用户名: 密码: 验证码:
稀土和铽配合物的合成及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对和铽这两类三元稀土配合物展开研究工作,以苯甲酰丙酮(benzoylacetone, BA)为第一配体,分别以1,10-邻菲啰啉(1,10-phenanthroline, Phen)、三苯基氧膦(triphenylphosphine oxide, TPPO)和2,2’-联吡啶(2,2’-bipyridyl, Bipy)为第二配体,合成了六种新的三元稀土配合物是: Eu(BA)3Phen、Eu(BA)3(TPPO)2、Eu(BA)3Bipy、Tb(BA)3Phen、Tb(BA)3(TPPO)2和Tb(BA)3Bipy。通过对上述三元稀土配合物的结构、热稳定性、电化学性能和光物理性质进行的表征,系统地研究了和铽这两类稀土配合物的能量传递过程。主要研究内容为:
     1)合成了Eu(BA)3 Phen、Eu(BA)3(TPPO)2和Eu(BA)3Bipy。通过元素分析、红外光谱(Infrared absorption spectrum, IR)以及热重-差热(Hermogravimetric-Differential scanning calorimeters, TG-DSC)确定了(III)配合物的结构及组成,由TG-DSC曲线说明配合物中不含有水或溶剂分子;通过对产物紫外-可见吸收光谱(Ultraviolet and Visible Spectrophotometer, UV-vis)的分析,表明第一配体和第二配体均有能量吸收,并估算得到(III)配合物的光学带隙分别为3.06eV、3.0eV和3.03eV,光学带隙基本一致,应属于第一配体BA的单重态光学带隙;根据电化学循环伏安曲线计算得到三种(III)配合物的带隙分别为1.58eV、1.66eV和1.77eV,与(III)配合物f→f电子跃迁相对应;通过光致发光光谱和荧光光谱分析得到,三种(III)配合物的最大发射峰都位于波长615nm处,对应于Eu3+的特征发光,是红光发光材料。
     2 )合成了三种铽(III)配合物Tb(BA)3Phen、Tb(BA)3(TPPO)2和Tb(BA)3Bipy。对其进行了元素分析和IR分析表明其产物是一种八配位的三元铽配合物;由UV-vis计算得到的光学带隙属于第一配体BA,分别为3.23eV、3.21eV和3.22eV;通过电化学循环伏安法测得与铽(III)配合物f→f电子跃迁相对应的带隙分别为2.01eV、1.90eV和1.87eV;由光致发光光谱和荧光光谱分析表明:三种铽(III)配合物均发出Tb3+的特征发光,最大发射波长都在543nm,是绿光发光材料。
     3)系统地对(III)配合物和铽(III)配合物的发光机理进行了初步的探讨,研究了Phen、TPPO和Bipy三种第二配体对稀土配合物发光性能的影响。在Kasha规则基础上,建立了稀土配合物的能带结构模型。通过紫外吸收边得到配体BA、Phen、TPPO和Bipy的单重激发态能级,构建了稀土配合物分子内能量传递模型。通过分析表明,配体的三重态T1与稀土中心离子的最低激发态的能级差以及第二配体的单重态S1与第一配体单重态S1的能级差对稀土配合物的荧光量子效率都有很大的影响,合适的能极差值能够促进分子内能量的有效传递。
In this article, six new kinds of ternary rare earth complexes were synthesized by introducing benzoylacetone (BA) as the first ligand and 1,10-phenanthroline (Phen), triphenylphosphine oxide (TPPO), 2,2’-bipyridyl(Bipy) as the second ligand, which were Eu(BA)3Phen, Eu(BA)3(TPPO)2, Eu(BA)3Bipy, Tb(BA)3Phen, Tb(BA)3(TPPO)2 and Tb(BA)3Bipy, respectively. Then, in order to systematically study of energy transfer process of these rare earth complexes, structure and luminescence properties were characterized by plenty of measurement methods and discussed in details.
     1) Eu(BA)3Phen、Eu(BA)3(TPPO)2 and Eu(BA)3Bipy were synthesized. Structure and composition were characterized by elemental analysis, Infrared absorption spectrum (IR) and Hermogravimetric-Differential scanning calorimeters (TG-DSC), which indicated that these Eu(III) complexes did not contain water or solvent molecules. By analysis of Ultraviolet and Visible Spectrophotometer (UV-vis), it can be concluded that the first ligand and the second ligand belonged to Eu(III) complexes participate in energy absorption. And, through calculation of the absorption edge in UV-vis, the optical band gaps of these Eu(III) complexes were gained, which were 3.06eV, 3.0eV and 3.03eV, respectively. It can be seen that these optical band gaps were nearly identical, which should belong to the singlet state of the first ligand BA. According to the cyclic voltammetry curves, band gaps of the Eu(III) complexes were calculated as 1.58eV, 1.66eV and 1.77eV, respectively, which were corresponding to f→f electronic transitions of Eu(III) complexes. In photoluminescence spectra and fluorescence spectra, it can be seen that the three kinds of the Eu(III) complexes exhibited fluorescence emission peaks at 615nm that was corresponding to characteristic luminescence of europium ion, which were red light-emitting material.
     2) Three kinds of the terbium(III) complexes of Tb(BA)3Phen, Tb(BA)3(TPPO)2 and Tb(BA)3Bipy were synthesized. The properties were characterized by elemental analysis, IR, TG-DSC, UV-vis, cyclic voltammetry, photoluminescence spectra and fluorescence spectra. The optical band gaps of the Tb(III) complexes are 3.23eV, 3.21eV and 3.22eV, respectively, which should belong to the first ligand BA. The f→f electronic transitions of Tb(III) complexes corresponding to the band gaps (2.01eV, 1.90eV and 1.87eV) were gained by analysis of cyclic voltammetry curves. In photoluminescence spectra and fluorescence spectra, it can be seen that the three kinds of the Tb(III) complexes exhibit the fluorescence emission peaks at 543nm that is corresponding to characteristic luminescence of terbium ion, which are green light-emitting material.
     3) The luminescence mechanism of the Eu(III) complexes and the Tb(III) complexes had also been discussed in this article. It can be inferred that the second ligands (Phen, TPPO, Bipy) of rare earth complexes can affect their luminescent properties. Based on the Kasha rule, the energy band structure model of the rare earth complexes had been set up. The energy levels of singlet state of BA、Phen、TPPO and Bipy were estimated by referencing their absorbance edge in UV-vis spectra, and their intramolecular energy transfer models had also been set up. The results showed that the fluorescence yield of the rare earth complexes does not only depend on the energy difference between the triplet state (T1) of the ligand and the lowest excited state of the rare earth ions, but also depend on the energy difference between the singlet state (S1) of the second ligand and the singlet state (S1) of the first ligand. The appropriate energy difference can contribute to an effective intramolecular energy transfer.
引文
[1] Kido J, Okamoto Y, Yoshioka N, et al. Effect of Ultrasonic Irradiation on Luminescence Properties of Lanthanide-polyelectrolyte Complexes [J]. Polymer, 1992, 33(11): 2273-2276.
    [2]苏庆德,孙燕.稀土有机配合物发光及光声光谱研究方法[J].稀土,1997,18(6):56-72.
    [3]苏锵.稀土有机化合物的发光与能量传递[J].发光学报,1986,7(1):1-4.
    [4]李文连.稀土有机配合物发光研究的新进展[J].化学通报,199l,(8):1-9.
    [5]杨迟,杨燕生.发光斓系超分子的设计及应用[J].大学化学,1995,10(1):6-10.
    [6]郭世英,寿涵森,虞群,等. DMANS–一种新型荧光闪烁体染料的寿命与能量转移的研究[J].发光学报,1987,8(2):78-83.
    [7] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38(8): 2024-2043.
    [8] Vincett P S, Barlow W A, Hann R A, et al. Electrical Conduction and Low Voltage Blue Electroluminescence in Vacuum-deposited Organic Films [J]. Thin Solid Films, 1982, 94(2): 171-183.
    [9] Tang C W, VanSlyke S A. Organic Electroluminescent Diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [10] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting Diodes Based on Conjugated Polymers [J]. Nature, 1990, 347(6293): 539-541.
    [11] Gustafsson G, Cao Y, Treaty G M, et al. Flexible Light-emitting Diodes Made from Soluble Conducting Lolymers [J]. Nature, 1992, 357(6378): 477-479.
    [12] Gustafsson G, Treacy G M, Cao Y, et al. The“plastic”LED: A Flexible Light-emitting Device Using a Polyaniline Transparent Electrode [J]. Synth. Met., 1993, 57(1): 4123-4127.
    [13] Kido J,Honggawa k,Okuyama k,et al. White light-emitting Organic Electrohminescent Devices Using the Poly(N-vinylcarbazole)emitter Layer Doped with Three Fluorescent Dyes [J]. Appl. Phys. Lett., 1994, 64(7): 815-817.
    [14] Bhdo M A, O'Brien D E, You Y, et al. Highly Efficient Phosphorescent Emission from Organic Electrohminescent Devices [J]. Nature, 1998, 395(6698): 151-154.
    [15] Baldo M A, Lamansky S, Burrows P E, et al. Very High-efficiency Green Organic Light-emitting Devices Based on Electroplaosphorescenee [J]. Appl. Phys. Lett, 1999, 75(1): 4-6.
    [16] Huang J, Pfeiffer M, Werner A, et al. Low-voltage Organic Electroluminescent Devices Using Pin Structures [J]. Appl. Phys. Lett., 2002, 80(1): 139-141.
    [17] Su S J, Gonmori E, Sasabe H, et al. Highly Efficient Organic Blue-and white-light-emitting-devices Having a Carrier-and Exciton-confining Structrue for Reduced Efficiency Roll-off [J]. Adv. Mater. 2008, 20(21): 4189-4194.
    [18] Meerheim R, Walzer K, Pfeiffer M, et al. Ultrastable and Efficient Red Organic Fight Emitting Diodes with Doped Transport Layers [J]. Appl. Phys. Lett., 2006, 89(6): 061111-061113.
    [19] Hosokawa C, Fukuoka K, Kawamura H, et al. Improvement of Lifetime in Organic Electrolmninescence [J]. SID Symposium Digest. 2004, 35(1): 780-783.
    [20] Lin M E, Wang L, Wong W K, et al. Highly Efficient and Stable White Light Organic Light-emitting Devices [J]. Appl. Phys. Lett.,2007, 91(7): 073517-073519.
    [21]黄春辉,李富右,黄维.有机电致发光与器件导论[M].上海:复旦大学出版社,2005:284-440.
    [22]黄春辉.稀土配位化学[M].北京:科学出版社,1997:4-397.
    [23]苏锵.稀土化学[M].郑州:河南科学技术出版社,1993:363-379.
    [24]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003:154-168.
    [25] Ding Y F, Min H, Yu X B, et al. New Eu-doped Phosphor Prepared by Sol-gel Process [J]. Materials Letters, 2004, 58: 414-416.
    [26] Barasch G E, Dieke G H. Fluorescence Decay of Rare-Earth Ions in Crystals [J]. J. Chem. Phys., 1965, 43(3): 988-994.
    [27] [Sabbatini N, Grardigle M. Luminescent Lanthanide Complexes as Photochemical Supramolecular Devices [J]. Coord. Chem. Rev., 1993, 123(1-3): 201-228.
    [28]胡继明,陈观锉,曾云鹦.稀土配合物的发光机理和荧光分析特性研究[J].高等学校化学学报,1990,11(8):817-821.
    [29] Channa R, Silva D, Li J, et al. Correlatin of Calculated Excited-state Energies and Experimental Quantum Yields of Luminescet Tb(III)β-diletonates [J]. J. Phys. Chem. Lett., 2008, 112(20): 4527-4530.
    [30] Xin H, Shi M, Gao X C, et al. The Effect of Different Neutral Ligands on Photoluminescence and Electroluminescence Propoerties of Ternary Terbium Complexes [J]. J. Phys. Chen., 2004, 108(30): 10786-10800.
    [31] Sabbafini N, Grardigle M, Lehn J M .Luminescent lanthanide complexes as photochemicalsupramolecular devices [J]. Coord. Chem. Rev., 1993,123(1-2): 201-228.
    [32]阎冰,张洪杰,王淑斌,等.稀土N-苯基邻氨基苯甲酸-1,10-邻菲咯啉二元、三元配合物的合成、表征及其光物理性质[J].高等学校化学学报,1998,19(5):671-675.
    [33] Bunzli J G, Piguet C. Taking advantage of luminescent lanthanide ions [J].Chem. Soc. Rev., 2005, 34(12): 1048-1077.
    [34] Renaud F, Piguet C, Bernardinel1i G, et al. Nine-Coordinate Lanthanide Podates with Predetermined Structural and Electronic Properties:Facial Organization of Unsymmetrical Tridentate Binding Units by a Protonated Covalent Tripod [J]. J. Am. Chem. Soc., 1999, 121(40): 9326-9342.
    [35] Dexter D L. A theory of Sensitized Luminescence in Solids [J]. J. Phys. Chem., 1953, 21(5): 836-850.
    [36]周忠诚,舒万艮.光致发光稀土(、铽)配合物的合成、荧光性能及理论研究[D].长沙:中南大学,2002.
    [37]吴根华,陈荣,张启运.KAlF4:Ce,Tb磷光体的发光特性及Ce3+对Te3+的敏化作用[J].光谱学与光谱分析,1997,17(3):6-9.
    [38]闫爱华,刘德文.稀土有机配合物发光的研究及应用[J].北京轻工业学院学报,1997,15(4):25-29.
    [39] Melby L R, Rose N J, Abramson E, et al. Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes [J]. J. Am. Chem. Soc., 1964, 86(23): 5117-5125.
    [40] Kido J, Okamoto Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials [J]. Chem. Rev., 2002, 102(6): 2357-2368.
    [41] Banks E, Okamoto Y. Rare Earth Metal Containing Polymer (1) [J]. J. Appl. Polym. Sci., 1980, 25(2): 359-368.
    [42] Ueba Y, Okamoto Y. Rare Earth Metal Containing Polymer (2) [J]. J. Appl. Polym. Sci., 1980, 25(11): 2007-2017.
    [43] Okmoto Y, Ueba Y, Nagata I, et al. Rare Earth Metal Containing Polymer 3: Characterization of Ioncontaining Polymer Sturctures Using Rare Earth Metal Fluorescence Probes [J]. Macromol, 1981, 14(1): 17-22.
    [44] Kido J, Hayase H, Hongawa K, et al. Bright Red Light-emtting Organiceletroluminescent Devices having a Europium Complex as Emitter [J]. Appl. Phys. Lett., 1994, 65(17): 2124-2126.
    [45] Sun P P, Duan J P, Shih H T, et al. Europium Complex as a Highly Efficient Red Emitter in Electroluminescent Devices [J]. Appl. Phys. Lett., 2002, 81(5): 792-794.
    [46] Capecchi S, Renault O, Moon D G, et al. High-efficiency Organic Eletroluminescent Devices Using an Organoterbium Emitter [J]. Adv. Mater., 2000, 12(21): 1591-1594.
    [47] Brouwers E,Lhomme R,AI-Maharik N,et al.Time-resolved Fluoroimmuno-assay for Equol in Plasma and Urine [J]. J Steroid Biochem Mol Biol, 2003, 84(5): 577-587.
    [48] Wensel T G, Chang C H, Meares C F. Diffusion-enhanced Lanthanide Energe-transfer Study of DNA-bond Cobalt(III) Blcomycins: Comparisons of Accessibilitu and Electrostatic Potential with DNA Complexes of Ethidium and Acridine Orange [J]. Biochemistry, 1985, 24(12): 3060-3062.
    [49]曹凤歧,周桑琪,汤启昭. La、Pr、Nd、Sm-氧氟沙星配合物的合成、结构以及抗菌活性[J].稀土,1993, 14 (5):37-39.
    [50] Kostova I, Trendafilova N, Momekov G. Theoretical, Spectral Characterization and Antineoplastic Activity of New Lanthanide Complexes [J]. J. Trace Elem. Exp. Med., 2008, 22(5): 100-101.
    [51] Charles R G, Ohlmann R C. Europium Bibenzoylmethide Adducts [J]. J. Inorg Nucl Chem., 1965, 27(1): 119-127.
    [52]袁继兵,李嘉航,梁万里,等.三种新的(III)三元配合物的合成及发光性质研究[J].化学学报,2004,62(22):2282-2286.
    [53] Yu G, Liu Y Q, Song Y R, et al. A New Blue Light-emitting Material [J]. Synth. Met., 2001, 117(1-3): 2112-2114.
    [54]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2001:57-97.
    [55]田文晶,吴芳,樊玉国,等.有机/聚合物电致发光材料的能带结构及其在发光器件中的应用[J].发光学报,2000,21(3):230-237.
    [56]吴芳,田文晶,马於光,等.有机/聚合物电致发光器件中层间的能带匹配对器件发光性质的影响[J].发光学报,1998,19(2):159-164.
    [57] ]宋文波,陈旭,吴芳,等.有机/聚合物材料体系能带结构的表征——电化学方法研究[J].高等学校化学学报,2000,21(9):1422-1426.
    [58]陈震,郑曦,陈日耀,等.电化学方法在染料电致发光器件中的应用[J].发光学报,2001, 9(3):68-69.
    [59] Bindhu C V, Harilal S S, Varier G K, et al. Measurement of The Absolute Fluorescence Quantum Yield of Rhodamine B Solution Using a Dual-beam Thermal Lens Technique [J]. J. Phys. D: Appl. Phys., 1996, 29(4): 1074-1079.
    [60] Yu J K, Hu Y H, Cheng Y M, et al. A Remarkable Ligand Orientational Effect inOsmium-atom-induced Blue Phosphorescence [J]. Chem. Eur. J., 2004, 10(24): 6255-6264.
    [61] Miller W V, Madan S K. Fluorescent Lanthanide Complexes with 2, 2’-bipyridine 1, 1’-dioxide [J]. J. Inorg. Nucl. Chem., 1969, 31(5): 1427-1430.
    [62]方荣川.固体光谱学[M].合肥:中国科学技术大学出版社,2001:126-132.
    [63]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984:204-249.
    [64] Shi M, Li F Y, Yi T, et al. Tuning the Triplet Energy Levels of Pyrazolone Ligands to Match the 5D0 Level of Europium(III) [J]. Inorg. Chem., 2005, 44(24): 8929-8936.
    [65]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2006:60-62.
    [66] Steemers F J, Verboom W, Reinhoudt D N, et al. New Sensitizer-Modified Calix [4] arenes Enabling Near-UV Excitation of Complexed Luminescent Lanthanide Ions [J]. J. Am. Chem. Soc., 1995, 117(37): 9408-9414.
    [67] Latva M, Takalo H, Mukkala V M, et al. Correlation between the Lowest Triplet State Energy Level of the Ligand and Lanthanide (III) Luminescence Quantum Yield [J]. J. Lumin., 1997, 75(2): 149-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700