用户名: 密码: 验证码:
镥基化合物纳米粉体、透明陶瓷的制备及光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闪烁陶瓷是一种广泛应用在医疗诊断用辐射探测器、工业无损探伤、核医学、高能物理等领域的新型功能陶瓷材料。作为闪烁材料,必须具备:高的有效原子序数、高的光输出、快的衰减速度和优异的透光性。而镥基化合物以其优异的闪烁性能得到广泛关注。目前运用固相反应法制备的Lu3Al5O12:Ce(LuAG:Ce)透明闪烁陶瓷已成功应用于医学PET、SPECT等,湿化学法制备的Lu2O3:Eu透明陶瓷也即将用于数字X射线成像系统。但由于Lu2O3材料昂贵的价格和复杂的制备工艺限制了氧化镥基化合物的广泛应用。为了降低生产成本,本文采用纳米技术制备Lu2O3, (Lu,Gd)2O3, LuAG纳米粉体及透明陶瓷并系统地研究了制备工艺参数和其光学性能。
     以Lu(NO3)3和碳酸氢铵为反应物,采用沉淀法制备Lu2O3纳米粉体,以烧结性能为考核目标,对沉淀反应工艺进行了优化。研究表明,采用碳酸氢铵沉淀法制备的先驱物为水合碳酸镥正盐及少量的碱式碳酸镥混合物,组成可能为Lu2.1(OH)0.1(CO3)3.1·6H2O。粉体颗粒呈近球形,颗粒尺寸~20nm。其先驱物在800℃煅烧4 h,平均颗粒尺寸为~35nm。在1700℃真空烧结5 h,获得了半透明的Lu2O3陶瓷。
     采用共沉淀法,以碳酸氢铵为沉淀剂研制不同组成Lu2O3-Gd2O3系列固溶体陶瓷。制备的Gd(1.9-x)LuxEu0.1O3先驱物物相随组成而变化,x=0时为水合碳酸盐,x=0.2、0.5、1.0、1.5、1.9时为碳酸盐和少量碱式碳酸盐的混合物,其化学式可能为Gd(1.9-x)LuxEu0.1(OH)0.1x(CO3)(3-0.05x)·6H2O。粉体形貌随Lu含量的增加由棒形变为球形,颗粒尺寸逐渐减小。Gd(1.9-x)LuxEu0.1O3的先驱物在800℃煅烧后可获得纯立方相的氧化钇和氧化钆的固溶体,而无其它过渡相。粉体的颗粒尺寸20nm~60nm。将800℃煅烧后的系列粉体压制成型,在1700℃真空烧结24h获得了透光性良好的Gd0.9Lu1.0Eu0.1O3和Lu1.9Eu0.1O3透明陶瓷,其最高直线透过率在可见光区分别为55.5%和64.3%。获得的Gd(1.9-x)LuxEu0.1O3透明陶瓷在波长254nm的紫外光激发下发射出较强的红光,发射主峰位于612.5nm,对应于掺杂Eu3+的5DO-7F2的跃迁。
     以市售纳米粉体为起始原料,采用固相反应法制备了LuAG透明陶瓷。固相反应获得的粉体粒度分布均一,具有良好的烧结性能。将煅烧后的粉体压制成型,坯体在1200℃预烧后于1700℃真空烧结5h获得了透光性良好的LuAG:Ce透明陶瓷,其最高直线透过率在可见光区为57%,在近红外区为63.2%;延长保温时间至24h获得了透光性更好的LuAG和LuAG:Ce透明陶瓷,其最高直线透过率分别为在可见光区为72%和63.1%,在近红外区为73.4%和65.4%。获得的LuAG透明陶瓷的发射光谱呈现Ce3+的特征双峰发射光谱(512nm和547nm),双峰结构是由于Ce3+的4f基态受LuAG晶体场的影响,分裂为2F5/2和2F7/2两个能态所引起的。
Scintillators are widely used in radiation detectors for medical diagnostics, industrial inspection, nuclear medicine, and high-energy physics (HEP) applications. Requirements for scintillator crystals include high effective atomic number (Z), high proportional light yield, fast decay and high transparency. The increased demanding for more ideal scintillator materials has directed interest toward lutetium compounds, because they are characterized by high absorption coefficients for any kind of high-energy ionizing radiation resulting from high density of Lu element. Ceramic scintillators are a new kind of functional materials. Transparent Lu3Al5O12:Ce(LuAG:Ce) ceramic scintillators fabricated through solid-state reaction method has been used in medical PET and SPECT, whereas europium-doped Lu2O3 ceramic scintillator is finding application in the field of digital X-ray imaging technology. However, due to relatively high cost of lutetium compounds and the strigent processing method required to fabricate transparent ceramics, the wider application of lutetium compounds as scintillator materials has been greatly restricted. This thesis is deemd to fabricate scintillators of lutetium compounds, in forms of both powders and transparent ceramics, with lower cost by using nano techniques. Lutetium compounds of Lu2O3, (Lu,Gd)2O3, as well LuAG, were fabricated and their properties were investigated.
     Nano-sized Lu2O3 powders were synthesized with a precipitation technique using optimized processing parameters. The precursor powders prepared by precipitation technique with ammonium hydrogen carbonate (NH4HCO3) as precipitator were indexed to lutetium normal carbonate and a few basic carbonates. The chemical formula of the precursor is Lu2.1(OH)0.1(CO3)3.1·6H2O. The average particle size was~20nm with spherical morphology. Powders with a primary particle diameter of~35nm were produced by calcining the precursor powders at 800℃for 4 h. Translucent Lu2O3 ceramic scintillators were fabricated by vacuum sintering at 1700℃for 5h.
     The synthesis of nano-sized powders of Gd(1.9-x)LuxEu0.1O3 solid-solution using the co-precipitation method was investigated. The precursor powders composed of lutetium gadolinium normal carbonate(x=0), or lutetium gadolinium normal carbonate and a few basic carbonates(x= 0.2、0.5、1.0、1.5、1.9), depending on the compositions. The chemical formula may be Gd(1.9-x)LuxEu0.1(OH)0.1x(CO3)(3-0.05x)·6H2O. The powders with low lutetium contents are mainly composed of nanorods, with the aspect ratios decreasing gradually with increasing of Lu2O3 composition. The powders with high lutetium contents, on the other hand, are mainly composed of spherical particles. The Gd(1.9-x)LuxEu0.1O3 precursor powders were converted into crystalline lutetium gadolinium oxide after calcining at 800℃. The particle size of the Gd(1.9-x)LuxEu0.1O3 were 20nm~60nm. Transparent Gd0.9Lu1.0Eu0.1O3 and Lu1.9Eu0.1O3 ceramic scintillators were fabricated by vacuum sintering at 1700℃for 24h. The in-line transmittance of Gd0.9Lu1.0Eu0.1O3 and Lu1.9Eu0.1O3 transparent ceramics were 55.5% and 64.3% in the visible-light region, respectively. The as-sintered Gd(1.9-x)LuxEu0.103 ceramics show intense red luminescence at 612.5nm under 254nm UV excitation, corresponding to 5Do-7F2 transition of Eu3+ ion.
     The solid-state reaction method was utilized to produce LuAG:Ce polycrystalline ceramics. The high dispersity of the obtained power is mainly resulted from fine size of nano-Lu2O3 and nano-γ-Al2O3 powders used. The green bodies were pre-sintered at 1200℃and transparent LuAG:Ce ceramic scintillators were fabricated by vacuum sintering at 1700℃for 5h. The in-line transmittance of LuAG:Ce transparent ceramics were 57% in the visible-light region and 63.2% in the near infrared region, respectively. The in-line transmittance of LuAG and LuAG:Ce transparent ceramics sintered at 1700℃for 24h were 72% and 63.1% in the visible-light region,73.4% and 65.4% in the near infrared region, respectively. The photo luminescence spectra has the characteristic peaks at 512nm and 547nm duo to the splitting of the Ce3+ 4f ground state.
引文
1.黄春辉.稀土配位化学[M].北京:科学出版社,1997,1-10.
    2.苏锵,刘行仁.稀土发光及激光材料.见:徐光宪主编.稀土(下).第2版[M].北京:冶金工业出版社,1995,124-132.
    3. Becker J, Gesland J Y, Kirikova N Y. Fast VUV emission of rare earth ions (Nd3+, Er3+, Tm3+) in wide bandgap crystals [J]. Journal of Alloys and Compounds,1998,275-277: 205-208
    4. Khaidukov N M, Lam S K, Lo D, et al. Luminescence spectroscopy from the vacuum ultra-violet to the visible for Er3+ and Tm3+ in complex fluoride crystals [J]. Optical Materials,2002,19:365-376.
    5. Fu L S, Meng Q, Zhang H J. In-situ synthesis of terbium-benzoic acid complex in sol-gel derived silica by a two-step sol-gel method [J]. Journal of the Physics and Chemistry of Solids,2000,61(11):1877-1881.
    6. Zhang Y, Wang M, Zhang G The luminescent properties, thermal stability of phthalic acid and energy transfer from phthalic acid to Tb3+ in sol-gel derived silica xerogels [J]. Materials Science and Engineering B,1996,40:171-175.
    7. Tang Z, Zhang F, Zhang Z T, et all. Luminescent properties of SrAl2O4:Eu, Dy material prepared by the gel method [J]. Journal of the European Ceramic Society,2000,20(12): 2129-2132.
    8. Reisfeld R. Prospects of sol-gel technology towards luminescent materials [J]. Optical Materials,2001,16(1):1-7.
    9. Bharqava R N, Gallaqher D, Honq X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J]. Physical Review Letters,1994,72:416-419.
    10. Fu L S, Zhang H J. Preparation, Characterization and Luminescent Properties of MCM-41 Type Materials Impregnated with Rare Earth Complex [J]. Journal of Materials Science & Technology,2001,17(3):293-298.
    11.王惠琴,邓红梅.燃烧法快速合成铝酸锶:及其发光性能[J].复旦学报(自然科学版),1997,36(1):65-71.
    12. Hong K S, Meltzer R S. Spectral hole burning in crystalline EU2O3 and Y2O3:Eu3+ nanoparticles [J]. Journal of Luminescence,1998,76-77:234-237.
    13. Feng H Y, Jian S H, Wang Y P. Fluorescence properties of ternary complexes of polymer-bond triphenylphosphine, triphenylarsine, triphenylstibine, and triphenylbismuthine, rare earth metal ions, and thenoyltrifluoroacetone [J]. Journal of Applied Polymer Science,1998,68(10):1605-1611.
    14.李玮捷,石士考.Y2O3:Ce荧光粉的制备方法及性质研究进展[J].稀土,2000,21(5):60-64.
    15. Lin Y H, Tang Z L, Zhang Z T. Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties [J]. Materials Letters,2001,51:14-18.
    16. Eilers H, Tissue B M. Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-C02 laser heating [J]. Materials Letters,1995,24(4):261-265.
    17. Ronda C. Luminescent materials with quantum efficiency larger than 1, status and prospects [J]. Journal of Luminescence,2002,100:301-305.
    18. Konrad A, Fries T, Gahn A, et al. Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu [J]. Journal of Applied Physics,1999,86(6): 3129-3133.
    19. Meyssamy H, Riwotzki K, Kornowski A, et al. Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb [J]. Advanced Materials,1999,11(10):840-844.
    20. Yang P, Zhou G J. ZnS nanaocrystals co-activated by transition metals and rare-earth metals-a new class of luminescent materials [J]. Journal of Luminescence,2001,93: 101-105.
    21. Sharma P K, Jilavi M H, Nass R, et al. Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria [J]. Journal of Luminescence,1999,82:187-193.
    22. Williama D K, Bihari B, Tissue B M. Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrysrals [J]. Journal of Physical Chemistry B,1998,102:916.
    23.张新夷.发光动力学[J].物理,1990,19(3):179-184.
    24.虞家琪.固体的激发态和发光[J].物理,1990,19(2):107-112.
    25.徐叙,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,513.
    26.陈启伟,施鹰,施剑林.陶瓷闪烁材料最新研究进展[J].材料科学与工程学报,2005, 23(1):128-132.
    27. Blasse G The luminescence efficiency of scintillators for several applications: State-of-the-art [J]. Journal of Luminescence,1994,60&61:930-935.
    28. Greskovich C, Duclos S. These diplome de doctorat maricela Villanueva-ibanez HfO et SrHfO [J]. GE Research & Development Center, Technical Information Series, 96CRD166,1996, Class1.
    29. Czirr J B, MacGillivray G M, MacGillivray R R, et al. Performance and characteristics of a new scintilator [J]. Nuclear Instruments and Methods in Physics Research Section A, 1999,424:15-19.
    30. Saoudi A, Pepin C, Houde D, et al. Scintillation light emission studies of LSO scintillators [J]. IEEE Transactions on Nuclear Science,1999,46(6):1925-1928.
    31. Minkov B. I. Promising new lutetium based single crystals for fast scintillators [J]. Functional Materials,1994,1:103-105.
    32. Zorenko Yu, Gorbenko V, Konstankevych I, et al. Scintillation properties of Lu3Al5O12: Ce single-crystalline films [J]. Nuclear Instruments and Methods,2002, A486:309~314.
    33. Dujardin C. in:V. Mikhailin (Ed.). Proceedings of theSCINT99, Moscow, M. V. [C]. Lomonosov Moscow State University,2000,527~531.
    34. Lempicki A. Book of abstracts of the sixth international conference on inorganic scintillators and their use in scientific and industrial applications SCINT2001 [C]. Chamonix France, Septemberl6-21,2001, MI-O-02.
    35. Zych E. Sintering properties of urea~derived Lu2O3-based phosphors [J]. Journal of Alloys and Compounds,2002,341:391-394.
    36. Van Schaik W, Raukas M, Basum S, et al. Proceedings of the international conference on inorganic scintillators, SCINT95 [C]. Delft University Press, The Netherlands,1996:380.
    37. Saiki A, Ishizawa N, Mizutani N, et al. Real structure of undoped Y2O3 single crystals [J]. Acta Crystallographica,1984, B40:76~82.
    38. Lempicki A, Brecher C, Szupryczynski P, et al. A new lutetia-based ceramic scintillator for X-ray imaging [J]. Nuclear Instruments and Methods in Physics Research Section A, 2002,488:579-590.
    39.张传飞,彭太平,罗小兵.ST401塑料闪烁体中子探测效率刻度及相对发光产额的测定[J].四川大学学报(自然科学版),2002,39(3):487-492.
    40.张明荣,葛云程.无机闪烁晶体及其产业化开发[J].产业论坛,2002,100:15-20.
    41. Chen Q W, Shi Y, An L Q, et al. Fabrication and Photoluminescence Characteristics of Eu3+-doped Lu2O3 Transparent Ceramics [J]. Journal of the American Ceramic Society, 2006,89(6):2038-2042.
    42. Li J G, Lee J H, Mori Toshiyuki. Crystal phase and sinterability of wet-chemically derived YAG powders [J]. Journal of the Ceramic Society of Japan,2000,108(5): 439-444.
    43. Li J G, Ikegami T, Lee Jong-Heun. Low-temperature fabrication of transparent YAG ceramics without additives [J]. Journal of the American Ceramic Society,2000,83(4): 961-963.
    44. Li J G, Ikegami T, Lee Jong-Heun. Co-precipitation synthesis and sintering of YAG powders:the effect of precipitant [J]. Journal of European Ceramic Society,2000, (20): 2395-2405.
    45. Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds,2nd Edition [M]. Wiley, New York,1970.
    46. Herring C. Effect of change of scale on sintering phenomena [J]. Journal of Applied Physics,1950,21:301.
    47. Zych E, Deren P J, Strek W, et al. Preparation, X-ray analysis and spectroscopic investigation of nanostructured Lu2O3:Tb [J]. Journal of Alloys and Compounds,2001, 323-324:8-12.
    48. Zych E. On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb [J]. Optical Materials,2001,16(4):445-452.
    49. Yen, W M, Raukas, M, Basun, S A, et al. Optical and photoconductive properties of cerium-doped crystalline solids[J]. Journal of Luminescence 1996,69(5-6):287-294.
    50. Yen, W M. Photoconductivity and delocalization in rare earth activated insulators [J]. Journal of Luminescence,1999,83-84:399-404.
    51. Xu L L, Wei B, An W W, et al. Effects of sucrose concentration on morphology and luminescence performance of Gd2O3:Eu nanocrystals [J]. Journal of Alloys and Compounds,2007,5:107-111.
    52. Schneider S J, Roth R S. System Gd2O3-Ln2O3 [J].Journal of Research of National Bureau of Standards,1960,64A:317-332.
    53. Igarashi T, Ihara M, Kusunoki K, et al. Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor [J]. Applied Physics Letters,2000,76: 1549-1551.
    54. Kuwano Y, Suda K, Ishizawa N, et al. Crystal growth and properties of (Lu,Y)3Al5O12 [J]. Journal of Crystal Growth,2004,260(1-2):159-165.
    55. Cicillini S A, Pires A M, Serra O A. Luminescent and morphological studies of Tm-doped Lu3Al5O12 and Y3Al5O12 fine powders for scintillator detector application [J]. Journal of Alloys and Compounds,2004,374:169-172.
    56. Ogino H, Yoshikawa A, Lee J H, et al. Growth and characterization of Yb3+ doped garnet crystals for scintillator application [J]. Optical Materials,2004,26:535-539.
    57. Ogino H, Yoshikawa A, Lee J H, et al. Growth and scintillation properties of Yb-doped Lu3Al5O12 crystals [J]. Journal of Crystal Growth,2003,253:314-318.
    58. Yoshikawa A, Nikl M, Ogino H, et al. Crystal growth of Yb3+-doped oxide single crystals for scintillator application [J]. Journal of Crystal Growth,2003,250:94-99.
    59. Unlich D, Huppertz P, Wiechert D U, et al. Preparation and characterization of nanoscale lutetium aluminium garnet (LuAG) powders doped by Eu3+[J].Optical Materials,2007, 29:1505-1509.
    60. Joshua D, Jeffery J, Meghan Hough, et al. Multiple synthesis routes to transparent ceramic lutetium aluminium garnet [J]. Scripta Materialia,2007,57:960-963:
    61.李会利,刘学建,黄莉萍.固相反应法制备Ce:LuAG透明陶瓷[J].无机材料学报,2006,21(5):1161-1166.
    62. Joshua D. Kuntz, Jeffery J. Roberts, Meghan Hough, et al. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet [J]. Scripta Materialia,2007,57:960-963.
    63. Ikesue A, Yoshida K, Yamamoto T, et al. Optical scattering centers in polycrystalline Nd: YAG laser [J]. Journal of the American Ceramic Society,1997,80(6):1517-1522.
    64. Cheng J, Agrawal D, Zhang Y, et al. Microwave sintering of transparent alumina [J]. Materials Letters,2002,56:587-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700