用户名: 密码: 验证码:
地震波动数值模拟及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对显式有限元.有限差分法进行了系统的研究,包括理论分析,算法改进以及实际应用。通过理论推导定量地研究了采用这种数值模拟方法对波动传播规律的影响,以及其在结合局部透射人工边界进行计算时的稳定条件。分别就采用该方法结合局部透射人工边界求解波源问题和散射问题的情况分别提出了改进计算的措施,并通过数值试验验证其有效性。提出了一种有限元和显式有限元.有限差分法耦合方法,并采用其对可控震源激震过程进行了数值模拟。利用在汶川地震中获得的数据,进行场地效应分析。主要工作如下:
     1.根据由李小军等人提出的一种求解动力方程的显式积分格式应用于显式有限元-有限差分法进行波动数值模拟时的递推形式,给出了波动传递函数的形式;以一维均匀离散体系为模型,推导了该情况下数值波动的传递函数,并进行数值试验,验证了传递函数求解的正确性;并通过分析求解所得的传递函数,探讨了这种显式积分格式对离散网格中波动传播规律包括截止频率、频散现象和能量耗散等方面的影响。
     2.针对显式有限元一有限差分法结合局部透射边界进行波动数值模拟的情况,推导并计算了循环系数,给出了计算过程的稳定条件,并通过数值试验对该判定准则进行验证;在给出的循环系数的基础上,定量地分析了积分格式的能耗特性对由边界条件引入的高频失稳的抑制和消除作用;并探讨了如何更有效地利用能耗特性保证计算稳定性,即实际计算模型中时间离散步距以及空间模型大小等参数如何取值既能确保计算稳定又能最大程度减小计算量。
     3.分别针对采用显式有限元一有限差分法结合局部透射人工边界求解波源问题和散射问题的情况分别提出了改进措施。对于波源问题,建议针对每个边界节点可以采用不同的人工波速,该人工波速可以通过试算一定时间长度,然后通过相关处理获得。通过数值实验证明了,在波源问题的求解中采用这种方法选择人工波速可以在不增加计算失稳风险的同时提高数值计算精度。对于散射问题,则给出了一种关于波动输入方法的改进措施,即在分区分离波场中入射波不再采用解析解而是采用离散数值解代替,数值实验证明了采用该方法可以有效地抑制漂移失稳。
     4.给出了一种基于有限元和显式有限元.有限差分法相耦合的区域分裂法。将计算模型分为两个区域,对于广义结构及其附近区域采用有限元法模拟,而土体其它部分采用显式有限元.有限差分法,两个区域的模拟通过搭接区域实现数据的交换。分别代表波源问题和散射问题的数值试验都验证了该方法的有效性。采用提出的耦合方法针对可控震源激振过程建立的数值计算模型,并对不同的工况进行计算,研究分析了各因素包括接触土体密度、接触土体刚度、接触土层厚度、软、硬夹层以及底平板半径对可控震源能量输入大地体系的影响,为如何能高效地将激震能量输入土体提供了参考。
     5.利用自贡地形影响台阵在2008年汶川地震中获得的主震强震记录,采用水平/垂直谱比法(HVSR)对该山脊地形场地对地震动的放大效应进行了分析,并探讨了所获记录结果的可靠性;采用显式有限元一有限差分法结合局部透射人工边界的二维场地影响分析模型与方法,模拟了该场地的地震动响应。对模拟结果与HVSR法分析结果进行对比分析,表明数值模拟结果与观测记录分析结果具有较好的一致性,利用数值计算方法建立的简单二维分析模型基本上可以反映山脊地形对地震动的影响。
In this paper, explicit finite element-finite difference method is studied systematically, including theoretical analysis, algorithm improvement, and practical application. The effect of the numerical simulation method on wave propagation and the calculation stability of the method combination of local artificial boundary conditions are studied quantitatively through theoretical derivation. Improvements about simulating source problems and scattering problems are presented, and these approaches are approved by the numerical simulation. A finite element and explicit finite element-finite difference method coupled method is presented, and using this method to simulate process of vibrator working. In the earthquake using the data obtained, the site effect is analyzed with the Wenchuan earthquake data. Main tasks are as follows:
     1. Based on the recursion formula of the integration method which can be used to solve dynamic equation of structural system, the transfer function of wave is presented. For one-dimensional uniform discrete model, the transfer function of numerical wave is put forward and numerical experiments are provided to demonstrate the correctness of the result. The effect of the explicit integration formula on cut-off frequency, frequency dispersion and numerical dissipation of wave propagation in finite element meshes is studied. The present paper aims to provide academic reference for the explicit integration formula application in infinite domain wave problem.
     2.Considering the numerical simulation of wave with explicit finite element-finite deference method and Local Transmitting boundary, the circulation coefficient is derived and calculated, the stability condition of numerical simulation is presented and tested by the numerical experiment; Based on the circulation coefficient, the effect of the explicit integration depressing and eliminating the high-frequency induced by local transmitting boundary is studied quantitatively; And how to use this effect to calculate steadily is discussed, that is how to take the time-discrete step and size of the space model values to ensure stability of calculation and decrease calculation amount to the full.
     3. In this chapter, improvements about simulating source problems and scattering problems using explicit finite element-finite difference method combined Local Transmitting boundary are presented respectively. For wave source problems,the artificial wave velocity is suggested to be different value, which can be calculated through correlation processing of data. Numerical experiments show that solving wave source problems with this approach can improve numerical accuracy without increasing the risk of calculation instability. For wave scattering problems, a improvement about wave inputting is presented, that is incident wave in the wave field separating use the discrete numerical solution instead of using the analytical solution, numerical experiments approve the measure can eliminate the drift instability.
     4. This chapter gives an explicit finite element and finite element-finite difference method coupling method. The calculation model is divided into two regions, the general structure and the surrounding area is simulated with finite element method, and the other part of the soil using explicit finite element finite difference method, the data of the two region communicate in the overlap region, This method is approved by numerical experiments representing the wave source problem and the scattering problem. Proposed coupling method used for establishing numerical model to simulate the vibrator working process, the effect of various factors, including soil density and stiffness, surface layer thickness, soft, hard interlayer, and the radius of the bottom plate of the vibrator on energy is studied, providing references for how to input energy to earth.
     5. Based on the strong motion accelerations recorded by the topographical effect observation array in Xishan park, Zigong city from the mainshock of Wenchuan earthquake,2008, the site effects of the ridge in the observation array site are studied through Horizontal-to-Vertical Spectral Ratio (HVSR) method, and the reliability of results is discussed. The strong motion accelerations of the observation array site are also simulated by the two-dimensional site model and analysis method, which are based on the explicit finite element-finite deference method and local transmitting boundary. This study indicates that the results of the numerical simulation and the observation data are strong consistent, and the simple two-dimensional site model is suitable for simulating the topographical effects on ground motions.
引文
[1]陈国兴,陈继华.软弱土层的厚度及埋深对深厚软弱场地地震效应的影响[J].世界地震工程,2004,20(3):66-73.
    [2]陈祖斌,林君,于生宝,张子三.轻便浅层地震可控震源的研制[J].仪器仪表学报,2003,24(3):311-314.
    [3]陈祖斌,林君,于生宝.浅层地震可控震源系统的设计[J].电子测量与仪器学报,2002,16(1):43-48.
    [4]关慧敏,廖振鹏.局部人工边界稳定性的一种分析方法[J].力学学报,1996,28(3):376-380.
    [5]郭维,周宏业.土—结动力相互作用研究[J].中国铁道科学,2001,22(4):77-83.
    [6]黄自萍,张铭,吴文青,董良国.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094-1100.
    [7]姜析良,严宗达,李忠献.多点输入的相邻结构—地基—土地震反应分析[J].地震工程与工程振动,1997,17(4):65-77.
    [8]金峰.结构-地基动力相互作用的FE-BE-IBE耦合模型及拱坝地震反应研究[D].北京:清华大学,1992.
    [9]金星,孔戈,丁海平.水平成层场地地震反应非线性分析[J].地震工程与工程振动,2004,24(3):38-43
    [10]孔向东,钟万勰.非线性动力系统刚性方程精细时程积分法[J].大连理工大学学报,2002,42(6):654-658.
    [11]李辉,赖明,白绍良.土—结动力相互作用研究综述(Ⅰ)[J].重庆建筑大学学报,1999,21(4):112-116.
    [12]李辉,赖明,白绍良.土—结动力相互作用研究综述(Ⅱ)[J].重庆建筑大学学报,1999,21(5):112-116.
    [13]李辉,赖明,白绍良.土—结动力相互作用研究综述(Ⅲ)[J].重庆建筑大学学报,2000,22(1):119-123.
    [14]李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显式差分解法[J].地震工程与工程振动,1992,12(4):74-80.
    [15]李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元—有限差分方法[J].地震学报,1995,17(3):362-369.
    [16]李小军,刘爱文.动力方程求解的显式积分格式及其稳定性与适用性[J].世界地震工,2000,16(2):8-12.
    [17]李小军,唐晖.结构体系动力方程求解的显式积分格式的能耗特性[J].工程力学,2007,24(2),28-33.
    [18]李小军,唐晖.结构体系动力方程求解的显式积分格式的能耗特性[J].工程力学,2007,24(2):28-33.
    [19]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [20]梁铁成,陈祖斌.电磁式可控震源与大地耦合的研究[J].长春科技大学学报,2001,31(3):306-308.
    [21]廖雄华.关于土-结相互作用界面力学行为的数值模拟[J].计算力学学报,2002,19(4):450-455.
    [22]廖振鹏,黄孔亮,杨柏坡.暂态波透射边界[J].中国科学(A辑),1984,26(6):50-56.
    [23]廖振鹏,刘晶波.离散网格中的弹性波动(Ⅰ)[J].地震工程与工程振动,1986,6(2):1-16.
    [24]廖振鹏,刘晶波.离散网格中的弹性波动(Ⅱ)[J].地震工程与工程振动,1989,9(2):1-11.
    [25]廖振鹏,周正华,张艳红.波动数值模拟中透射边界的稳定实现[J].地球物理学报,2002,45(4):533-545.
    [26]廖振鹏.工程波动理论导论[M].北京:科学出版社,2003.
    [27]廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动,1984,4(2):1-14.
    [28]林皋,关飞.用边界元法研究地震波在不规则地形处的散射问题[J].大连理工大学学报,1990,30(2):145-152.
    [29]林君,陈祖斌,于生宝.用于浅层地震勘查的高频可控震源系统[J].地质装备,2001,2(3):20-26.
    [30]刘洪斌,陈如恒.地震勘探震源的历史与发展[J].石油机械,1997,25(8):43-52.
    [31]刘洪兵,朱唏.地震中地形放大效应的观测和研究进展[J].地震工程与工程振动,2001,21(4):1-9.
    [32]刘晶波,杜义欣,闫秋实.粘弹性人工边界及地震动输入在通用有限元软件中的实现[J].防灾减灾工程学报,2007,4(27):37-42.
    [33]刘晶波,廖振鹏.离散网格中的弹性波动(Ⅲ)—时域离散化对波传播规律的影响[J].地震工程与工程振动,1990,10(2):1-10.
    [34]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [35]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [36]刘晶波.波动的有限元模拟及复杂场地对地震动的影响[D].哈尔滨:中国地震局工程力学研究所,1989.
    [37]邱仑,徐植信.地下结构瞬态响应分析的积分方程法(Ⅰ)——P波和SV波传播[J].同济大学学报,1987,15(4):411-429.
    [38]邱仑,徐植信.地下结构瞬态响应分析的积分方程法(Ⅱ)——多层结构及SH波计算[J].同济大学学报,1988,16(1):55-64.
    [39]孙明,林君,陈祖斌,张子三.轻便可控震源在金属矿地震反射勘探的试验研究[J].长春科技大学学报,2001,31(4):404-407.
    [40]唐晖.显式积分格式及其在波动有限元模拟中的应用研究[D].中国地震局地球物理研究所,2005.
    [41]涂劲.有缝界面的混凝土高坝—地基系统非线性地震波动反应分析[D].中国 水利水电科学研究院,1999.
    [42]王金东,高鹏,陈浩然.波动方程的精细逐步积分法[J].力学季刊,2000,21(3):316-321.
    [43]王满生.考虑土-结构相互作用体系的参数识别和地震反应分析[D].中国地震局地球物理研究所博士论文,2005.
    [44]王忠仁,陈祖斌等.可控震源地震勘探的数值模拟[J].吉林大学学报,2006,36(4):627-630.
    [45]徐爱军,康丽生.可控震源平板——大地振动模型及参数研究[J].中国煤田地质,2001,13(3):62-64.
    [46]张楚汉,王光纶.无限域的数值模型与无限单元[C].第一届全国解析与数值结合法会议论文文集,湖南,1989:6-44.
    [47]章文波,谢礼立,郭明珠.利用强震记录分析场地的地震反应[J].地震学报,2001,23(6):604-614.
    [48]章文波,周雍年.场地放大效应的估计[J].地震工程与工程振动,2001,21(4):1-9.
    [49]赵成刚,王进廷,史培新,李伟华.流体饱和两相多孔介质动力反应分析的显式有限元法[J].岩土工程学报,2001,23(2):46-50.
    [50]赵崇斌.拱坝地基无限域模拟与地震波输入研究[D].北京:清华大学,1987.
    [51]赵海波,王秀明,王东,陈浩.完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J].地球物理学报,2007,50(2):581-591.
    [52]赵丽滨,张建宇,王寿梅.精细积分方法的稳定性和精度分析[J].北京航空航天大学学报,2000,26(5):569-572.
    [53]钟万勰.结构动力方程的精细积分法[J].大连理工大学学报,1994,34(2):131-136.
    [54]钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6.
    [55]周正华,廖振鹏.多次透射公式的一种稳定实现措施[J].地震工程与工程振动,2001,21(1):9-14.
    [56]周正华,廖振鹏.消除多次透射公式飘移失稳的措施[J].力学学报,2001,33(4):550-554.
    [57]A.Hrennikoff. Solution of Problems of Elasticity by the Frame-Work Method[J].ASME J. Appl. Mech.,1941,8:619-715.
    [58]Abercrombie R. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth[J].Geophys.Res.,1995,100: 24015-24036.
    [59]Ahmad S and Rupani A K. Horizontal impedance of square foundation in layered soil[J]. Soil Dynamics and Earthquake Engng.,1999,18:59-69.
    [60]Akiyoshi T. Compatible viscous boundary for discrete models [J]. Engng. Mech. Div.,ASCE,1978,104(EM5),1253-1266.
    [61]Alterman Z S, F C Jr. Karal. Propagation of Elastic Waves in Layered Media by Finite- Difference Methods[J].Bull. Seismic.Soc.Am.,1968,58:367-398.
    [62]Anderson D L, Ungless R L. Infinite element. Int Symp on Innovative Number Analysis in Applied Engineering Science[M]. France,1977.
    [63]Andrej Gosar. Basin Using H/V Spectral Ratios From Ambient Noise and Earthquake Data:The Case of Bovec Basin (NW Slovenia)[J]. Journal of Earthquake Engineering,2008,12:17-35.
    [64]Andrews D J. Objective determination of source parameters and similarity of earthquakes of different size[J]. GeophysicalMonographes,1986,37(6):259-267.
    [65]Arthur D Frankel, David L Carver, Robert A Williams. Nonlinear and Linear Site Response and Basin Effects in Seattle for the M 6.8 Nisqually, Washington, Earthquake[J]. Bull Seismol Soc Am.,2002,92(6):2090-2109.
    [66]Arthur Frankel, William Stephenson, and David Carver. Sedimentary Basin Effects in Seattle, Washington:Ground-Motion observations and 3D Simulations[J]. Bull Seismol Soc Am.,2009,99(3):1579-1611.
    [67]B R Baliga, S V Patankar. A Control volume finite-element method for two-dimensional fluid flow and heat transfer. Numerical Heat Transfer, Part A: Applications[J]. An International Journal of Computation and Methodology, 1983,6(3):245-261.
    [68]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1994,114:185-200.
    [69]Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problem[J]. IEEE. Trans. Antennas. Propag,1996,44(1):110-118.
    [70]Besko D E. Boundary element methods in dynamic analysis[J]. Appl Mech Rev., 1987,40:1-23.
    [71]Beskos D E. Boundary Element Methods in Dynamic Analysis[J]. Appl. Mech. Rev.,1987,40:1-23.
    [72]Bettess P. Infinite element[J]. Int J Number Meth Eng,1977,11:53-64.
    [73]Bouden M, Khair K R, Datta S K. Ground motion amplification by cylindrical valleys embedded in a layered medium[J]. Earthquake Engineering and Structure Dynamic,1990,19:497-512.
    [74]Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bull. Seis. Soc. Am.,1977,67:1529-1540.
    [75]Cole D m, Kosloff D D, Minster J B. A Numerical Boundary Integral Equation Method for Elastodynamics[J]. Bull. Seis. Soc. Am.,1978,68:1331-1357.
    [76]Cruse T A, Rizzo F J. A Direct Formulation and Numerical Solution of the General Transient Elasto-Dynamic Problems Ⅰ[J]. Math. Anal. And Appl.,1968, 22:341-355.
    [77]Cundall P A. The measurement and analysis of acceleration in rock slopes[D]. London:University of London, Imperial College Science & Technology,1971.
    [78]D.Bindi, S Parolai, et al. Microtremor H/V spectral ratio in two sediment-filled valleys in western Liguria(Ltaly)[J]. Bollettino Di Geofisica Teorica Ed Applicata,2001,42(3):305-315.
    [79]Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25-42.
    [80]Elmer K H, H G Natke, R Thiede. Modelling in soil dynamics by a finite domain with respect to transient excitation[J]. Ground Motion and Engineering Seismology, ed. A.S. Cakmak. Elsevier Science Publishers B V,1987.
    [81]Esref Yalcinkaya, Omer Alptekin. Contributions of Basin-edge-induced Surface Waves to Site Effect in the Dinar Basin, Southwestern Turkey[J]. Pure appl. Geophys,2005,162:931-950.
    [82]Estorff O V, Kausel E. Coupling of boundary and finite element for soil-structure interaction problems[J]. Earthquake engineering and structure dynamic,1989,18: 1065-1075.
    [83]Field E H, Jacob K H. A comparison and test of various site-response estimation techniques, includeing three that are not reference-site dependent[J]. Bull. Seism. Soc. Am.,1995,85(1):1127-1143.
    [84]Francisco J Ch'avez-Garc'ia. Site effects in Parkway Basin:comparison between observations and 3-D modeling[J]. Geophys,2003,154:633-646.
    [85]Friedman M B, Shaw R P. Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross Section[J]. Appl Mech.,1962,29:40-46.
    [86]J F Semblat, P Dangla, et al. Seismic Site Effects for Shallow and Deep Alluvial Basins:In-Depth Motion and Focusing Effect[J]. Soil Dynamics and Earthquake Engineering,2002,22(9):849-854.
    [87]J P wolf.土-结构动力相互作用.北京:科学出版社,1989.
    [88]K Aki, B H Chin. Local site effects on weak and strong ground motion[J]. Tectonophysics,1993,218:93-111.
    [89]K D Mahrer, F J Mauk. An empirical study of instability and improvement of absorbing boundary conditions for the elastic wave equation[J]. Geophysics, 1987,51:1499-1501.
    [90]Khair K R, Datta S K, Shah A H. Amplification of obliquely incident seismic waves by cylindrical alluvial valley of arbitrary cross-sectional shape, Part Ⅱ, Incident SH and Rayleigh waves[J]. Bull Seismol Soc Am,1991,81:346-357.
    [91]Konno K, Ohmachi T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seism Soc Am.,1998,88(1):228-241.
    [92]Kuo-Liang Wen, Igor A Beresenev,et al. Nonlinear Soil Amplification Inferred From Downhole Strong Seismic Motion Data[J]. Geophysical Research Letters, 1994,21(24):2625-2628.
    [93]Kuo-liang Wen, Tao-Ming Chang, et al. Identification of Nonlinear Site Response Using the H/V Spectral Ration Method[J]. Terr Atmos Ocean Sci,2001,17(3): 533-546.
    [94]Lachet C, Bard P Y. Numerical and theoretical investigations on the possibilities and limita- tions of Nakamura's technique[J]. Phys Earth,1994,42:377-397.
    [95]Lermo J, Chavez-Garcia F J. Are microtremors useful in site response e valuation? [J]. Bull Seism Soc Am,1994,84(1):1350-1364.
    [96]Luco, J. E. Linear Soil- Structure Interaction:a brief review[C]. Earthquake Ground Motion and its Effects on Structures, AMD- Vol.53, ASME, New York, 1982,41-57.
    [97]Lysmer I, R L Kuhlemeyer. Finite dynamic model for infinite media[J]. Engng. Mech. Div., ASCE,1969,95(EM4),859-877.
    [98]Lysmer J, T Udaka, C F Tsai, H B Seed. FLUSH-A computer program for approximate 3-D analysis of soil-structure interaction problems[R]. Berkeley, Earthquake Engineering Reasearch Center, University of California,1975, Report No. EERC:75-30.
    [99]Lysmer J, Wass G. Shear wave in plane infinite structures [J]. Journal of Engineering Mechanics,1972,98(EM1):85-105.
    [100]Ma S, Archuleta R J, Liu P C. Hybrid modeling of elastic P-SV wave motion:A combined finite-element and staggered-grid finite-difference approach[J]. Bull Seism Soc Amer,2004,94(4):1557-1563.
    [101]Manolis G D, Beskos D E. Boundary element methods in elastodynamics[J]. Uwin Hyman, London,1988.
    [102]Mita A, Takanashi W. Dynamic soil-structure interaction analysis by hybrid method, boundary element[C]. Proc.5th Int Conf. Hiroshima, Japan,785-794.
    [103]Moczo P, Bystricky E, Kristek J, Jose M C, Michel B. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structure[J]. Bull Seism Soc Amer,1997,87(5):1305-1323.
    [104]Moczo P,Bystricky E, Kristek J, Carcione J M and Bouchon M. Hybrid modeling of P-SV Seismic motion at inhomogeneous viscoelastic topographic structure [J]. Bull Seismol Soc Am.,1997,87:1305-1323.
    [105]Nakamura Y. A method for dynamic characteristics estimations of subsurface using microtre- mors on the ground surface[J]. Quart. Rep. Railway Tech. Res. Inst. (RTRI),1989,30(1):25-33.
    [106]Nardini D, Brebbia C A. Transient Dynamic Analysis by the Boundary Element Method, Boundary Element(Ed. by Brebbia, C.A.) [J]. Springer-Verlag,1985, Berlin,191-208.
    [107]Nogoshi M, Igarashi T. On the propagation characteristics estimation of subsurface using microtremors on the ground surface[J]. Seism Soc,1970,23: 264-280.
    [108]Ohtsuki A, Harumi K. Effect of topography and subsurface inhomogeneities on seismic SV waves[J]. Earthquake Eng. Struct.Dyn.,1983,11:441-462.
    [109]Ohtsuki A, H Yamahara. Effect of topography and subsurface inhomogeneith on seismic Rayleigh waves[J]. Earthq Engng Struct Dyn,1984,12(1):37-58.
    [110]P Triantafyllidis, P M Hatzidimitriou and P Suhadolc.1-D Theoretical Modeling for Site Effect Estimations in Thessaloniki:Comparison with Observations[J]. Pure appl. Geophys,2001,158:2333-2347.
    [111]Pekau O A, Feng L M, Zhang C H. Fracture Analysis of Concrete Gravity Dams by Boundary Element Method[J]. Earth. Eng. Struc.Dyn.,1991,20:335-354.
    [112]R Courant. Variational Methods for the Solutions of Problems of Equilibrium and Vibrations[J]. Bull Am Math Soc.,1943,49:1-23.
    [113]R L Higdon. Absorbing boundary conditions for difference approximations to the multi- dimensional wave equation[J]. Mathematics of Computation,1986, 47(176):437-459.
    [114]R L Higdon. Numerical absorbing boundary conditions for the wave equation[J]. Mathematics of Computation,1987,49(179):65-90.
    [115]R L Higdon. Radiation boundary conditions for elastic wave propagation[J]. SIAM J. NUMER. ANAL,1990,27(4):831-870.
    [116]R Stacey. Improved transparent boundary formulations for the elastic-wave equation[J]. Bull. Seis. Soc. Am.,1988,78:2089-2097.
    [117]R W Clough. The Finite Element Method in Plane Stress Analysis[C]. Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, September,1960,8-9.
    [118]S Parolai, D Bindi and L Trojani. Site response for the RSM seismic network and source parameters in the central Apennines(Italy) [J]. Pure appl. Geophys,2001, 158:695-715.
    [119]S. Parolai, D. Bindi, M. Baumbach,et al. Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit Earthquake [J]. Bull Seism Soc Am,2004,94(3):1096-1108.
    [120]Seed H B, I M Idriss. Soil-structure interaction of massive embedded structures during earthquake[C]. Fifth World Conference on Earthquake Engineering,1973, Paper No.233, Rome.
    [121]Smith W D. A nonreflecting. plane boundary for wave propagation problems[J]. Comp. Phys.,1974,15(4):492-503.
    [122]Stefano Parolai, Dino Bindi, Paolo Augliera. Application of the Generalized Inversion Tech- nique (GIT) to a Microzonation Study:Numerical Simulations and Comparison with Different Site-Estimation Techniques [J]. Bull Seism Soc Am,2000,90(2):286-297.
    [123]Steidl J H, Tumark in A G, Archuleta R J. What is a reference site? [J]. BSSA, 1996,86 (6),1733-1748 122.
    [124]Stephen H HARTZEL. Site Response Estimation From Earthquake Data[J]. Bull Seismol Soc Am.,1992,82(6):2308-2327.
    [125]Ungless R F. An infinite finite element[D]. University of British Columbia,1973.
    [126]Wass G. Linear two-dimensional analysis of soil dynamic problems in semi-infinite layered media[D]. Berkeley:University of California,1972.
    [127]White W, S Valliappun, I K Lee. Unified boundary for finite dynamic models[J]. Engng. Mech. Div., ASCE,1977,103(EM5):949-964.
    [128]Wolf, J.P. Dynamic Soil-Structure Interaction in Time Domain[M]. Prentice-Hall, Englewood Cliffs, N.J.1988,76.
    [129]Wong H L, Trifunac M D, Westermo B. Effects of Surface and Subsurface Irregularities on the Amplitude of Monochromatic Waves[J]. Bull. Seism. Soc. Am.,1977,67:353-368.
    [130]Wong H L. Effect of Surface Topography on the Diffraction of P,SV and Rayleigh Waves[J]. Bull.Seism.Soc.Am.,1982,72:1167-1183.
    [131]Xiao-Jun LI, Zhen-Peng LIAO, Hui-Min GUAN. An Explicit Finite Element-Finite Difference Method for Analyzing the Effect of Visco-elastic Local Topography on the Earthquake Motion[J]. ACTA Seismologica Sinica,1995, 8(3):447-456.
    [132]Zhang C H, Jin F, Pekau O A. Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons[J]. Earthquake Eng Struct Dyn, 1995,24.
    [133]Zhang C H, Song C M, Wang G L, Jin F.3-D infinite boundary elements and simulation of monolithic dam foundations[J]. Communications in Applied Number Methods,1989,5:389-400.
    [134]Zhang C, Pekau O A,Jin F.Application of FE-BE-IBE coupling to dynamic interaction between alluvial soil and rock canyons[J]. Earthquake Engineering and Structure Dynamic.,1992,21:367-385.
    [135]Zhang Chuhan, Jin Feng, Pekau O A. Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons[J]. Earthquake engineering & structural dynamics,1995,24(12):1651-1666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700