用户名: 密码: 验证码:
荧光对二硫化碳分子受激拉曼散射的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激拉曼散射在非线性光学、等离子体、拉曼激光器、拉曼放大器等方面有着重要的应用。尤其是石英光纤中的受激拉曼散射研究更得到了广泛的关注,其研究成果扩大了相干光辐射的物理机制,丰富了受激发射的波长。本论文中,我们将荧光种子增强微液滴中受激拉曼散射技术与液芯光纤技术联用,来达到降低受激拉曼散射阈值并且能很好收集和控制受激散射光的目的。
     本论文主要分三个部分讨论荧光种子对二硫化碳高阶受激拉曼散射阈值、斯托克斯和反斯托克斯生长线型以及一阶斯托克斯线偏振光偏振状态的影响。
     (1)我们将用含有全反式β-胡萝卜素的二硫化碳溶液作为液芯光纤芯液体,研究全反式β-胡萝卜素对二硫化碳受激拉曼散射的影响,并且进一步做了理论上的拟合和解释。得出以下结论:在不同浓度下,全反式β-胡萝卜素的放大自发辐射或荧光对二硫化碳受激拉曼散射起着主要的增强方式。由于全反式β-胡萝卜素的荧光和液芯光纤的双重增强作用,很小能量激光获得了多级高阶受激拉曼散射。该研究对更深的理解荧光增强受激拉曼散射机理,更深层次探讨光子-声子相互作用的物理机制有着重要的意义。
     (2)在受激拉曼过程中当相位匹配被满足时,会同时产生斯托克斯和反斯托克斯波,而且它们的强度相差不大,这与自发拉曼散射的情况非常不同。因此,这部分我们分别研究液芯光纤中存在荧光种子(全反式β-胡萝卜素或者罗丹明B)的二硫化碳溶液或纯二硫化碳溶液的情况下,其一阶斯托克斯和一阶反斯托克斯线型生长变化特性。在不同的荧光物质增强作用下,产生的斯托克斯和反斯托克斯线的生长起始点(泵浦能量)和强度有所不同。所以我们可以通过选取不同的荧光种子来控制斯托克斯或者反斯托克斯线的强度,为可控的受激拉曼散射光源提供新方法。
     (3)在拉曼放大器以及泵浦探测技术中对泵浦光和探测光的偏振状态有着严格的要求,即当泵浦光与探测光的偏振状态平行时受激拉曼散射增益最大。因此我们研究在荧光种子存在条件下,荧光种子性质对一阶斯托克斯偏振态的影响。我们将全反式β-胡萝卜素和荧光素分别溶于二硫化碳溶液中,将其注入空芯石英光纤内,由于液芯光纤的保偏特性,泵浦光和受激产生的斯托克斯光均可以保持其初始偏振状态不变。在光场诱导分子再转向效应下,使得在不同的荧光种子作用下一阶斯托克斯线偏振光转向不同,全反式β-胡萝卜素使得一阶斯托克斯相对于泵浦光转动了88○,而荧光素使其转动61○,同时我们给出了相应的理论推导及其计算。这为泵浦探测技术中偏振状态的选取提供了新的手段。
In this paper, the technology of the fluorescence seeding enhancement stimulated Raman scattering(SRS) in the liquid droplet and the technology of liquid-core optical fiber(LCOF) were used together in this study to lower the threshold of SRS and improve the collection of scattering light, and control of the scattering light. This paper mainly studied of the influence of fluorescence seeding to the SRS high-order Stokes threshold, profile and concentration of carbon bisurfide(CS2)solution, to the growth profile and threshold of Stokes and anti-Stokes, to the polarization state of one-order Stokes , respectively.
     (1) All-trans-β-carotene with double fluorescence characteristics and large third-order optical nonlinearities, which is dissolved in the CS2 as the core medium of a LCOF, is applied in the study of the CS2 SRS. The results of this study show that when the concentrations of solution are more than 3.72×10-7mol/L, the amplified spontaneous emission(ASE) of all-trans-β-carotene is the mainly effect to the threshold and intensity of Stokes lines; when the concentrations of solution are lower than 3.72×10-7mol/L, the ASE disappears and the fluorescence is the mainly effect: due to the double effects of the broadband fluorescence and LCOF, the high-order Stokes lines can be observed at a very low input-laser power, the seventh-order Stokes line was observed using the all-trans-β-carotene solution of 10?7 mol/L, the pump laser with repletion rate 1 Hz, and 0.86mJ pulse energy, Fig.1; the concentrations were within 10?12 and 10?7 mol/L, and the threshold of the Stokes lines decreased with the increase of the concentration of all-trans-β-carotene,Fig.2; the threshold and intensity of the Stokes lines of CS2 had a close Relationship with the fluorescence profile of all-trans-β-carotene,Fig.3.
     The results have the significance to deeply understand the theory of fluorescence enhancement SRS, to use the all-trans-β-carotene in the abiological field, and it can be widely used in the study of broadband stimulated radiation laser and the seeding laser.
     (2) Both Stokes and anti-Stokes waves are simultaneously generated with comparable intensity in the SRS process. This is very different from the case in spontaneous Raman scattering and can not be understand as a stimulated two-photon process since the anti-Stokes wave then would be absorbed instead of generated. Yet it can be explained readily by the coupled wave description. We demonstrate theoretical derivation coupled wave equations(1) of fluorescence enhancement SRS effect:
     And study on the effect of fluorescence enhancement to the first-order Stokes and the first-oder anti-Stokes intensity, when the all-trans-β-carotene or Rhodamine B(RhB) CS2 solutions are injected in the LCOFs, the all-trans-β-carotene fluorescence enhances the intensity of the first-order Stokes line, but the RhB enhances the intensity of the first-order anti-Stokes line, Fig.4;
     And the growth profiles properties of Stokes and anti-Stokes are changed owing to the fluorescence enhancement effect: the first-order anti-Stokes radiation can be built up at 1.1 and 0.7mJ of pump energy in the all-trans-β-carotene solution and RhB solution, respectively, when both the solutions’first-order Stokes thresholds are at 0.4 mJ, and the first-order Stokes intensities are similar at about 0.018 mJ (Fig.5). The intensity of the first-order Stokes is far away from the saturation intensity when the first-order anti-Stokes intensity builds up. So, we can control the intensity of Stokes or anti-Stokes by using different fluorescence seeding, also provide a controllable SRS light source for photodynamic therapy.
     (3) There is an importance of matching the polarization directions of the pump and probe waves, SRS nearly ceases to occur in the case of orthogonal polarizations. On the other hand, when the polarization directions of the pump and probe waves are maintained in the Raman amplification and the pump-probe, a large SRS gain will be obtained, as expected theoretically. So we demonstrate the influence of fluorescence property to polarization state of the first-order Stokes. In the dynamical description of SRS in a single mode silica fiber, the pump pulse and the Stokes light have the same linear polarization direction (see Fig. 6(a) without thefluorescent dye in LCOF). However, when the fluorescent dye is dissolved in the Raman medium, the linear polarization direction of the Stokes light cannot be confirmed, and an angleθbetween the pump pulse and Stokes light is assumed; a schematic diagram is shown in Fig. 6(b) with the fluorescent dye in an LCOF.
     The all-trans-β-carotene or fluorescein are dissolved in CS2 solutions, and them are injected in the LCOF, the pump purse and first-order Stokes linear polarization do not change owing to the straight polarization-maintaining LCOF. Due to the optical field-induced reorientation effect, which makes the differnet polarization direction of the first-order Stokes using the different fluorescence seeding. The first-order Stokes polarization direction rotate an angle 88○or 61○, when the fluorescence seedings are all-trans-β-carotene or fluorescein, respectively, Fig. 7, which is good agreement between the theory presented and experiment.
     The results provide a new method to the development of the pump-probe and Raman laser.
引文
[1]Kaminskii A A, Rhee H, Eichler H J, et al. Wide-band Raman Stokes and anti-Stokes comb lasing in a BaF2 single crystal under picosencond puning. Laser Phys. Lett, 2008, 5(4):304-310.
    [2]Garruthers T. F., Duling I. N., Horowitz M.,et al.,Dispersion management in a harmo -nically mode-locked fiber soliton laser, Opt .Lett , 2000,25(3):153-155.
    [3]Dirda P. T. , Millot G., Wabnicz S., Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers, J . Opt . Soc. Am. B,1998,15(5): 1433 - 1441.
    [4]郭利娜,唐志列,邢达. Raman感生克尔效应光谱非线性共焦显微镜理论的研究.中国科学G辑:物理力学天文学2008, 38(1)1-11.
    [5]Zhang J. T.,Stimulated Raman scattering instability in partially ionized laser-plasma, Chin. Phys.,2005,14(2):169 -171.
    [6]哈斯乌力吉,吕志伟,李强,巴德欣,何伟明.选用混合介质的双池受激Brillouin散射系统. 2007 Vol. 37 (2): 210-217
    [7]Stolen R. H., Ippen E. P., Tynes A. R.,Raman Oscillation in Glass Optical Waveguide, Appl. Phys. Lett. 1972,20(2):62-64.
    [8]Stolen R. H. and Ippen E. P., Raman gain in glass optical waveguides, Appl Phys. Lett. 1973,22(6):276-278.
    [9]Stolen R. H., Gordon J. P., Tomlinson W. J.,et al.,Raman response function of silica -core fibers,J. Opt. Soc. Am. B. 1989,6(6):1159-1166.
    [10]Picozzi A., Montes C.,Botineau J.,et al., Inertial model for stimulated Raman scattering inducing chaotic dynamics,J.Opt.Soc.Am.B 1998,15(4):1309-1314.
    [11]Hollenbeck D., Cantrell C.D.,Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,J.Opt.Soc.Am. B 2002,19(12):2886-2892.
    [12] Lin Q, Painter O J, Agrawal G P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Optics Express, 2007, 15, 16604.
    [13] Wang Y, Xu C Q. Actively Q-switched fiber lasers: Switching dynamics and nonlinearprocesses. Progress In QuantumElectronics, 2007, 31, 16604.
    [14] Genty G, Coen S, Dudley J M. Fiber supercontinuum sources(Invited). J.Opt.Soc.Am.B, 2007, 24, 1771.
    [15] Anzueto-Sanchez G, Martinez-Rios A, Torres-Gomez I, et al.Characterization of an intra-cavity pumped P2O5-doped silica Raman fiber laser. Opt.Rev., 2006, 13, 424.
    [16] Kurkov A S, Dianov E M. Moderate-power cw fibre lasers.Quantum. Electron., 2004, 34, 881.
    [17] Ahmed F, Kishi N. All-fiber ultra-fast switching using stimulated Raman scattering. Opt.Rev., 2003, 10, 146.
    [18] Shen Y R. Nonlinear Optics. 3rd Ed. Berlin: Springer, 2003.
    [19]钱世雄,王恭明.非线性光学—原理与进展.上海:复旦大学出版社,2001.
    [20]郑顺旋.激光光谱学.上海:上海科学技术出版社.1985.
    [21] Shen Y R and Bloembergen N. Theory of Stimulated Brillouin and Raman scattering. Phys.Rev., 1965, A137, 1787.
    [22] Wang C S. Theory of stimulated Raman scattering.Phys.Rev., 1969, 182, 482.
    [23] Herzberg G. Molecular Spectra and Molecular Structure.Prinecton, 1966.
    [24]程光煦.拉曼,布里渊散射—原理及应用.北京:科学出版社,2001.
    [25]刘颂豪等译,量子电子学.上海:上海科学技术出版社,1983.
    [26] Yariv A. Quantum Electronics. 3rd ed. New York: John Wiley&Sons,Inc, 1989.
    [27] Van Heel A C S. A New Method of transporting Optical Images without Aberrations. Nature, 1954, 173, 39.
    [28] Hopkins H H, Kapany N S. A Flexible Fibrescope, using Static Scanning. Nature, 1954, 173, 39.
    [29] Miya T, Terunuma Y, Hosaka T, Miyashita T. Ultimate lowloss single-mode fibre at 1.55μm. Electron. Lett., 1979, 15,106.
    [30] Walrafen G.E., Stone J., Intensification of spontaneous raman spectra by use of liquid core optical fibers , Appl. Spectrosc. 1972, 26(6):585-589.
    [31] Li Z.W., Li J.N., Gao S.Q., Resonance Raman spectrum ofβ-carotene in liquid-core optical fiber, Jpn.J. Appl.Phys. 1998, 37:1889-1891.
    [32]里佐威,高淑琴,孙成林,张玮,低浓度样品拉曼光谱的实验研究,分析化学,2000,29(12):1512-1515.
    [33] Altkorn R. , Koev I. and Pelletier M.J., Raman performance characteristics of Teflon? -AF 2400 liquid-core optical-fiber sample cells, Appl Spectrosc, 1999, 53(10): 1169 -1176.
    [34] Ippen E P. Low-Power Quasi-CW Raman Oscillator. Appl.Phys.Lett., 1970, 16, 303.
    [35] Ogilvie G J, Esdaile R J, Kidd G P. Transmission Loss Of Tetrachloroethylene-Filled Liquid Core-Fiber Light Guide.Electron. Lett., 1972, 8, 533.
    [36] Payne D N, Gambling W A. New low-loss liquid-core fibre waveguide. Electron. Lett., 1972, 8, 374.
    [37] Stolen R H, Ippen E P, Tynes A R. Raman Oscillation in Glass Optical Waveguide. Appl.Phys.Lett., 1972, 20, 62.
    [38] Smith R G. Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering. Appl.Opt., 1972, 11, 2489.
    [39] Stone J. cw Raman fiber amplifier. Appl.Phys.Lett., 1975, 26, 163.
    [40] Stolen R H, Ashkin A. Optical Kerr effect in glass waveguide. Appl.Phys.Lett., 1973, 22, 294.
    [41] Stolen R H, Bjorkholm J E, Ashkin A. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl.Phys.Lett., 1974, 24, 308.
    [42] Chen Y Q,Wang L, Lu X B, Chen Y Q, Qiu M X. Stimulated Raman-Scattering And 4-Wave-Mixing From A Mixture Of Carbon-Disulfide And Phenylethanol In A Hollow Optical Fiber. Opt.Lett., 1991, 16, 1469.
    [43] He G S, Prasad P N. Stimulated Rayleight-Kerr Scattering In A CS2 Liquid-Core Fiber System. Opt.Commun., 1989, 73, 161.
    [44] Qiu M X, Lu X B, Lu W P. High-Order Stimulated Raman-Scattering And Nonlinear Red-Shifted Broadening In Benzyl Alcohol Core Optical Fiber. Appl.Opt., 1991, 30, 3852.
    [45] He G S, Casstevens M, Burzynski R, Li X D. Broad-Band, MultiwavelengthStimulated-Emission Source Based On Stimulated Kerr And Raman-Scattering In A Liquid-Core Fiber System. Appl.Opt., 1995, 34, 444.
    [46] He G S, Xu G C. Efficient Amplification Of A Broad-Band Optical Signal Through Stimulated Kerr Scattering In A CS2 Liquid-Core Fiber System. IEEE J. Quantum. Electron.,1992, 28, 323.
    [1]左剑.液芯光纤中长链状共轭分子(全反式β胡萝卜素分子)对二硫化碳分子受激拉曼散射影响的实验与理论研究.长春:吉林大学博士论文,2008.
    [2] Shen Y R. Nonlinear Optics. 3rd Ed. Berlin: Springer, 2003.
    [3]顾世杰译.非线性光学原理.北京:科学出版社,1987.
    [4]郑顺旋.激光光谱学.上海:上海科学技术出版社.1985.
    [5]钱世雄,王恭明.非线性光学—原理与进展.上海:复旦大学出版社,2001.
    [6] Garmire E, Patldarese E, Townes C H. Coherently Driven Molecular Vibrations and Light Modulation. Phys.Rev.Lett,1963, 11, 160.
    [7] Bloembergen N, Shen Y R. Coupling Between Vibrations and Light Waves in Raman Laser Media. Phys.Rev.Lett, 1964,12, 504.
    [8] Shen T R, Nbloembergen N. Theory of Stimulated Brillouinand Raman Scattering. Phys.Rev., 1965, 137, A1787.
    [9] Von der Linde D, Maier M, KaiserW. Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses. Phys.Rev., 1969, 178, 11.
    [1] Kaminskii A A, Rhee H, Eichler H J, et al. Wide-band Raman Stokes and anti-Stokes comb lasing in a BaF2 single crystal under picosencond puning. Laser Phys.Lett, 2008, 5(4):304-310.
    [2] Garruthers T. F., Duling I. N., Horowitz M.,et al.,Dispersion management in a harmonically mode-locked fiber soliton laser, Opt .Lett , 2000,25(3):153-155.
    [3] Dirda P. T. , Millot G., Wabnicz S., Polarization switching and suppression of stimulatedRaman scattering in birefringent optical fibers, J . Opt . Soc. Am. B,1998,15(5): 1433- 1441.
    [4]郭利娜,唐志列,邢达. Raman感生克尔效应光谱非线性共焦显微镜理论的研究.中国科学G辑:物理力学天文学2008,38(1)1-11.
    [5] Zhang J. T.,Stimulated Raman scattering instability in partially ionized laser-plasma, Chin. Phys.,2005,14(2):169 -171.
    [6]哈斯乌力吉,吕志伟,李强,巴德欣,何伟明.选用混合介质的双池受激Brillouin散射系统. 2007 Vol. 37(2):210-217
    [7] Hassoon K., Salih H. and Tripathi V.K., Stimulated Raman forward scattering of a laser in a plasma with transverse magnetic field, Physica Scripta, 2009, 80(6):065501.
    [8] Turner F.C., Strickland D., High-order enhancement of multi-frequency Raman generation in a hollow fibre, conference on lasers & electro-optics/quantum electronics and laser science conference (CLEO/QELS 2007), 2007, 1-5:351-352.
    [9] Niu K., Cong S.L., Lee S.Y., Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to rhodamine 6G, Journal of Chemical Physics, 2009, 131(5):054311.
    [10] Kida Y., Zaitsu S.I., and Imasaka T., Stimulated rotational Raman scattering by a polarization-modulated femtosecond pulse, Physical Review A, 2008,77(6):063802.
    [11] Becker P., Bohaty L., Rhee H., et al. Observation of many-phonon stimulated Raman scattering and related cascaded nonlinear-laser effects in monoclinic LaBO2MoO4 single crystals, Laser Physics Letters, 2008, 5(2):114-121.
    [12] Rhee H., Kaminskii A.A., Eichler H.J., Stimulated Raman scattering in new organic and inorganic crystalline materials - art. no. 64550T, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VI, proceedings of the society of photo-optical instrumentation engineers (SPIE), 2007, 6455: T4550-T4550.
    [13] Couny F., Benabid F., Roberts P. J., Light P. S., Raymer M. G., Generation and photonic guidance of multi-octave optical-frequency combs, Science, 2007, 318(5853): 1118-1121.
    [14] Turner F.C., Trottier A., Strickland D., Losev L.L., Transient multi-frequencyRaman generation in SF6, Optics Communications, 2007,270(2): 419-423.
    [15] Hu D.W. , Wang Z.P., Zhang H.J., Xu X.G., Wangand J.Y., Shao Z.S., Picosecond Stimulated Raman Scattering of SrWO4 Crystal, Chinese Physics Letters, 2006, 23(10): 2766-2769.
    [16] Stolen R. H., Ippen E. P., Tynes A. R.,Raman Oscillation in Glass Optical Waveguide, Appl. Phys. Lett. 1972,20(2):62-64.
    [17] Stolen R. H. and Ippen E. P., Raman gain in glass optical waveguides, Appl Phys. Lett. 1973,22(6):276-278.
    [18] Stolen R. H., Gordon J. P., Tomlinson W. J.,et al.,Raman response function of silica-core fibers,J. Opt. Soc. Am. B. 1989,6(6):1159-1166.
    [19] Picozzi A., Montes C.,Botineau J.,et al., Inertial model for stimulated Raman scattering inducing chaotic dynamics,J.Opt.Soc.Am.B 1998,15(4):1309-1314.
    [20] Hollenbeck D., Cantrell C.D.,Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,J.Opt.Soc.Am. B 2002,19(12):2886-2892.
    [21] Wu T.W., Winful H.G., Raman fiber laser arrays, 2009 Conference On Lasers And Electro-Optics And Quantum Electronics And Laser Science Conference (CLEO/ QELS 2009), 2009, 1-5: 2587-2588.
    [22] Gambetta A., Kumar, V. Grancini G., et al, Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator, Optics Letters, 2010, 35(2): 226-228.
    [23] Silva N.A., Muga, N.J. Pinto A.N., Influence of the stimulated raman scattering on the four-wave mixing process in birefringent fibers, Journal of lightwave technology, 2009, 27(22): 4979-4988.
    [24] De la Cruz-May L., Mejia E.B., Raman fiber laser improvement by using Yb3+-doped fiber, Laser Physics, 2009, 19(5): 1017-1020.
    [25] Levit B., Bekker A., Smulakovsky V., et al, Amplified-spontaneous-emission pumped raman fiber laser, 2008 IEEE 25th convention of electrical and electronics engineers in israel, IEEE Convention of Electrical and Electronics Engineers in Israel, 2008,1-2:553-555.
    [26] Karfaa Y. M., Ismail M., Abbou F. M., et al, Stimulated Raman scattering for various fiber types and walk-off lengths, 2007 Asia-Pacific Conference On Applied Electromagnetics, Proceedings, 446-450.
    [27] Feng Y., Taylor L., Calia D.B., Multiwatts narrow linewidth fiber Raman amplifiers, Optics Express, 2008, 16(15): 10927-10932.
    [28] Cheng J.,Sun Cheng A. Y. , He Y.H.,et al., Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G, Opt. Comm. 2005,246(10):141-145.
    [29]杨睿,江楠,普小云,用染料荧光增益增强弱增益拉曼模式的受激拉曼散射的经典理论.光散射学报,2007,19(1):30-36.
    [30]普小云、杨正、江楠、陈永康、戴宏,用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.物理学报, 2003,52(10):2443-2448.
    [31]左浩毅,高洁,杨经国,混合染料荧光选择性增强受激拉曼散射斯托克斯波.光谱学与光谱分析, 2007,27(3):552-555.
    [32] Stone J.,Acoustic microscope—scanning version,Appl.Phys.Lett. 1974, 24(2):163-165.
    [33] Li Z. W., Li J. N. , Gao S. Q., Resonance Raman spectrum ofβ-carotene in liquid-core optical fiber,Jpn.J.Appl.Phys,1998,37(4A):1889-1891.
    [34] Li Z. W., Gao S. Q., Sun X., et al.,effect of optical fiber loss on resonance Raman spectra of sample with low concentration,Spectrosc. Lett. 2001,34(5): 569-578.
    [35] Tian Y.J., Zuo J., Zhang L .Y. ,et al.,Study of resonance Raman cross section of aqueousβ-carotene at low concentrations,Appl.Phys.B 2007,87(4):727-730.
    [36]左剑,里佐威,田艳杰,陈健,高淑琴,陆国会,液芯光纤中溶液吸收和荧光的性质对二硫化碳受激拉曼散射阈值的影响.物理学报,2007,56(2):889-894.
    [37] Bhattacherjee A.B. Estimation of resonant third-order hyperpolarizability of beta- carotene from Raman and absorption spectroscopy.Bulg.J.Phys. 1998,25:166-170.
    [38] Marder S. R., Torruellas W. E., Desce M. B.,et al., Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids, Science,1997,276(5316): 1233-1236.
    [39]郭光灿,放大自发辐射的若干物理问题.物理,1982,10:593-596.
    [40] Dharmadhikri J.A. , Dharmadhikri A.K. , Mishra A. et al., Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions, Appl.Phys.B 2003,76(7):755-759.
    [41]普小云,杨睿,王亚丽,陈天江,江楠,用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度.物理学报,2004,53(8):2509-2514.
    [42] Agrawal G. P.Nonlinear Fiber Optics .3 rd edition. New York: Academic, 2005.298-303
    [43] Penzkofer A., Laubereau A. , Kaiser W.,High intensity Raman interactions, Prog. Quant. Electron,1979, 6(2):55-140.
    [44]哈斯乌力吉,吕志伟,滕云鹏,刘述杰,李强,何伟明,受激布里渊散射光脉冲波形的研究.物理学报,2007,56(2):878-882.
    [1] Shen Y.R., The principles of nonlinear optics , Wiley, NewYork, 2003.
    [2] Lin H., Zha X.J., Shen B.F., et al, Fast growing mode of stimulated Raman scattering in a pure three-wave process, Physics of Plasmas, 2007, 14(12): 123103.
    [3] Poletti F., Horak P., Description of ultrashort pulse propagation in multimode optical fibers, Journal Of The Optical Society Of America B-Optical Physics, 2008, 25(10): 1645-1654.
    [4] Aghamir F.M., Goodarzi P., Mode coupling in a partially filled plasma waveguide with a dielectric liner, IEEE Transactions On Plasma Science, 2010, 38(1):10-18.
    [5] Stolen R. H., Ippen E. P., Raman gain in glass optical waveguides, Appl Phys. Lett., 1973,22(6):276-278.
    [6] Stolen R. H., Gordon J. P., Tomlinson W. J.,et al.,Raman response function of silica -core fibers,J. Opt. Soc. Am. B. 1989,6(6):1159-1166.
    [7] Picozzi A., Montes C.,Botineau J.,et al.,Inertial model for stimulated Raman scattering inducing chaotic dynamics,J.Opt.Soc.Am.B, 1998,15(4):1309-1314.
    [8] Hollenbeck D., Cantrell C.D.,Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,J.Opt.Soc.Am. B, 2002,19(12):2886-2892.
    [9] Ippen E P., Low-Power Quasi-CW Raman Oscillator, Appl.Phys.Lett.,1970,16:303.
    [10] Stone J., cw Raman fiber amplifier. Appl.Phys.Lett., 1975, 26:163.
    [11] Chen Y Q,Wang L, Lu X B, Chen Y Q, Qiu M X., Stimulated Raman-Scattering And 4-Wave-Mixing From A Mixture Of Carbon-Disulfide And Phenylethanol In A Hollow Optical Fiber, Opt.Lett., 1991, 16:1469.
    [12] Chraplyvy A.R., Bridges T.J., Infrared generation by means of multiple-order stimulated Raman scattering in CCl4- and CBrCl3-filled hollow silica fibers, Opt. Lett. 1981, 6:632-633.
    [13] Zuo J., Tian Y.J., Chen J., Wang Y.C., Gao S.Q., Lu G.H., Li Z.W., Stimulated Raman Stokes scattering influenced by all-trans-β-carotene in liquid-core optical fiber, Appl.Phys. B, 2008, 91:467-473.
    [14] Yiou S., Delaye P., Rouvie A., Chinaud J., Frey R., Roosen G., Viale P. , Fevrier S., Roy P., Auguste J.L., Blondy J.M., Stimulated Raman scattering in an ethanol core microstructured optical fiber, Opt. Expr., 2005, 13:4786-4791.
    [15] Tai S.P., Chan M.C., Tsai T.H., et al, Two-photon fluorescence microscope with a hollow-core photonic crystal fiber, Optical Fibers and Sensors for Medical Applica -tions V, Proceedings of The Society of Photo-Optical Instrumentation Engineers (SPIE),2005, 5691:146-153.
    [16] Tai S.P., Chan M.C., Tsai T.H., et al, Two-photon fluorescence microscope with a hollow-core photonic crystal fiber, Optics Express, 2004, 12(25): 6122-6128.
    [17] Kwok A. S., Chang R. K., Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering, Opt. Lett., 1992,17: 1262-1264.
    [18] Biswas A. , Armistrony R. L., Stimulated Raman-scattering threshold behavior of binary mixture micrometer-sized droplets, Opt . Lett . 1990, 15:1191-1193.
    [19] Pu X. Y. , Yang Z., Jiang N. , Chen Y. K., Dai H . Observation of stimulated Raman scattering of weak-gain Raman mode s by means of lasing gain, Acta Phys .Sin., 2003, 52:2443-2448.
    [20] Zuo H.Y., Gao J., Yang J.G., Selected enhancement of different order Stokes lines of SRS by using fluorescence of mixed dye solution, Spectro and Spectr.Analy., 2007, 27:552-555.
    [21] Verdaasdonk R.M.,Swol C.F.P.V., Laser light delivery systems for medical applications, Phys. Med. Biol., 1997,42(5):869-894.
    [22] Jelinkova H., Nemec M. , Sulc J., Cerny P., Miyagi M., Shi Y.W., Matsuura Y., Hollow waveguide delivery systems for laser technological application, Prog.Quantum.Electron. 2004, 28:145-164.
    [23] Nelius T., Riese W.T.W., Reiher F., et al, Laser therapy in the treatment of urological diseases - art. no. 607823, Photonic Therapeutics And Diagnostics II, 2006, 6078: 7823 -7823.
    [24] Reinisch L., Scatter-limited phototherapy: A model for laser treatment of skin, Lasers in Surgery and Medicine, 2002, 30(5):381-388.
    [25] Pierre S.A., Albala D.M., The future of lasers in urology, World Journal of Urology, 2007, 25(3): 275-283.
    [26] Bifone A., Song Y.Q., Seydoux R., et al, NMR of laser-polarized xenon in human blood, Proceedings of the National Academy of Sciences of The United States of America, 1996, 93(23): 12932-12936.
    [27] Li Z. W., Li J. N. , Gao S. Q., Resonance Raman spectrum ofβ-carotene in liquid-core optical fiber,Jpn.J.Appl.Phys,1998,37(4A):1889-1891.
    [28] Li Z. W., Gao S. Q., Sun X., et al.,effect of optical fiber loss on resonance Raman spectra of sample with low concentration,Spectrosc. Lett. 2001,34: 569-578.
    [29] Tian Y.J., Zuo J., Zhang L .Y. ,et al.,Study of resonance Raman cross section of aqueousβ-carotene at low concentrations, Appl.Phys.B, 2007,87:727-730.
    [30] Men Z.W., Fang W.H., Li Z.W., Stimulated Raman Scattering Influenced by Concentration, Fluorescence Profile and Bandwidth ofβ-carotene in Liquid-Core Optical Fiber, J.Raman Spectrosc., 2009, 40:1039-1042.
    [31] Bloembergen N., Shen Y.R., Coupling Between Vibrations and Light Waves in Raman Laser Media, Phys.Rev.Lett. 1964,12:504-507.
    [32] Garmire E., Pandaress F., Townes C.H., Coherently Driven Molecular Vibrations and Light Modulation, Phys.Rev.Lett., 1963, 11:160-163.
    [33] Chen Y.J., Snyder A.W., Saturation and depletion effect of Raman scattering in optical fibers J. Lightwave Technol., 1989, 7(7):1109.
    [34] Stone R.H., Lee C., Jain R.K., Development of the stimulated Raman spectrum in single-mode silica fibers, J.Opt.Soc.Am.B., 1984, 1: 652-657.
    [1] Gambling W.A., Payne D.N., Sunak H.R.D., Launching into glass-fibre optical waveguides, Opt.Commun., 1972, 4:354-357.
    [2] Gambing W.A., Payne D.N. , Matsumura H., Mode excitation in a multimode optical -fibre waveguide, Electron.Lett., 1973, 9:412-414.
    [3] Papp A., Harms H., Polarization optics of liquid-core optical fibers, Appl.Opt., 1977, 16:1315-1319.
    [4] Nakazawa M. , Tokuda M., Negishi Y., Uchida N., Active transmission line: light amplification by backward-stimulated Raman scattering in polarization-maintaining optical fiber, J.Opt.Soc.Am.B, 1984,1:80-85.
    [5] Nakamura K. , Kimura M., Yoshida S., Hidaka T., Mitsuhashi Y., Raman amplification of 1.50-μm laser diode light in a low fiber loss region, J.Lightwave Technol., 1984, LT-2(4):379-381.
    [6] Nakazawa M., Highly efficient Raman amplification in a polarization-preserving optical fiber, Appl.Phys.Lett., 1985, 46:628.
    [7] Marciante J.R., Zuegel J.D., High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification, Applied Optics, 2006, 45(26): 6798-6804.
    [8] Martinez-Rios A., Starodumov A.N., Filippov V.N., et al, Raman effect contribution to cross-phase modulation in nonpolarization-preserving fibers, Optics Communications, 2000, 185(1-3): 95-101.
    [9] Men Z.W., Fang W.H., Li Z.W., Stimulated Raman Scattering Influenced byConcentration, Fluorescence Profile and Bandwidth ofβ-carotene in Liquid-Core Optical Fiber, J.Raman Spectrosc., 2009, 40:1039-1042.
    [10] Zuo J., Tian Y.J., Chen J., et al, Stimulated Raman Stokes scattering influenced by all-trans-beta-carotene in liquid-core optical fiber, Applied Physics B-Lasers and Optics,2008, 91(3-4):467-473.
    [11] Zuo H.Y., Gao J., Yang J.G., Selected enhancement of different order Stokes lines of SRS by using fluorescence of mixed dye solution, Spectroscopy and Spectral Analysis, 2007, 27(3):552-555.
    [12] Cheng J., Cheng.A.Y.S., He Y.H., et al, Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G, Optics Communications, 2005, 246(1-3):141-145.
    [13] Taniguchi H., Tomisawa H., Suppression and enhancement of dye lasing and stimulated raman-scattering from various dye-doped liquid spheres, Optics Letters, 1994, 19(18): 1403-1405.
    [14] Liang H.M., Luo S.R,, Wang Z.H., et al, Study on fluorescence property of DCM with SDS in water solution excited by 532 nm laser, Spectroscopy and Spectral Analysis, 2007, 27(2):332-334.
    [15] Marder S. R., Torruellas W. E., Desce M. B.,et al., Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids, Science,1997,276(5316): 1233-1236.
    [16] Bhattacherjee A.B., Estimation of resonant third-order hyperpolarizability of beta- carotene from Raman and absorption spectroscopy., Bulg.J.Phys., 1998,25:166-170.
    [17] Fang W.H., Men Z.W., Sun C.L., Study of second-order nonlinear hyperpolarizability of all-trans -β-carotene in solutions by linear spectroscopic technique, Chinese Physics B, 2010, 19(6): (Accept).
    [18] Zhang G. L., Yu B. L., Chen W.J., Spectroscopic study on sodium fluorescein in ethanol solution, Acta Phys.Chim.Sin., 1992, 8:505-509.
    [19] Li Z. W., Li J. N., Gao S. Q. Resonance Raman Spectrum ofβ-carotene in Liquid-core Optical Fiber, Jpn. J . Appl . Phys., 1998, 37:1889-1891.
    [20] Li Z. W., Gao S. Q., Sun X.P., Liu X. M., Sun C. L., Zhang W., effect of optical fiberloss on resonance Raman spectra of samples with low concentration, Spectrosc. Lett., 2001, 34:569-578.
    [21] Tian Y.J., Zuo J., Zhang L .Y., Li Z. W. , Study of resonance Raman cross section of aqueousβ-carotene at low concentrations, Appl.Phys.B., 2007, 87:727-730.
    [22] Agrawal G. P., Nonlinear Fiber Optics. 3rd edition. New York : Academic, 2005. 298- 303.
    [23] Men Z.W., Fang W.H., Li Z.W., Influence of amplified spontaneous emission and fluorescence ofβ-carotene on stimulated Raman scattering of carbon disulfide, Sci.China Ser G-Phys.Mech.Astron., 2009,52:529-533.
    [24] Pu X.Y., Yang Z., Lee W.K., Enhancement of stimulated Raman scattering of weak -gain Raman modes in a pendant drop by dye-lasing gain, J.Opt.Soc.Am.B, 2004, 21:343-348.
    [25] Manassah J. T., Induced phase modulation of the stimulated Raman pulse in optical fibers, Appl.Opt., 1987, 26:3747-3749.
    [26] He G.. S., Prasad P. N., Stimulated Rayleight-Kerr scattering in a CS2 liquid-core fiber system, Opt. Commun., 1989, 73:161-164.
    [27] Z.W. Men, W.H. Fang, Z.W. Li, Stimulated Raman Scattering Influenced by Concentration, Fluorescence Profile and Bandwidth ofβ-carotene in Liquid-Core Optical Fiber, J.Raman Spectrosc., 2009, 40:1039-1042.
    [28] I. Palarie, N. Eseanu, Laser field induced azimuthal anchoring gliding in dye doped nematic liquid crystals, International journal of modern physics B,2005, 19:4185-4193.
    [29] U.A. Laudyn, M. Kwasny, M.A. Karpierz, Electric-field-induced steering in soliton direction of propagation in chiral nematic liquid crystals, Optics communications,2010, 283: 1463-1466.
    [30] J. Beeckman, K. Neyts, X.Hutsebaut, et al, One-dimensional simulation of field-induced director reorientation and lateral light propagation in liquid crystals, Optical design and engineering, 2004,5249: 577-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700