用户名: 密码: 验证码:
稀土离子掺杂的Gd_2O_2SO_4和Gd_2O_2S发光材料的合成、结构及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土发光材料已成为信息显示、照明工程、X射线增感屏、X射线断层扫描、光电二极管、生物标记和诊断、上转换激光器等领域的支柱材料。近年来,稀土发光材料的研究热点主要有探索新型的发光基质和将传统的稀土发光材料超细化。本文开发了一种新型的Gd2O2SO4:Eu3+红色发光材料,研究了固-液法、均相沉淀法和共沉淀法来合成不同粒径的Gd2O2SO4:Eu3+发光粉的工艺,并对其晶体结构、电子结构和光学性能进行了研究。发现Gd2O2SO4:Eu3+发光粉不但具有良好的热稳定性,而且主发射峰波长为618nm,是最理想的红光,在高分辨的红色发光显示领域具有很好的应用前景。另外,研究了还原法、均相沉淀法和共沉淀法来合成不同粒径的Gd2O2S:Pr3+发光粉,并对其晶体结构、电子结构和光学性能进行了研究。该粉体有望在“水窗”软X射线探测、X射线显微镜等领域得到应用。最后通过无压反应烧结法制备了Gd2O2S:Pr3+闪烁陶瓷,并对其发光性能进行了研究。
     采用Gd2O3、Eu2O3和H2SO4为实验原料,通过固-液法合成了微米Gd2O2SO4:Eu3+发光粉。针对目前Gd2O2SO4晶体结构数据不全和电子结构数据缺乏的问题,根据Gd2O2SO4的X射线粉末衍射数据计算了Gd2O2SO4的晶体结构,在此基础上计算了其电子结构。研究表明:Gd2O2SO4属于正交晶系结构,空间群为PMNB(No.62),晶胞参数为a=12.996A,b=8.117A,c=4.184A,并确定了晶胞中原子的位置和各原子间距离和角度。Gd202S04是具有间接带隙特征的绝缘体,计算的带隙值为4.9eV,比估算值8.4eV小。在270nm的紫外光激发下,(Gd0.95,Eu0.05)2O2SO4的主发射峰位于618nm,归属于Eu3+离子的5D0→7F2电偶极跃迁。
     采用Gd2O3、Eu2O3、H2SO4、尿素为实验原料,通过均相沉淀法合成了亚微米Gd2O2SO4:Eu3+发光粉。研究表明:在900℃煅烧温度下,通过控制尿素与Gd2(SO4)3的摩尔比(M)可以合成单相Gd2O2SO4,最佳的尿素与Gd2(S04)3的摩尔比M为10,此时所合成的Gd2O2SO4粉体颗粒呈球形,大小为300-500nm。在270nm的紫外光激发下,(Gd1_x,Eux)2O2SO4亚微米发光粉的主发射峰位于618nm,归属于Eu3+离子的5D0→7F2电偶极跃迁,其猝灭浓度为5mol%,猝灭机理是电偶极与电偶极之间的相互作用,Eu3+离子5D0→7F2跃迁呈现e的单指数衰减行为。
     采用Gd2O3、Eu2O3、H2SO4和NaOH为实验原料,通过共沉淀法合成了纳米Gd2O2SO4:Eu3+发光粉。研究表明:NaOH和Gd2(SO4)3的摩尔比m对前驱体的成分影响很大。当m<4时,所合成的前驱体成分为非晶的Gd2(OH)4SO4·nH2O,但产率较低;当m>4时,所合成的前驱体成分偏离Gd2(OH)4SO4·nH2O,其高温煅烧产物中含有Gd2O3相;最佳的m值为4。此时合成的前驱体在空气气氛下900℃煅烧2小时后可转化为高产率的单相Gd2O2SO4,所合成粉体颗粒呈准球形,大小为30-50nm,分散性良好。在270nm紫外光激发下,(Gd1-x,EUx)2O2SO4纳米发光粉的主发射峰位于618nm,归属于Eu3+离子的5Do→7F2电偶极跃迁,其猝灭浓度为10mol%,猝灭机理是Eu3+-Eu3+之间的交换相互作用,Eu3+离子5Do→7F2跃迁也呈现e的单指数衰减行为。但其发光强度和发光寿命均小于(Gd1-x,Eux)2O2SO4亚微米发光粉的发光强度和发光寿命。
     采用固-液法合成的Gd2O2SO4:Pr微粉为实验原料,通过还原法合成了微米(Gd1-x,Prx)2O2S发光粉。研究了Gd2O2S的电子结构和光学性能。研究表明Gd2O2S是具有间接带隙特征的半导体,计算带隙值为2.57eV,比实测光学带隙值4.37eV小。在303nm的紫外光激发下,(Gd1-x,Prx)2O2S的主发射峰位于515nm,归属于Pr3+离子的3p0→3H4跃迁,其猝灭浓度为1mol%。
     采用上述均相沉淀法和共沉淀法合成的Pr3+离子掺杂的前驱体为实验原料,分别合成亚微米和纳米Gd2O2S:Pr3+发光粉。研究表明:在流动氢气气氛下,两种方法合成的前驱体在700℃以上均能被还原成单相的Gd2O2S。前者合成的粉体颗粒呈球形,大小为300-500nm,后者合成的粉体颗粒呈准球形,大小为20-40nm。在303nm和300nm的紫外光激发下,(Gd0.99,Pr0.01)2O2S亚微米和纳米发光粉的主发射峰分别位于515nm和512nm,两者均归属于Pr3+离子的3P0→3H4跃迁,且该跃迁呈现e单指数衰减行为。随着煅烧温度的升高,两者的发光强度和发光寿命均增加,但前者的发光强度和发光寿命均大于后者。
     采用固-液法合成的Gd2O2SO4:Pr微粉为实验原料,通过在氢气气氛下1750℃无压反应烧结法制备出相对密度大于99%的Gd2O2S:Pr3+闪烁陶瓷,并具有一定的发光性能。
     综上,本工作所合成的Gd2O2SO4:Eu3+和Gd2O2S:Pr3+发光材料具有良好的发光性能,并且合成工艺简单,易于控制,成本低廉,具有很好的实际应用前景。
Rare earth luminescent materials have become the main materials in many different technological areas, including information display, illumination engineering, X-ray intensifying screen, X-ray computed tomography(X-CT), light emitting diodes, biological labeling and diagnostics, and upconversion lasers. Nearly, the hotspots in the research fields of rare earth luminescent materials mainly include exploration of new luminescent material systems and synthesis of highly dispersed ultrafine phosphors. In the present work, a new Gd2O2SO4:Eu3+ red luminescent material was developed. Gd2O2SO4:Eu3+ phosphors with various sizes were synthesized using a solid-liquid method, a homogenous precipitation method, and a co-precipitation method, and their crystal structure, electronic structure and optical properties were studied. It was found that the Gd2O2SO4:Eu3+ phosphors not only have good thermal stability, but also ideal red light emission performance with peak emission at 618nm, making them suitable candidates in the field of high resolution red light emission. Moreover, Gd2O2S:Pr3+ phosphors with various sizes were synthesized using a reduction method, a homogenous precipitation method, and a co-precipitation method, and their crystal structure, electronic structure and optical properties were studied. The Gd2O2S:Pr3+ phosphors are prospective in the fields of soft X-ray detection for "water window", X-ray microscopy and upconversion luminescence. Finally, Gd2O2S:Pr3+ scintillation ceramic was fabricated by pressureless reaction sintering method, and their luminescent properties were studied.
     Gd2O2SO4 phosphors in micrometer scale were synthesized by a solid-liquid method from the commercially available Gd2O3, Eu2O3,and H2SO4 starting materials. Since there are no complete data on crystal structure and electronic structure of the Gd2O2SO4 system, crystal structure of Gd2O2SO4 was calculated from the X-ray diffraction data, and electronic structure was calculated on this basis. The results show that the crystal structure of Gd2O2SO4 belongs to orthorhombic system with a space group PMNB (No.62):a=12.996A, b=8.117A, c=4.184A. The atom positions, distances and angles between different atoms of Gd2O2SO4 crystal cell were also determined. The Gd2O2SO4 is an indirect-gap insulator with the indirect band gap energy of 4.9eV, which is lower than estimated value 8.4eV. The emission spectrum of (Gd0.95,Eu0.0)2O2SO4 under 270nm UV light excitation demonstrates the strongest emission peak located at 618nm, attributing to the electric dipole 5D0→7F2 transition of Eu3+ions.
     Gd2O2SO4:Eu3+submircrometer phosphors were synthesized by a homogeneous method from the commercially available Gd2O3, Eu2O3, H2SO4 and urea starting materials. The results reveal that single phase Gd2O2SO4 phosphors can be synthesized at 900℃by controlling the molar ratio (M) of precipitant to Gd2(SO4)3. The optimal M value is found to be 10, and the produced particles are spherical in shape with a particle size of 300-500nm. Under 270nm UV light excitation, the strongest emission peak of the (Gd1-x,Eux)2O2SO4 submircrometer phosphor is located at 618nm, attributing to the electric dipole 5D0→7F2 transition of Eu3+ions. The quenching concentration of Eu3+ ions for the phosphor is 5mol%, and the concentration quenching mechanism is the electric dipole-dipole interactions. The decay study reveals that the 5D0→7F2 transition of Eu3+ ions has a single exponential decay behavior.
     Gd2O2SO4:Eu3+ nano-sized phosphors were synthesized by a co-precipitation method from the commercially available Gd2O3, Eu2O3; H2SO4, and NaOH starting materials. The results reveal that molar ratio (m) of NaOH to Gd2(SO4)3 has great effect on the composition of precursor. If m<4, the precursor is amorphous Gd2(OH)4SO4·nH2O, but the productivity is low. If m>4, the composition of precursor is away from Gd2(OH)4SO4·nH2O, with the existence of Gd2O3 after the later calcination. The optimum m is found to be 4, and pure phase can be obtained by calcining the precursor in air at 900℃for 2 hours. The particles are nearly spherical and well dispersed, with a particle size of 30-50nm. Under 270nm UV light excitation, the strongest emission peak of the (Gd1-x,Eux)2O2SO4 nano-sized phosphor is located at 618nm, attributing to the electric dipole 5D0→7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10mol%, the concentration quenching mechanism is the exchange interaction among the Eu3+ions. The decay study reveals that the 5D0→7F2 transition of Eu3+ ions has also a single exponential decay behavior. However, its luminescent intensity and lifetime of the 5D0→7F2 transition is smaller than those of the submicrometer phosphors.
     (Gd1-x,Prx)2O2S micrometer phosphors were synthesized by reduction method from the Gd2O2SO4:Pr micrometer phosphors synthesized by solid-liquid method. Its crystal structure, electronic structure and optical properties were studied. The results show that Gd2O2S is an indirect-gap semiconductor with the indirect band gap energy of 2.57eV, which is lower than the experimental value 4.37eV. The emission spectrum of (Gd1-x,Prx)2O2S under 303nm UV light excitation demonstrates the strongest emission peak located at 515nm, attributing to the 3P0→3H4 transition of Pr3+ions. The quenching concentration of Pr3+ ions for (Gd1-x,Prx)2O2S micrometer phosphors is 1mol%.
     The Gd2O2S:Pr3+ submircrometer phosphors and the Gd2O2S:Pr3+ nano-sized phosphors were produced from the precursors synthesized by a homogeneous and a co-precipitation method, respectively. The results show single phase Gd2O2S can be synthesized by calcining the precursors at temperature higher than 700℃for 1 hour in flowing hydrogen. The former particles are spherical and 300-500nm in size, and the latter particles are 20-40nm in size, with a near spherical shape. Under 303nm and 300nm UV light excitation, the strongest emission peaks of the (Gd1-x,Prx)2O2S submircrometer and nanometer phosphors are located at 515nm and 512nm, respectively, attributing to the 3P0→3H4 transition of Pr3+ ions. The 3P0→3H4 transition of Pr3+ ions has a single exponential decay behavior. The luminescent intensity and lifetime of 3P0→3H4 transition increase with increasing calcination temperature for Gd2O2S:Pr3+ submircrometer and nano-sized phosphors and the former has higher luminescent intensity and longer lifetime compared with the latter.
     Gd2O2S:Pr3+ scintillation ceramic was fabricated by sintering at 1750℃in a hydrogen atmosphere from the Gd2O2SO4:Pr powder synthesized by solid-liquid method. The fabricated scintillation ceramic has a relative density higher than 99%, with certain luminescent properties.
     In summary, the synthesized Gd2O2SO4:Eu3+ and Gd2O2S:Pr3+ luminescent materials have high luminescent performance and the preparation conditions are simple, easy to control and low cost, with good potential of practical applications.
引文
1.徐叙熔,苏勉曾.发光学与发光材料[M],北京:化学工业出版社,2004,2-8.
    2.孙家跃,杜海燕,胡文祥.固体发光材料[M],北京:化学工业出版社,2003,1.
    3.许碧琼,吴玉通.绿色长余辉磷光材料的研究[J],华侨大学学报(自然科学版),1995,17(3):300-333.
    4.余宪恩.实用发光材料(第二版)[M],北京:中国轻工业出版社,2008,1.
    5. Wu X, Hommerich U, Mackenzie J D. Photoluminescence study of Er-doped AlN [J], J. Lumin.,1997,72-74:284-286.
    6.周媛媛.铌酸盐纳米发光材料的制备与表征[D],济南:山东大学,2008.
    7.汪玉芳,刘玲霞,胡宏祥.稀土发光材料的合成与发展[J],浙江化工,2005,36(9):28-29.
    8.郑子樵,李红英.稀土功能材料[M],北京:化学工业出版社,2003,166.
    9.杨华明,欧阳静,史蓉蓉,等.稀土激活发光材料的研究进展[J],材料导报,2005,19(6): 1-3.
    10.邱关明,耿秀娟,陈永杰,等.纳米稀土发光材料的光学特性及软化学制备[J],中国稀土学报,2003,21(2):109-113.
    11. Lee K G, Yu B Y, Pyun C H, et al. Vacuum ultraviolet excitation and photoluminescence characteristics of (Y,Gd)Al3(BO3)4/Eu3+[J], Solid State Commun.,2002,122(9):485-488.
    12.金弼,罗烯.CaS:Ce3+荧光粉中的电荷迁移态光谱[J],中国稀土学报,1991,9(1):37-39.
    13. Taxak V B, Khatkar S P, Han S D, et al. Tartaric acid-assisted sol-gel synthesis of Y2O3:Eu3+ nanoparticles [J], J. Alloy. Compd.,2009,469(1-2):224-228.
    14.陈积阳,施鹰,冯涛,施剑林.闪烁陶瓷及其在医学X-CT上的应用[J],硅酸盐学报,2004,32(7):868-872.
    15. Guo C F, Luan L, Chen C H, et al. Preparation of Y2O2S:Eu3+ phosphors by a novel decomposition method [J], Mater. Lett.,2008,62(4-5):600-602.
    16. Yoshida M, Nakagawa M, Fujii H, et al. Application of Gd2O2S ceramic scintillator for X-ray solid-state CT detector [J], Jpn. J. Appl. Phys.,1988,27(8):L1572-L1575.
    17.孟宪国,王永生,孙力,等. (Eu2+,Nd3+):CaAl2O4的长余辉发光及机理的研究[J],光学学报,2003,23(3):356-306.
    18. Moune O K, Faucher M D, Edelstein N. Optical spectrum, crystal field analysis of Pr3+ in YPO4 [J], J. Alloy. Compd.,2001,323-324(12):783-787.
    19. Nedelec J M, Mansuy C, Mahiou R. Sol-gel derived YPO4 and LuPO4 phosphors, a spectroscopic study [J], J. Mol. Struct.,2003,651-653(1):165-170.
    20. Zhang H P, Lv M K, Xiu Z L, et al. Influence of processing conditions on luminescence of YVO4:Eu3+nanoparticles [J], Mat. Sci. Eng. B,2006,130(1-3):151-157.
    21. Zhang H P, Lv M K, Xiu Z L, et al. Synthesis and photoluminescence of Pb5(VO4)3OH nanocrystals [J], J. Alloy. Compd.,2005,396(1-2):243-246.
    22. Zhang H P, Lv M K, Yang Z S, et al. Effect of processing parameters on the luminescence intensity of Sr3(VO4)2:Eu3+ nanocrystals via combustion synthesis [J], J. Alloy. Compd., 2006,426(1-2):384-389.
    23.苏勉曾,程红.(Ⅲ)激活铌酸钇的发光[J],功能材料,1993,24(2):116-118.
    24. Diallo P T, Boutinaud P, Mahiou R, et al. Red luminescence in Pr3+-dopped calciumtitanates [J], Phys. Status. Solid,1997,160(1):255-259.
    25.周威,杜海燕,高斌,等.非放射性长余辉红色磷光粉的研究现状[J],北京工商大学学报(自然科学学报),2001,19(3):5-8.
    26. Lu Z G, Wang J W, Tang Y G, et al. Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals [J], J. Solid State Chem.,2004,177(9):3075-3079.
    27. Hosono E, Fujihara S. Fabrication and photoluminescence of chemically stable La2O3:Eu-La2Sn2O7 core-shell-structured nanoparticles [J], Chem. Commun.,2004,18: 2062-2063.
    28.张吉林,洪广言.稀十纳米发光材料研究进展[J],发光学报,2005,26(3):285-293.
    29. Tsai M S, Liu G M, Chung S L. Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method [J], Mater. Res. Bull., 2008,43(5):1218-1222.
    30. Zhang K, Liu H Z, Wu Y T, et al. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant [J], J. Alloy. Compd.,2008,453(1-2):265-270.
    31. Chi en W C, Yu Y Y Preparation of Y2O3:Ce3+ phosphors by homogeneous precipitation inside bicontinuous cubic phase [J]. Mater. Lett.,2008,62(26):4217-4219.
    32. Yang J, Wu Y, Xie Y, et al. Synthesis and characterization of nanocrystalline lanthanide oxysulfide via a La(OH)3 gel solvothermal route [J], J. Am. Ceramic. Soc.,2000,83(10): 2628-2630.
    33. Yu S H, Han Z H, Yang J, et al. Synthesis and formation mechanism of La2O2S via a novel solvothermal Pressure-Relief Process [J], Chem. Mater.,1999,11 (2):192-194.
    34.邝金勇,刘应亮,张静娴,等.溶剂热合成纳米球状La202S:Eu3+荧光粉[J],高等学校化学学报,2005,26(5):822-824.
    35. Yan X H, Zheng S S, Yu R M, et al. Preparation of YAG:Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties [J], T. Nonfer. Metal. Soc., 2008,18(3):648-653.
    36. Li X, Yang Z P, Guan L, et al. Fabrication and luminescence properties of red emitting phosphor Y2O2S:Sm3+ for white LED by combustion method [J], J. Alloy. Compd.,2008, 464(1-2):565-568.
    37.胡国荣,曹雁冰,邓新荣,等.喷雾热解法制备PDP用(Y,Gd)BO3:Eu球形荧光粉[J],化工新型材料,2008,36(1):80-84.
    38. Uematsu K, Ochiai A, Toda K, et al. Characterization of YVO4:Eu3+ phosphors synthesized by microwave heating method [J], J. Alloy. Compd.,2006,408-412:860-863.
    39. Hirai T, Orikoshi T. Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using an emulsion liquid membrane system [J], J. Colloid Interf. Sci.,2004,273(2):470-477.
    40. Hirai T, Hirano T, Komasawa I. Preparation of Gd2O3:Eu3+ and Gd2O2S:Eu3+ phosphor fine particles using an emulsion liquid membrane system [J], J. Colloid Interf. Sci.,2002, 253(1):62-69.
    41. Hirai T, Orikoshi T, Komasawa I. Preparation of Y2O3:Yb,Er Infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system [J], Chem. Mater.,2002,14(8):3576-3583.
    42. Park S B, Kang Y C, Lenggoro I W, et al. Preparation of Y2O3:Eu phosphor without post-treatment by gas phase reaction [J], J. Aerosol Sci.,1998,29(2):S909-S910.
    43. Machida M, KawanoT, Eto M, et al. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems [J], Chem. Mater.2007, 19(4):954-960.
    44. Srivastava A M, Setlur A A, Comanzo H A, et al. Optical spectroscopy and thermal quenching of the Ce3+ luminescence in yttrium oxysulfate, Y2O2[SO4] [J], Opt. Mater., 2008,30(10):1499-1503.
    45. Paul W. Magnetism and magnetic phase diagram of Gd2O2SO4 I. experiments [J], J. Magn. Magn. Mater.,1990,87:23-28.
    46. Machida M, Kawamura K, Ito K, et al. Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems [J], Chem. Mater.,2005,17(6):1487-1492.
    47. Ikeue K, Kawano T, Eto M, et al. X-ray structural study on the different redox behavior of La and Pr oxysulfates/oxysulfides [J], J. Alloy. Compd.,2008,451(1-2):338-340.
    48. Shoji M, Sakurai K. A versatile scheme for preparing single-phase yttrium oxysulfate phosphor [J], J. Alloy. Compd.,2006,426(1-2):244-246.
    49. Kijima T, Shinbori T, Sekita M, et al. Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecylsulfate-templated concentric-layered nanostructure [J], J. Lumin.,2008,128(3):311-316.
    50. Ikeue K, Eto M, Zhang D J, et al. Large-capacity oxygen storage of Pd-loaded Pr2O2SO4 applied to anaerobic catalytic CO oxidation [J], J. Catal.,2007,248(1):46-52.
    51. Raukas M, Mishra K C, Peters C, et al. Electronic structure and associated properties of Gd2O2S:Tb3+[J], J. Lumin.,2000,87-89,980-982.
    52. Pires A M, Davolos M R, Stucchi E B. Eu as a spectroscopic probe in phosphors based on spherical fine particle gadolinium compounds [J], Int. J. Inorg. Mater.,2001,3(7): 785-790.
    53. Thirumalai J, Chandramohan R, Divakar R, et al. Eu3+ doped gadolinium oxysulfide (Gd2O2S) nanostructures—synthesis and optical and electronic properties [J], Nanotechnology,2008,19(39):395703.
    54.黄秋平,洪樟连,张朋越,等.稀土硫氧化物发光材料的制备技术[J],材料导报,2006,20(3):9-11.
    55. Ito Y, Yamada H, Yoshida M, et al. Hot isostatic pressed Gd2O2S:Pr,Ce,F translucent scintillator ceramics for X-ray computed tomography detectors [J], Jpn. J. Appl. Phys., 1988,27(8):L1371-L1373.
    56. Yamada H, Suzuki A, Uchida Y, et al. A scintillator Gd2O2S:Pr,Ce,F for X-ray computed tomography [J], J. Electrochem. Soc.,1989,136(9):2713-2716.
    57. Nakamura R, Yamada N. Effect of Ce on radiation damage of GOS ceramic scintillator [J], J. Ceram. Soc. Jpn.,1997,105(10):847-850.
    58. Nakamura R. Improvement in the X-ray characteristics of Gd2O2S:Pr ceramic scintillators [J], Am. Ceram. Soc.,1999,82(9):2407-2410.
    59. Nakamura R, Yamada N, Ishii M. Effects of halogen ions on the X-ray characteristics of Gd2O2S:Pr ceramic scintillators [J], Jpn. J. Appl. Phys.,1999,38(12A):6923-6925.
    60. Lo C L, Duh J G, Chiou B S, et al. Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method [J], Mater. Chem. Phys.,2001,71(2):179-189.
    61.黄存新,刘翠,余明清,等.固相合成Gd202S:Pr陶瓷闪烁体粉末[J],人工晶体学报,2005,34(1):79-83.
    62. Grabmaier Christa. Phosphor having reduced afterglow [P], US Patent,1996,5562860.
    63. Leppert J. Method for producting a scintillator ceramic [P], US Patent,1994,5296163.
    64. Leppert J. Method for producing rare earth oxysulfide powder [P], US Patent,2001, 6296824.
    65.田莹,曹望和,罗昔贤,等.乳状液膜法制备硫氧化物超细X射线发光粉[J],中国稀土学报,2005,23(2):271-276.
    66. Kang S S, Park J K, Choi J Y, et al. Electrical characteristics of hybrid detector based Gd2O2S:Tb-Selenium for digital radiation imaging [J], Nucl. Instrum. Meth. A,2005, 546(1-2):242-246.
    67.夏天,曹望和,罗昔贤,等.燃烧法合成Ln2O2S:RE3+ (Ln=Gd,La; RE=Eu,Tb) X射线荧光粉及发光性能[J],发光学报,2005,26(2):194-197.
    68. Bang J, Abboudi M, Abrams B, et al. Combustion synthesis of Eu-, Tb- and Tm-doped Ln2O2S (Ln=Y, La, Gd) phosphors [J], J. Lumin.,2004,106(3-4):177-185.
    69.宋春燕,刘应亮,张静娴,等.微波法合成橙红色长余辉磷光粉Gd202S:Sm3+[J],2003,24(5):93-96.
    70. Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J], J. Phy-Condens. Mat.,2002,14(11):2717-2744.
    71. Hohenberg P, Kohn W. Inhomogeneous Electron gas [J], Phys. Rev. B,1964,136(3): 864-871.
    72. Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45(7):566-569.
    73. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J], Phys. Rev. Lett.,1996,77(18):3865-3868.
    74. Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J], Phys. Rev. B.,1999,59(11):7413-7421.
    75. Perdew P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J], Phys. Rev. B.,1992,46(11):6671-6687.
    76. Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotentials [J], Phys. Rev. Lett.,1979,43(12):1494-1497.
    77. Vanderbilt D. Soft self-consistent pseudopotentials in a generalied eigenvalue formalism [J], Phys. B.,1990,43(11):7892-7895.
    78. Kresse G, Furthmuller J. Efficient iterative schemes for abinitio total-energy calculations using a plane-wave basis set [J], Phys. Rev. B.,1996,54(16):11169-11186.
    79. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J], Phys. Rev. B, 1996,13:5188-5192.
    80. Kratz W, Kahle H G, Paul W. An ac method for measuring the specific heat of small probes and an application in the study on Gd2O2SO4 [J], J. Magn. Magn. Mater.,1996,161: 249-254.
    81.施颖,梁敬魁,刘泉林,等.X射线粉末衍射法测定未知晶体结构[J],中国科学(A 辑),1998,28(2):171-176.
    82.胡恩萍,承强,郭灵虹,等.基于粉末X射线衍射的7-ADCA晶体结构解析[J],科学通报,2006,51(15):1847-1850.
    83. Fang M, Cheng W D, Zhang H, et al. A sodium gadolinium phosphate with two different types of tunnel structure: Synthesis, crystal structure, and optical properties of Na3GdP2O8 [J], J. Solid State Chem.,2008,181(9):2165-2170.
    84. Zhu J, Cheng W D, Wu D S, et al. Crystal and band structures, and optical characterizations of sodium rare earth phosphates NaLnP2O7 and NaLn(PO3)4 (Ln=Ce, Eu) [J], J. Alloy. Compd.,2008,454(1-2):419-426.
    85. Zhao D, Cheng W D, Zhang H, et al. Syntheses, crystal structures, energy bands, and optical characterizations of Na5Ln(MoO4)4 (Ln=Gd, Er) [J], J. Mol. Struct.,2009, 919(1-3):178-184.
    86. Yuan Y P, Zheng J, Zhang X L, et al. BaCeO3 as a novel photocatalyst with 4f electronic configuration for water splitting [J], Solid State Ionics,2008,178(33-34):1711-1713.
    87. Horchani-Naifer K, Ferid M. Crystal structure, energy band and optical characterizations of praseodymium monophosphate PrPO4 [J], Inorg. Chim. Acta.,2009,362(6): 1793-1796.
    88.马礼敦.近代X射线多晶体衍射-实验技术与数据分析[M],北京:化学工业出版社,2004:319-474.
    89.罗爱庭.中药穿琥宁的晶体结构研究[D],成都:四川大学,2006.
    90. Neumann M A. X-Cell:a novel indexing algorithm for routine tasks and difficult cases [J], J. Appl. Crystallogr.,2003,36:356-365.
    91. Werner P E, Eriksson L, Westdahl M. TREOR, a semi-exhaustive trial-acrd-error powder program for all symmetries [J], J. Appl. Crys.,1985,18:367-370.
    92.马礼敦.高等结构分析[M],上海:复旦大学出版社,2002:394-395.
    93. Dorenbos P. The Eu3+ charge transfer energy and the relation with the band gap of compounds [J], J. Lumin.,2005,111(1-2):89-104.
    94.张富春,张志勇,张威虎,等.In2O3电子结构与光学性质的第一性原理计算[J],2008,66(16):1863-1868.
    95.姬同坤. (Sr,Ca)2 MgSi2O7:Eu2+,Dy3+长余辉发光材料的制备、结构与性能[D],武汉:武汉理工大学,2008.
    96.刘桂霞.稀土纳/微米颗粒的包覆技术与性能研究[D],天津:天津大学,2003.
    97.田莹.纳米氧化物和硫氧化物的合成表征及发光性质的研究[D],大连:大连海事大学,2006.
    98.贾志谦,刘忠洲.液相沉淀法制备纳米粒子的过程特征和原理[J],化学工程,2002, 30(1):38-41.
    99.陈积阳,施鹰,施剑林.复合沉淀法制备(Y,Gd)2O3:Eu纳米粉体及其发光性能[J].,无机材料学报,2004,19(6):1260-1266.
    100. Jayasree R S, Mahadevan Pillai V P, Nayar V U, et al. Raman and infrared spectral analysis of corrosion products on zinc NaZn4Cl(OH)6SO4·6H2O and Zn12(OH)4SO4·5H2O [J], Mater. Chem. Phy.,2006,99(2-3):474-478.
    101. Liu G X, Hong G Y, Wang J X, et al. Hydrothermal synthesis of spherical and hollow Gd2O3:Eu3+ phosphors [J], J. Alloy. Compd.,2007,432(1-2):200-204.
    102. Umebayashi T, Yamaki T, Sumita T, et al. UV-ray photoelectron and abinitio band calculation studies on electronic structures of Cr-or Nb-ion implanted titanium dioxide [J], Nucl. Instrum. Meth. B,2003,206,264-267.
    103. Matsuo S, Sakaguchi N, Yamada K, et al. Role in photocatalysis and coordination structure of metal ions adsorbed on titanium dioxide particles:A comparison between lanthanide and iron ions [J], Appl. Surf. Sci.,2004,228(1-4):233-244.
    104. Liang H B, Tao Y, Xu J H, et al. Photoluminescence of Ce3+, Pr3+ and Tb3+ activated Sr3Ln(PO4)3 under VUV-UV excitation [J], J.Solid State Chem.,2004,177(3):901-908.
    105.苏锵.稀土化学[M].郑州:河南科学技术出版社,1993,13-18.
    106.苏锵,梁宏斌,陶冶,等.稀土离子的高能光谱[J],中国稀土学报,2001,19(6):481-486.
    107. Dai Q L, Song H W, Wang M Y, et al. Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals [J], J. Phys. Chem. C.,2008,112(49): 19399-19404.
    108. Luo X X, Cao W H. Ethanol-assistant solution combustion method to prepare La2O2S:Yb,Pr nanometer phosphor [J], J. Alloy. Compd.,2008,460(1-2):529-534.
    109. Li J, Pan Y B, Qiu F Q et al. Synthesis of nanosized Nd:YAG powders via gel combustion [J], Ceram. Int.,2007,33(6):1047-1052.
    110.孙日圣,陈达,魏坤, 等.纳米晶Y2O3:Eu3+的合成及其光谱性质研究[J],光谱学与光谱分析,2001,21(3):339-342.
    111. Hirai T, Orikoshi T. Preparation of Gd2O3:Yb,Er and Gd2O2S:Yb,Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system [J], 2004,269(1):103-108.
    112. Orlovskii Y V, Basiev T T, Pukhov K K, et al. Oxysulfide optical ceramics doped by Nd3+ for one micron lasing [J], J. Lumin.,2007,125(1-2):201-215.
    113. Itoh M, Inabe Y. Optical properties and electronic structure of yttrium oxysulfide [J], Phys. Rev. B,2003,68(3):035107.
    114. Mikami M, Nakamura S. Electronic structure of rare-earth sesquioxides and oxysulfides [J], J. Alloy. Compd.,2006,408-412:687-692.
    115. Vali R. Electronic, dynamical, and dielectric properties of lanthanum oxysulfide [J], Comp.Mater. Sci.,2006,37(3):300-305.
    116.肖奇,邱冠周,覃文庆, 等. FeS2(pyrite)电子结构与光学性质的密度泛函计算[J],光学学报,2002,22(12):1501-1506.
    117.褚君浩.窄禁带半导体物理学[M],北京:科学出版社,2005:165-166.
    118.连景宝,李星,肖冰,等.La2O2S电子结构及光学性质的第一原理研究[J],材料导报,2008,22(8):116-119.
    119. Daniel J H, Sawant A, Teepe M, et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers [J], Sensor. Actuat. A:Phys., 2007,140(2):185-193.
    120. Brik M G, Majchrowski A, Kityk I V, et al. Spectroscopy of Ca4GdO(BO3)3 (GdCOB):Pr3+ single crystals [J], J. Alloy. Compd.,2008,465(1-2):24-34.
    121. Rossner W, Ostertag M, Jermann F. Properties and applications of Gadolinium oxysulfide ceramics scintillators [J], Electrochem. Soc. Proc.,1998,98(24):187-194.
    122. Gorokhova E I, Demidenko V A, Eron'ko S B, et al. Spectrokinetic characteristics of Gd2O2S:Pr,Ce ceramics [J], J. Opt. Technol.,2006,73(2):130-137.
    123.刘庆峰,万克树,刘茜,等.溶胶-凝胶法制备的Gd2O3:Pr粉体及其发光特性[J],2002,2002年材料科学与工程新进展(下)—2002年中国材料研讨会论文集,1458-1461.
    124. Greskovich C, Duclos S. Ceramic Scintillators [J], Annu. Rev. Mater. Sci.,1997,27: 69-88.
    125. Fern G, Ireland T, Silver J, et al. Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection [J], Nucl. Instrument Meth. A,2009,600(2):434-439.
    126. Xu H, Gao L, Gu H, et al. Synthesis of solid, spherical CeO2 particles by the spray hydrolysis reaction method [J]. J. Am. Ceram. Soc.,2002,85(1):139-144.
    127. Yang R, Qin J, Li M, et al. Synthesis of yttrium aluminum garnet (YAG) powder by homogeneous precipitation combined with supercritical carbon dioxide or ethanol fluid drying [J], J. Eur. Ceram. Soc.,2008,28(15):2903-2914.
    128.Anan'eva G V, Gordchova E I, Demidenko V A, et al. Optical properties of Gd2O2S-based ceramic [J], J. Opt. Technol.,2005,72(1):58-61.
    129.齐国超,钟健廉,刘春明.含氟镁生物陶瓷材料涂层的X射线光电子谱分析[J],材料与冶金学报,2008,7(2):130-134.
    130. Song H Z, Wang H B, Zha S W, et al. Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate [J], Solid State Ionics,2003,156(3-4): 249-254.
    131. Fu Z L, Zhou S H, Pan T Q. Preparation and luminescent properties of cubic Eu3+:Y2O3 nanocrystals and comparison to bulk Eu3+:Y2O3 [J], J. Lumin.,2007,124 (2):213-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700