed. At high stress levels and plastic deformation of joints accumulated in base metal zone. The relative strength index based on stress fatigue was: weld fusion zone>heat-affected zone>base metal zone.
     The performance of electron beam welding joint was not less than that of base metal in tensile, durable, high and low cycle fatigue properties.
引文
[1]王金友,葛志明,周彦邦.航空用钛合金.上海科学技术出版社,1985
    [2]潘兴波,吕小平,胡中铎等.钛及其合金的应用前景.黑龙江电力.2000,22(1):57~59
    [3]高敬,宁兴龙.钛应用近况.轻金属.2000,(11):48~52
    [4]陈志勇.高温钛合金Ti-60电子束焊接接头的组织特征、力学性能及变形行为:[学位论文].沈阳:中国科学院金属研究所,2008
    [5]李东.高技术时代的钛合金材料技术发展战略及对策剖析.世界有色金属,1999,(09):16~19
    [6]赵亮,Ti-60A合金中的硅化物及原始p晶粒尺寸控制研究:[学位论文].沈阳:中国科学院金属研究所,2008
    [7]《有色金属及其热处理》编写组.《有色金属及其热处理》.北京:国防工业出版社.1981
    [8]宋鸿武.TC11钛合金片层组织两相区变形机理的演技及应用:[学位论文].沈阳:中国科学院金属研究所,2009
    [9]李英东.我国钛资源的利用.金属学报,1999(35suppl.1):s9-s11
    [10]曹春晓.航空用钛合金的发展状况.航空科学技术,2005(4):3-6
    [11]J. M. Ma, C. X. Cao. In:Y. Kawabe, M.Hagiwara, Tsukuba eds. Japan,1997:85
    [12]彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析.材料工程,1997(10):3-6
    [13]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985,63
    [14]R. R. Boyer, H. W. Rosenberg. Beta titanium alloys in the 80's. Warrendale, PA:TMS-AIME,1984,19
    [15]J. C. Williams, F. H. Froes, J. C. Chesnutt, C. G. Rhodes, R. G. Berryman. Toughness and fracture behavior of titanium. ASTM STP651,1978,64-114
    [16]Ito Y, Sasak Y, Shinke T. In:Lacomke P, Tricot R, Becangec G, editors. The 6th world conf on titanium, France, Les Edition de Physique, Les Ulis Cedex,1998,405
    [17]米文权.神奇的空间材料-钛.金属世界,2004(2):23
    [18]张翥.β钛合金.钛科学与工程(第八届全国钛及钛合金学术交流会文集),上海钢铁研究所,1993,39-41
    [19]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985,65-69
    [20]I. Weiss, S. L. Semiatin. Thermomechanical processing of beta titanium alloy -an overview. Materials science and engineering A,1998, (243),46-65.
    [21]F. Froes, H. B. Bomberger:The beta titanium alloys, J. Metals,1985(7),28
    [22]T. W. Duerig, G. T. Terlind and J. C. Williams. Phase transformations and tensile properties of Ti-10V-2Fe-3Al. Metall. Trans. A.1980(11A),1987-1998
    [23]Rodney Boyer, Gerhard Welsch, E.W.Collings. Materials Properties Handbook:Titanium alloys. USA:ASM International,1994:829
    [24]Megan Lynn Harper, B. S. A study of the microstructure and phase evolutions in TIMETAL 555.[Dissertation]. The Ohio state university.2004
    [25]J. E. Costa et al:Titanium Science and Technology,1985,2480
    [26]E. Sukedal, J. Okuhara, W. F. Xu and C. Ouchi. Attempts to improve mechanical properties of β titanoium alloys due to two step aging. Titanium'99 science and technology.1999,194-200
    [27]Yasuya Ohmori, Hiroshi Natsui, Kiyomichi Nakai and Hiroyuki Ohtsubo. Effect of ωphase formation on decomposition of α"/β duplex phase structure in a metastable β Ti alloy. Materials transactions, JIM,1998(39),40-48
    [28]Christoph Leyens and Manfred Peters. Titanium and Titanium Alloys. Germany WILEY-VCH GmbH&Co.KGaA,2003,32-48
    [29]李明怡.航空用钛合金结构材料.世界有色金属,2000(6):17-20
    [30]沙爱学等.航空用高强度结构钛合金的研究及应用.稀有金属,2004,28(1):239-242
    [31]王金友,赖新锦,谢成木.高新技术新材料要览.北京:中国科学技术出版社,1993,119
    [32]彭艳萍.航空结构材料发展综述.材料工程,1993(12),1-4
    [33]彭周,胡永刚,陈国珠,夏风,武玺旺,胡树兵,王亚军,肖建中.TC4合金电子束焊接接头微观组织研究.材料工程.2010,(5):47-55
    [34]吴会强,冯吉才,何景山,张秉刚.电子束焊接Ti-6Al-4V接头断裂行为机制.焊接学报.2004,25(4):59-62
    [35]G. P. Li, D. Li, Y. Y. Liu, and Z. Q. Hu, Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy, Scripta Metall. Mat.,1995,33(4):547-551
    [36]陈志勇,王清江,刘建容,李玉兰,杨锐.Ti-60钛合金电子束焊接接头高温下的失效与变形行为.金属学报.2008,44(3):263-271
    [37]惠卫军,董瀚,翁宇庆,王毛球,陈思联,时捷.回火温度对Cr-MO-V系高强度钢力学性能的影响.金属学报,2002,38(10):1009-1014
    [38]E. J. Lavernia, J. C. Baram and N. J. Grant, Developments in gas atomization and spray deposition, Met. Powder Rep.,1987,42(10):688-695
    [39]王晓燕.Ti-1203合金中显微组织对力学性能的影响:[学位论文].沈阳:中国科学院金属研究所,2007
    [40]徐雪峰,童国权,高霖,门向南.AA5083合金525℃拉伸变形的硬化特征及力学描述.稀有金属材料与工程,2010,39:195-199
    [41]彭志辉,佘旭凡.厚度比对不锈钢复合铝板性能的影响.金属学报,2000,36(10):1067-1071
    [42]S.Suresh著.材料的疲劳.第二版.王中光等译.北京:国防工业出版社,1999
    [43]周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998:257-257
    [44]霍立兴.焊接结构工程强度.北京:机械工业出版社,1995
    [45]程光旭,楼志文.焊接接头材质和力学非均匀性体低周疲劳特性研究.应力力学学报,1992,19(2):10-13
    [46]程光旭,楼志文.16MnR钢焊接接头低周疲劳特性及其在压力容器疲劳寿命设计中 的应用.压力容器,1991:17-23
    [47]Wang Tiejun, Lou Zhiwen. A Continuum Damage Model for Weld Heat Affect Under Low Cycle Fatigue Loading。Eng Frac Mesh.1990,37(4):825-829
    [48]R. R. Boyer, D. Eylon, G. Lutjering. Fatigue behavior of titanium alloys. Warrendale, Pennsylvania, USA, TMS,1999,135-147
    [49]R R. Boyer, D. Eylon, G. Lutjering. Fatigue behavior of titanium alloys. Warrendale, Pennsylvania, USA, TMS,1999,149-159
    [50]李晓延,巩水利,陈俐.BT20钛合金薄板激光焊接接头疲劳性能研究.机械强度.2006,28(5):766-770
    [51]陈景榕,李承基,金属与合金中的固态相变,北京:冶金工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700