用户名: 密码: 验证码:
杏八九区水平井区块河道砂体内部建筑结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田开发的深入,我国许多油田已进入高含水期,特别是大庆油田长垣,已进入特高含水期开发阶段,剩余油空间上分布零散,挖潜困难,面对4000万吨稳产重任,如何挖潜这些剩余油已成为目前提高采收率的重大难题。在剩余油分布的储层中,曲流点坝储层占了很大的比例,储层内部渗流场分布特征及三维建模、剩余油的形成与分布机制、挖潜手段的选择等一系列问题,是目前开发地质工作者面临的重大课题。尽管国内外大批学者从野外露头和现代河流沉积及地下单砂体精细解剖等方面进行了探索,但尚未完全从机理上揭示曲流点坝内部建筑结构对渗流场的控制作用,更没有形成一套完整的达侧积体级的三维建模数模方法,搞清剩余油的形成与分布困难大,无法进一步给出相应的挖潜措施。
     单砂体内部建筑结构对储层的非均质性具有重要的控制作用,剩余油受侧积夹层空间建筑结构及单一侧积体内部渗透率空间变化、4级界面阻流等影响,主要分布在储层的中上部。运用沉积学原理和层次分析理论,对砂体内部建筑结构进行了精细研究;通过侧积界面控制,建立了能刻画侧积夹层阻流,侧积体内部非均质变化的三维地质模型,更真实反应了点坝内部三维非均质变化,为曲流点坝储层挖潜提供了充分的地质依据,对挖潜措施的选择具有地质导向作用,为高效设计水平井提供了保障。同时,本文的研究成果对进一步进行曲流点坝储层数值模拟提供了科学的三维地质模型,具有重要的指导意义。
With oil fields developing,many oil fields have gone into high water-cut period. Especially the Daqing oil field has went into later development stage of extra-high water-cut period. The distribution of remaining oil in space is highly scattered. Facing the task of 40 million ton production, how remaining oil was produced has become a great difficult problem of increasing recovery efficiency. The point bar of meandering stream channel accounted for a substantial proportion of reservoirs with containing remaining oil. Many problems, including distribution of internal filtration field, distribution mechanism of remaining oil and producing approaches, are great topics of development geologist. Although many experts domestic and abroad have carried out relevant study from outcrop, modern fluvial sediment and fine dissecting underground monosandstone, but, they haven’t completely revealed control of internal architecture of the point bar to field of filtration and how distribution mechanism of remaining oil was affected so far.
     Which internal architecture of monosandstone have important controlling action to the heterogeneity of reservoirs, and remaining oil mainly distribute the middle and upper of reservoirs, because of the architecture of internal interlayer in space, the satiric change of permeability in single lateral bedding, the choking of 4-level interface and so on. By principles of deposition and hierarchy analysis theory, the architecture of the sand bodies was refined; the outcome of this text provided full geological references for exploration of remaining oil in the point bar of meandering stream channel and had geological direction to selection of producing methods.;It provided a guarantee for the efficient design of horizontal wells. At the same time, the outcome of this text can play an important role for further study of numerical simulation of the point bar reservoirs.
引文
[1]Miall A D.Architecture element analysis:a new method of facies analysis applied to fluvial deposits.Earth Science Review.1985,22(4):261-308.
    [2]Miall A D.Reservoir heterogeneities in fluvial sandstone:lessons from outcrop studies.AAPG.1988,72(6):682~697.
    [3]Miall A D.The Geology of Fluvial Deposits[M].SPRINGER-Verlag Berlin Heidelberg,NewYork.1996:1~190,453~478.
    [4]吕晓光,于洪文,田东辉,等.高含水后期油田细分单砂层的地质研究[J].新疆石油地质,1993,14(4):345~349.
    [5]俞启泰,罗洪,冯明生.我国油田河流相与三角洲相储层参数统计研究[J].大庆石油地质与开发,1999,18(1):29~31.
    [6]刘吉余,郝景波,尹万泉,等.流动单元研究方法及其研究意义[J].大庆石油学院学报,1998,22(1):5~7.
    [7]雷启鸿,宋子齐,谭成仟,等.利用流动单元建立渗透率模型的方法.新疆石油地质,2000,21(3):216~219.
    [8]魏斌,陈建文,郑浚茂,等.应用储层流动单元研究高含水油田剩余油分布.地学前缘,2000,7(4):403~409.
    [9]俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24 (2) :46~50.
    [10]徐安娜,穆龙新,裘亦楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]油勘探与开发,1998,25(5):43~47.
    [11]Miall A D.Reconstructing Fluvial Macroform Architecture from Two-dimensional Outcrops:Examples from The Castlegate Sandstone,Book Cliffs,Utah[J].Journal of Sedimentary Research,1994,64(2):146~158.
    [12]Miall A D.Rescription and Interpretation of Fluvial Deposits:a Critical Perspective:Discussion[J].Sedimentology,1995,42:379~384.
    [13]Church M.Pattern of instability in a wandering gravel bed channel.In:Collinson J D,Lewin J (eds).Modern and Ancient Fluvial Systems[A].Special Publication of the International Association of Sedimentologists[C].6,Blackwell,Oxford,1983.169~180.
    [14]Carson M A.The meandering-braided river threshold:areappraisal[J].Journal of Hydrology,1984,73:315~334.
    [15]Nanson G C,Croke J C.Agenetic classification of floodplains[J].Geomorphology,1992,4:459~486.
    [16]Hickin E J.Vegetation and river channel dynamics[J].Canadian Geographer,1984,28(2):111~126.
    [17]Nanson G.G,Knighton A D.An abranching rivers:their cause,character and classification[J].Earth Surfase Processesand Landforms,1996,21:217~239.
    [18]Miller J R.Controls on channel form along bedrock~influenced alluvial streams insouth-central Indiana[J].Physical Geography,1991,12(2):167~186.
    [19] Kale V C,Baker V R,Mishra S.Multi- channel patterns of bedrock rivers:an example from the central Narmada basin,India[J].Catena,1996,26:85~98.
    [20]Bridge J S,Leeder M R.Asimulation model of alluvial stratigraphy[J].Sedimentology,1979,26:617~644.
    [21]Bridge J S,Mackey S D.Revised alluvials tratigraphy model[A].In:Marzo M,Puigdefábregas C(eds).Alluvial Sedimentation[C].Special Publication of the International Association of Sedimentologists 17,Blackwell,Oxford,1993:319~336.
    [22]Mackey,S D,Bridge J S.Three-imensional Model of Alluvials Tratigraphy:Theory and Application[J].Journal of Sedimentary Research,1995,B65(1):7~31.
    [23]Bridge J S.Rivers and Floodplains[M].Oxford:Blackwell Publishing company,2003:214~244.
    [24]Bryant M,Falk P,Paola C.Experimental study of avulsion frequency and rate of deposition[J].Geology,1995,23(4):365~368.
    [25]Heller P L,Paola C.Downstream changes in alluvial architecture:an exploration of controls on channel-tacking patterns[J]. Journal of Sedimentary Research,1996,66(2):297~306.
    [26]赵翰卿,付志国,吕晓光,等.大型河流一三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109~113.
    [27]王平在,王俊玲.嫩江现代河流沉积层序及沉积模式[J].沉积学报,2003,21(2):228~233.
    [28]王俊玲,任纪舜.嫩江现代河流沉积体岩相及内部构形要素分析[J].地质科学,2001,36(4):385~394.
    [29]薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991:5l~55.
    [30]许炯心.高含沙型曲流河床的形成机理[J].科学通报,1989,34(21):1649~1651.
    [31]许炯心.南运河弯曲河型的成因[J].地理学与国土研究,1989,5(2):54~59.
    [32]王继贿.根据河道形态和沉积物特征的河流新分类[J].沉积学报,1999,17 (2):240~246.
    [33]高健.滦河中游现代河流沉积构造与水动力关系[J].沉积学报,1983,1 (1):27~41.
    [34]赖志云.荆江太平口边滩现代沉积研究[J].沉积学报,1986,4(4):109~118.
    [35]王俊玲.嫩江下游现代河流沉积特征[J].地质论评,2001,47(2):193~199.
    [36]马世忠,杨清彦.曲流点坝沉积模式、三维构形及其非均质模型[J].沉积学报,2000,18(2):241~247.
    [37]马世忠.松辽盆地河流-三角洲体系高分辨率层序地层学、储层构型及非均质模型研究[D].中国科学院:地质与地球物理研究所,2003:232~238.
    [38]李思田,李祯,孙永传,等.陕甘宁盆地河流砂体露头调查及地质知识库基础研究[R].中国油气储层研究(85~103)成果报告,1994:60~69.
    [39]尹燕义,王国娟.曲流河点坝储集层侧积体类型研究[J].石油勘探与开发,1998,25(2).44~66.
    [40]马凤荣,张树林,王连武,等.现代嫩江大马岗段河流沉积微相划分及其特征.大庆石油学院学报,2001,25(2):8~11.
    [41]束青林.孤岛油田河流相储层结构与剩余油分布规律研究[D].中国科学院:广州地球化学研究所,2005:119~126.
    [42]束青林,张本华.河道砂储层油藏动态模型和剩余油预测[M].北京:石油工业出版社,2004:P81~102.
    [43]隋新光.曲流河道砂体内部建筑结构研究[D].大庆石油学院,2006:55~60.
    [44]刘建民,徐守余.河流相储层沉积模式及对剩余油分布的控制[M].2003,24(1):152~158.
    [45]马世忠,付春权,等.单砂体三维地质的优势渗透率分析方法[J].大庆石油学院学报,2000,24(3),1~5.
    [46]宫秀梅,曾溅辉,金之钧.渤南洼陷深层(沙三沙四段)原油一水川岩石相互作用模拟实验研究[J].沉积学报,2005,23(3)420~428.
    [47]宫秀梅,曾溅辉,金之钧.渤南洼陷深层(沙四段)油气成藏模拟实验研究[J].西安石油大学学报(自然科学版),2005,20(4):26~30.
    [48]吴胜和,曾溅辉,林双运,等.层间干扰与油气差异充注[J].石油实验地质,2003,25(3):285~289.
    [49]张善文,曾溅辉.断层对沾化凹陷馆陶组石油运移和聚集影响的模拟实验研究[J].地球科学——中国地质大学学报,2003,28(2):185~190.
    [50]于翠玲,曾溅辉.断层幕式活动期和间歇期流体运移与油气成藏特征[J].石油实验地质,2005,27(2):129~133.
    [51]尚尔杰,金之钧,丁文龙,等.断裂控油的物理模拟实验研究——以准噶尔盆地西北缘红车断裂带为例[J].石油实验地质,2005,27(4):414~418.
    [52]庞雄奇,陈章明,陈发景.排油气门限的基本概念、研究意义与应用[J].现代地质,1997,11(4):510~520.
    [53]林景哗,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发,2004,23(2):5~7.
    [54]邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式[J].石油勘探与开发,2003,30(3):48~52.
    [55]邓津辉,史基安,王有孝,等.石油二次运移的分子地球化学特征[J].石油实验地质,2002(6):537~540.
    [56]张云峰,王朋岩,陈章明.烃源岩之下岩性油藏成藏模拟实验及其机制分析[J].地质科学,2002,37(4):436~443.
    [57]闫百泉.曲流点坝建筑结构及驱替实验与剩余油分析[D].大庆石油学院:地球科学学院,2007:21~93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700