用户名: 密码: 验证码:
地下结构偶然性内爆炸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来频繁出现的恐怖爆炸和各种偶然性爆炸破坏建(构)筑物事件,愈益凸显出建筑物防爆炸灾害的重要性。发生在建筑物内的爆炸由于处于相对封闭的环境中,爆炸产生的冲击波流场和对建筑结构的破坏效应与发生在自由空气中的爆炸情况不同,内爆炸产生的工程破坏效应、爆炸冲击波在相对封闭空间内的传播特性和对结构的作用荷载规律以及对爆炸破坏的工程防护技术是当前国际上仍在探索研究的热点问题。本文针对地下结构内爆炸破坏效应问题,通过实际爆炸灾害事件调研、原型隧道内爆炸试验结果分析和数值模拟计算三者相结合的方法进行了深入研究,主要完成了以下工作:
     (一)通过对典型恐怖爆炸破坏建筑物实例及隧道事故爆炸和隧道现场试验结果的研究分析,总结了不同爆炸方式建(构)筑物的宏观爆炸破坏现象和破坏特征,初步认识了结构爆炸破坏机理。分析结果表明:当爆源较近时,结构主要发生局部破坏,表现为:构件迎爆面出现爆坑、材料开裂破碎、临空背面材料层裂剥离和构件贯穿破坏;承重构件的爆炸破坏也可能引起建筑结构的连续性倒塌破坏;另一方面,因内爆炸冲击波处于相对封闭空间中,比之自由大气中的冲击波不仅压力更高,且其衰减要慢得多,是造成结构爆炸破坏的主要因素。此外,爆炸产生的破片、地震动、噪声、毒气灰尘、火灾等虽不至于引起结构的严重破坏,但可造成人员伤亡和设备损毁。
     (二)基于爆炸动力学和动力有限元理论,研究了爆炸冲击波流场计算和结构动力反应模拟中涉及的相关理论模型和算法问题,分析了爆炸相似定律在有限元数值计算中的适用性并给出了其成立的条件,探讨了爆炸冲击问题的有限元数值模型的网格划分方法。
     (三)以某原型隧道中内爆炸试验为对象,以试验结果为参照,采用有限元数值模拟方法研究了内爆炸对隧道结构的破坏机理,研究了装药量、装药形状、引爆位置等因素对隧道内爆炸荷载分布的影响,对比分析了双向开口隧道和一端带端墙的单向开口隧道的内爆炸冲击波传播规律。通过大量计算拟合给出了作用于隧道壁面上的反射冲击波荷载峰值衰减公式: (?)该公式考虑了爆高对反射荷载分布的影响,与以往其他经验公式相比,具有更宽的适用范围。
     (四)为给城市交通盾构隧道的爆炸灾害防护设计提供分析方法,针对以往国内外关于盾构隧道抗爆特性研究很少的现状,建立了考虑管片-管片、管片-螺栓及管片与周围土体界面接触效应的盾构隧道内爆炸三维有限元模型,计算分析了盾构隧道在内爆炸作用下的破坏机理。计算结果表明:管片接头是盾构隧道抗内爆炸的薄弱部位,盾构隧道刚度小、整体性差,其抵抗内爆炸的能力不如整体现浇钢筋混凝土结构。盾构隧道内爆炸破坏特征主要表现为爆炸近区环向管片接头的受拉张开和纵向管片接头的相对错台,以及由此导致的环向螺栓受拉破坏和纵向螺栓的弯曲变形,提高连接螺栓的强度和延性有利于盾构隧道的抗内爆炸特性。
     (五)针对地下建筑结构或高层建筑地下室对爆炸灾害防护设计的需要,研究了内爆炸冲击波在房间墙体开口及通道中的传播规律。在用相关模型试验结果对有限元计算模型和网格划分方案的正确性进行考核后,计算分析了爆室内爆炸荷载特性及空气冲击波在地下建筑物内的传播过程,分析了装药量与爆室容积比(W/V)、爆室墙面开口面积与房间容积参数V2/3比(A/V2/3)等因素对建筑内空气冲击波、壁面反射波、冲量、压力持续时间等的影响,拟合给出了由爆炸间开口向外泄露的空气冲击波压力峰值衰减公式。
In recent years, a great number of buildings and structures are destroyed by terrorist blast attacks and accidental explosions, which highlights the importance to resist explosion disaster of buildings. Explosion occurred inside buildings is in an enclosed space and the shock wave flow field inside the structure and the damage of the structure caused by shock wave are different from the explosion occurred in open air. The damage effect of inner explosion on structures, the propagation characteristic of shock wave in the enclosed space and distribution of load on the structure and protective technologies of engineering are still worldwide hot issues to be studied. In this thesis, the damage effect of underground structure under inner explosion is studied by means of investigation of the actual explosion disasters, analysis of inner explosion test results and the numerical simulation analysis results. The primary research and results of this paper are as follows:
     (1) The damage phenomena and damage characteristics of structure in different explosion modes are acquired by analyzing the typical explosion hazards and the filed test results of explosion in a prototype tunnel. The damage mechanism of structure under blast is preliminarily understood. The results show that, when the explosive is close to the structure, the structures mainly have the local damage shown as blasting pit, material cracking, spallation, penetration damage and the progressive collapse of building owing to the damage of support member. The shock wave is the main factor of failure of the structure. The pressure of shock wave of inner explosion is higher than that of explosion in open air and the attenuation of the shock wave of inner explosion is slower than that of explosion in open air. In addition, although the fragments, ground motion, noise, dust, gas and fire from explosion may not cause serious damage of structure, but they can cause casualties and equipment damage.
     (2) Based on the explosion dynamics and the theory of finite element, the simulation arithmetic of the dynamic response of structure and the calculation method of shock wave flow field are studied. The applicability of similitude law of blast in the finite element method is analyzed and the necessary condition is given. The mesh generation method of FEM simulation of shock wave is discussed.
     (3) Aimming at the prototype tunnel tested as above, based on the test data, the damage mechanism of tunnel under the inner explosion is studied. the influence of the shape of explosive, the location of explosive and the explosive weight on the distribution of shock wave load in the tunnel are studied by the FEM, and the propagation of shock wave in a tunnel with and without end walls are analyzed. The formula to evaluate the attenuation of peak value of the reflected shock wave load on the inner surface of the tunnel versus the distance from the center of explosion is proposed and it can be widely applied. It can be expressed as: (?)
     (4) In order to meet the needs of protective design of the traffic shield tunnel to resist explosion disaster. A three dimensional FEM model of shield tunnel under internal explosion loading is proposed, which can simulate the contact effects of segment-segment, segment-bolt and segment-soil. The damage mechanism of shield tunnel under internal explosion loading is studied. The results indicate that segment joint is the frail part of shield tunnel to resist internal explosion loading and blast-resistant characteristics of shield tunnel is inferior to that of integral cast in-situ tunnel. The damage characteristics of shield tunnel under internal explosion are opening of circumferential segment joints, relative sliding of longitudinal segment joints, tensile damage of ring bolts and bending deformation of longitudinal bolts. Enhance of bolt strength and ductility can improve the blast-resistant characteristics of shield tunnel.
     (5) According to the need of protective design of underground structure or basement of tall building to resist explosion disaster. The propagation of shock wave in building through passage and room opening is studied. The calculation model and the mesh generation are validated by the result of correlative matrix test, then the blast load characteristics inside explosion chamber and the propagation process of air shock wave in the underground building are studied. The influence of the ratio (W/V) of charge weight(W) to chamber volume (V) and the ratio (A/V2/3) of opening area (A) of chamber to the parameters (V2/3)of chamber volume on the air shock wave, reflect wave、duration of shock wave and impulse are analyzed. The formula to evaluate the attenuation of peak pressure of the shock wave leaking from explosion chamber is proposed.
引文
[1]北京工业学院八系.爆炸及其作用[M],北京:国防工业出版社,1979年7月。
    [2]北京理工大学. ANSYS/LS-DYNA算法基础和使用方法[M].1999
    [3]曹玉忠,卢泽生,管怀安等.抗爆容器内爆炸流场数值模拟[J].高压物理学报,2001,15(2):127-133.
    [4]陈海天,李秀地,郑颖人.内爆炸隧道中冲击波冲量实验.后勤工程学院学报. 2008, 24 (2), 6-8
    [5]丁兆奎,熊建国.冲击荷载下土中浅埋箱形结构反应的模型试验研究.爆炸与冲击, 1990, 10(2):145-155
    [6]方世林.湘黔铁路朝阳坝二号隧道抢险修复[J].现代铁道技术,2003年10月,40(5):70-75
    [7]葛涛,耿民.地铁区间隧道内爆炸效应研究[J].岩土力学,2006,27(2增):759-762
    [8]管怀安,约束爆炸与安全,兵器工业安全技术科研成果交流与学术研讨会,1983.10
    [9]国家突发公共事件总体应急预案[M].中华人民共和国国务院,2006.
    [10]何翔等.隧道内爆炸产生的破片及空气冲击波对防护门的破坏,中国土木工程学会防护工程分会第八次学术年会论文集。2003年1月
    [11]亨利奇著(熊建国译).爆炸动力学及其应用[M].北京:科学出版社,1987年
    [12]胡永乐等,三种不同形状爆室内爆炸流场特征计算,防护工程学会第四届理事会暨第七次学术会议,2000.09
    [13]李秀地,郑颖人.隧道中冲击波能量传播模型的试验研究[J].解放军理工大学学报,2007, 8(5):21-24
    [14]李铮,钢筋混凝土抑爆间室的试验研究,防护工程学会第四届理事会暨第七次学术年会, 2000.9
    [15]李忠献,田力.地下爆炸波作用下基底滑移隔震建筑-土-隧道相互作用的动力分析。工程力学,2004,21(6)56-64.
    [16]李忠献,刘杨,田力。单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析。北京工业大学学报。2006,332(2),173-181
    [17]廖维张.常规武器爆炸作用下地下结构的动力响应及智能隔震研究[D].北京工业大学,2007.4
    [18]刘晶波,闫秋实,杜义欣等,地铁地下结构内爆炸防护问题研究。振动与冲击,2008,27(8):16-19.
    [19]刘沐宇,卢志芳。接触爆炸荷载下长江隧道的动力响应分析。武汉理工大学学报。2007,29(1);113-117
    [20]刘仁辉,石少卿,李秀地,常规武器隧道口部爆炸效应的试验与数值模拟分析。爆破,2007,24(4):11-16
    [21]刘宪德,管怀安.密闭结构内爆炸流场的数值模拟[J].防护工程, 1999,2:55-63.
    [22]莫海鸿,邓飞皇,王军辉。运营期地铁盾构隧道动力响应分析[J].岩石力学与工程学报,2006,25(2):3508-3512.
    [23]倪鸿礼,乐嘉陵等.爆炸波对建筑物的冲击荷载研究,中国空气动力研究与发展中心计算空气动力学研究所技术报告,2000年
    [24]钱七虎等编.防护结构计算原理[M],中国人民解放军工程兵工程学院,1981.9
    [25]钱七虎主编.反爆炸恐怖安全对策[M].北京:科学出版社,2005年4月:1-5
    [26]乔纳斯A.朱卡斯著(张志云等译).碰撞动力学[M].兵器工业出版社. 1989
    [27]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津大学,2009.3
    [28]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].清华大学出版社. 2005
    [29]田志敏,邬玉斌.国家自然科学基金资助项目(项目批准号:5077817):重要建(构)筑物偶然性内爆炸效应分析结题报告[R]. 2011.2
    [30]田志敏,耿国恩,汤晔东.加强重要目标防大规模爆炸恐怖袭击的研究[C],军队处置突发事件专家咨询工作理论研讨会论文汇编,总参作战部,国防大学科研部,2006年9月
    [31]田志敏,钱七虎.大压力爆炸动载作用下地下复合圆形结构研究,特种结构,1997年第3期
    [32]田志敏,钱七虎.地下工程爆炸震动防护研究进展,二十一世纪土木工程学科的发展趋势,科学出版社,1997年
    [33]田志敏,邬玉斌,罗奇峰等.隧道内爆炸冲击波传播特性及爆炸荷载分布规律研究[J].振动与冲击,2011,30(1):21-25
    [34]田志敏,邬玉斌.地铁与过江隧道的爆炸安全分析.中国国防科学技术报告,2009.
    [35]田志敏,邬玉斌等.岩土中隧道抗偶然性内爆炸特性分析[J].地下空间与工程学报,2011,7(2):385-391.
    [36]田志敏,张想柏,杜修力,防恐怖爆炸重要建筑物的概念设计,土木工程学报,2007年第1期。
    [37]田志敏等. XXX防护工程口部高抗力防护门支撑结构研究总结报告,中国国防科学技术报告(内部),总参工程兵科研四所,2008年11月
    [38]王年桥.防护结构计算原理与设计[M].中国人民解放军工程兵工程学院,1998年
    [39]徐全军.系列直列装药爆炸场参数计算及应用,工程兵工程学院硕士学位论文,1990
    [40]闫秋实,刘晶波,伍俊.地铁区间隧道内爆炸反应的数值模拟[J].防护工程,2009,31(2):52-56.
    [41]杨科之,杨秀敏.隧道内化爆炸冲击波的传播规律[J].爆炸与冲击,2003,23(1):37-40
    [42]杨秀敏,杨科之,王安宝,邓国强,林晨.从隧道内爆炸数值模拟结果看采用穿廊式出入口的必要性.防护工程,2001,(4),13—22
    [43]叶序双编著.爆炸作用基础[M].解放军理工大学工程兵工程学院,2001年8月
    [44]张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2006年3月
    [45]中华人民共和国交通部.公路隧道设计规范[S].北京:人民交通出版社, 2004.
    [46]周晓青,郝洪,李忠献。地下建筑遭受恐怖爆炸袭击的数值模拟。解放军理工大学学报(自然科学版)2007,8(6):567-572
    [47] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws, J. Comp. Phys. , Vol.49, 357-393, 1983.
    [48] A.C. van den Berg, J. Weerheijm. Blast phenomena in urban tunnel systems. Journal of Loss Prevention in the Process Industries 19 (2006) 598–603.
    [49] Baker W E. Explosin hazards and evaluation[M]. Amsterdam-Oxfor-New York, Elsevier Publishing Company, 1983
    [50] Brode H L. Height of burst effects at high overpressures [R]. RM6301,The Land Corporation. Santa Monica, Calif.1970.
    [51] Brode H L. Numerical solution of spherical blast waves [J]. J. Appl. Phys., 1955, 26(6): 766~775
    [52] CEJoachim, Shallow underground tunnel/chamber explosion test program summary report, Structures laboratory, Waterways experiment station, Corps of engineers, 1990.09.
    [53] Chapman T.C. Rose T.A. Smith P.D. Blast wave simulation using AUTODYN2D:a parametric study. International Journal of Impact Engineering. 1995,16(5-6):777-787.
    [54] Charles Robert Welch, Charles E. Joachim. In-Tunnel Airblast Engineering Model For Internal and External Detonations[C].Proceedings of the 8th Internationgal Symposium on Interaction of the Effects of Munitions with Structures. Mclean,Virginia 21-25, April, 1997
    [55] Charleskingery, Robert Schumacher, William Ewing, Internal pressure from explosions in suppressive structures, US army armament research and development command ballistic research laboratory, 1978.06.
    [56] Chengqing Wu,Hong Hao. Numerical prediction of rock mass damage due to accidental explosions in an underground ammunition storage chamber. Shock Waves (2006) 15(1): 43–54
    [57] Chr. Mayrhofer, Phenomena of confined detonations, 9th international symposium oninteractions of the effects of munitions with structures, 1999.
    [58] Committee on feasibility of applying blast-mitigating technologies and design methodologies from military facilities to civilian buildings. Protecting buildings from bomb damage[M]. Washington D.C: National academy press, 1995
    [59] Committee on Science and Technology for Countering Terrorism, National Research Council of the National Academe. Making the nation safer: The role of science and technology in countering terrorism[M]. Washington D.C: The National Academies Press,2002
    [60] E K C Tang, H Hao. Numerical simulation of a cable-stayed bridge response to blast loads. [C] // Proceedings of the 8th International Conference on Shock & Impact Loads on Structures. Adelaide, Australia, 2009 619-628
    [61] E. D. Esparza, W. E. Aker, G. A. Oldham, Blast pressure inside and outside suppressive structures, Southwest research institute,1975.12.
    [62] FEMA. Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings[M]. Federal Emergency Management Agency, US, 2003
    [63] G. Scheklinski-Glueck, Development of an engineering model for inside detonations in 3-chamber systems, 9th international symposium on interactions of the effects of munitions with structures, 1999.
    [64] Holmquist T J, Johnson G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C] // Proceedings of the fourteenth International Symposium on ballistic. Quebec, Canada, 1993
    [65] Hu Qiuyun, Yu Haitao, Yuan Yong. Numerical Simulation of Dynamic Response of an Existing Substation Subjected to Internal Blast Loading[J]. Transactions of Tianjin University, 14(6) : 563-568,December 2008.
    [66] J. Corley, Chr. Mayrhofer, K.Thoma, Explosives with expanded load duration and influence on the structure behavior during confined detonations, 9th international symposium on interactions of the effects of munitions with structures, 1999
    [67] James A.Keller, Environments from Internal Detonation of Warheads, Engineering Sciences Laboratory, Denver Research Institute, 1997。
    [68] Kingney G F.Explosive shocks in air [M].New York:The Macmillan Company,1962
    [69] Krauthammer T. Otani R.K. Mesh, gravity and load effects on finite element simulations of blast loaded reinforced concrete structures. Computers & Structures. 1997,63(6):1113-1120.
    [70] LI Zhongxian,SHI Yanchao.Methods for Progressive Collapse Analysis of Building Structures under Blast and Impact Loads.Transactions of Tianjin University,2008.10,4(5):329-339.
    [71] LS-DYNA Keyword use’s Manual [M]. Livermore Software Technology Corporation,1998
    [72] LS-DYNA Theoretical Manual [M]. Livermore Software Technology Corporation,1998.
    [73] Mswisdak, Ppeckham, Validation tests in building 327-50-pound bombproof, Naval surface weapons center, Research and technology department, 1985.10.
    [74] Norwegian defense construction service, model tests of accidental explosions in underground ammunition storage II: blast wave propagation in tunnel systems. 1774.4.
    [75] P.K.Tang, W.S.Gregory, C.Ricketts, A numerical and experimental investigation of simulated explosions inside a flow network, Los Alamos national laboratory, 1982.4.
    [76] Peter Neuwald, Heinz Reichenbach, Small-scale detonations in a generic single-story system, Fraunhofer-institute Kurzzeit dynamic-Ernst-Mach-Institut, Germany, 1997.
    [77] Pradip K. Khan, M. Dean Keller. Behavior and evaluation of an existing underground structure subjected to impulsive loads from an internal explosion. 1997,12
    [78] Pradip K.Khan,M.Dean Keller.Behavior and Evaluation of an Existiong Underground Structure Subjected to Impulsive Loads from an Internal Explosion[J].Int.J.Impact Engng,1997.
    [79] R.A. Smith, Explosive testing of blast cells. Building 30, Naval Torpedo Station, 1975.04.
    [80] R.G. Steinke, NF85: A three-dimensional air-dynamics computer code for analyzing explosions in structures, Los Alamos national laboratory, 1987.12.
    [81] Rajan Sriram, Uday K. Vaidya. Blast Impact on Aluminum Foam Composite Sandwich Panels [c]. 8th International LS-DYNA Users Conference
    [82] Rickard Forsén. Tunnel Explosion Characteristics. 2008
    [83] Shi Yanchao, Li Zhongxian, Hao Hong. Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures. Transactions of Tianjin University, 14(6) :396-402,December 2008.
    [84] Spyros Sklavounos, Fotis Rigas. Computer-aided modeling of the protective effect of explosion relief vents in tunnel structures. Journal of Loss Prevention in the Process Industries 19 (2006) 621–629.
    [85] TIAN Zhimin, WU Yubin, ZHANG Xiangbai, et al. Study on Propagation of In-tunnel Explosion Induced Air Shock Wave and Distribution of Blast Load on Inner Surface of The Tunnel[C] // Proceedings of the 8th International Conference on Shock & Impact Loads on Structures. Adelaide, Australia, 2009
    [86] Underground Explosion Trials at Raufoss 1968:Blast Wave Propagation Following a Detonation in a Tunnel System. Norwegian Defence Research Establishment Kjeller, Norway, 1970.
    [87] V. Molkov, F. Verbecke, and D. Makarov. Les of hydrogen-air deflagrations in a 78.5-M tunnel. Combust. Sci. and Tech., 180: 796–808, 2008。
    [88] W.A.Kccnan, J.E. Tancreto, Blast environment from fully and partly vented explosion in cubicles, Civil engineering laboratory naval construction battalion center, 1975.11.
    [89] W.E.Baker, P.S. Westine, Methods of predicting blast loads inside and blastfields outside suppressive structures, Southwest research institute,1975.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700