用户名: 密码: 验证码:
考虑结构—电气设备相互作用的大型变电站地震易损性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变电站作为整个电力系统的重要组成部分,一旦遭遇地震破坏,将导致整个电力系统无法正常运行,不但会造成严重的次生灾害和惨重的经济损失,而且会影响抗震救灾工作的顺利进行。目前国内外都加强了对电力系统地震灾害的研究工作,但是变电站的地震易损性研究还处于起步阶段,有许多问题值得深入研究。
     本文主要根据实际变电站工程,首先建立了考虑主体结构-电气设备相互作用的三维动力分析模型,考察了电气设备不同摆放形式及电气设备-主体结构不同质量比对变电站自振周期及振型特征的影响,并与按现行变电站设计方法即不考虑主体结构-电气设备相互作用的计算模型分析结果进行对比。分析结果表明,变电站主体结构的纵、横向刚度相差较大,抗扭刚度偏小,扭转效应显著。此外设备的不同摆放形式及设备-主体结构不同质量比均对变电站的自振周期及振型特征有不同程度的影响,考虑主体结构-电气设备相互作用的计算模型能够更真实反映变电站的动力特性。
     本文还选取了不同震中距和震级的100条实际地震纪录,以结构的最大层间位移角作为整体地震需求参数,在电气设备不同摆放形式及电气设备-主体结构不同质量比等八种工况条件下,以地震动地面峰值加速度PGA作为随机变量,进行了变电站非线性动力时程分析。通过地震需求分析,建立地震需求模型,得到变电站地震易损性曲线。结果表明,随着地面峰值加速PGA的增大,变电站轻微破坏、中等破坏、严重破坏和倒塌四种破坏状态对应的失效概率也都逐渐增大,即变电站的易损性增大。随着质量比的逐渐增大,相同地面峰值加速度PGA对应的破坏状态的失效概率呈逐渐增大的趋势。当已知变电站遭遇地震的地面峰值加速度、电气设备的摆放形式和电气设备-主体结构质量比时,可从得到的地震易损性曲线评估变电站在地震作用下的失效概率。
As an important part of the whole power system, substation once suffered earthquake damage will cause the entire power system can not run normally, which will not only cause serious secondary disasters and heavy economic losses, but also affects the smooth progress of relief work smoothly. At present, the research for earthquake disasters of the power system have been strengthened both at home and abroad, but substation seismic vulnerability research is still in its beginning stage. There are many issues which need further study.
     According to the actual substation project, a three-dimensional dynamic analysis model is established considering interaction of the main structure and the electrical equipment. The influence of the different placing forms of electrical equipment and the different quality of electrical equipment- main structure to electrical equipment for vibration cycle and the vibration type feature of the substation are inspected. Compari-son was made between the current design method of not considering the interaction of electric equipment and main structure calculation model analysis results and using the method above. The results showed that longitudinal stiffness of the main structure of the substation has great difference with the transverse stiffness, the torsional stiffness is small and the torsion effect is remarkable. Besides, the different place form of equipment and the different quality of the equipment - the main structure has the influence of different level for the vibration cycle and vibration mode of substation. So the calculation model considering the interaction of the main structure- equipment is capable of reflecting the dynamic characteristics of substation more real.
     The dynamic characteristics of transformer substation is obtained. 100 practical seismic records of different epicentral distance and magnitude is chosen and the biggest layers structural displacement Angle is chosen as seismic demand parameters. Under the condition of different placing forms of electrical equipment and the different quality of electrical equipment - main structure, considering the ground vibration variability, the nonlinear time-history analysis for substation is done. Through the earthquake needs analysis, establish seismic demand model is established. Finally, the seismic vulnerabil-ity curve for substation is obtained. The results showed that, with the increase of the peak ground acceleration PGA, the failure probability of the four destruction states ,mild damage, moderate damage, severely damaged and collapsed are gradually increasing. Namely the vulnerability of substation increased. With the gradually increasing of quality ratio, the failure probability of destruction states for the same ground peak accelerations PGA has a trend of gradually increase. So when knowing the peak ground acceleration, the form of equipment place, the quality ratio of the equipment - the main structure, we can evaluation the failure probability of substation under earthquake from the seismic vulnerability curve.
引文
[1]文波,牛荻涛,赵鹏.变电站抗震性能研究综述[J].工程抗震与加固检测,2007.19(6):1-5.
    [2]张美晶.电力设施震害及其危害性快速评估方法研究[D].哈尔滨:中国地震工程力学研究所,2009.
    [3]中国电力科学研究院.四川汶川大地震电力设施受灾情况初步调研报告[R].北京:中国电力科学研究院,2008.
    [4]郭振岩.变压器抗地震性能的研究[D].沈阳:沈阳工业大学,2004.
    [5]王永滋.变电所所址选择与总布置[M].北京:水利电力出版社,1986.
    [6]国家电网公司变电站典型设计工作组.国家电网公司变电站典型设计[M].北京:中国电力出版社,2005.
    [7]冯波.无人值班变电站的土建设计[J].山西建筑,2001,27(1):17-18.
    [8]文波.配电楼-电气设备系统的地震反应及减震控制研究[D].西安:西安建筑科技大学,2008.
    [9]夏岩.变电站主控楼抗震设计的几点思考[J].山西焦煤科技,2004,3:44-46.
    [10]张斌.GIS系统在220kV配电装置中的应用[J].轻金属,2004,8:52-54.
    [11]唐志坚.无人值班变电站的规划与设计[J].电力系统自动化,1996,20(2):36-38.
    [12] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出社,2010:1-249.
    [13]毕可为.群体建筑的易损性分析和地震损失快速评估[D].大连:大连理工大学,2009.
    [14]蒋溥,梁小华.关于工程地震实践若干问题[J].工程地质学报,1998,6(l):l-6.
    [15]于永清,李光范,李鹏等.四川电网汶川地震电力设施受灾调研分析[J].电网技术,2008,32(11):2-3.
    [16] Song J, Kiureghian A D,Jerome L,et al.Seismic interaction inelectrical substation equipment connected by non-linear rigid busconductors[J].Earthquake Engineering and Structural Dynamics,2007(36):167-190.
    [17]赵成刚,冯启民.生命线地震工程[M].北京:地震出版社,1994:10-14.
    [18]杨亚弟,张其浩,苏文藻.FZ-110J型避雷器体系抗震分析[J].地震工程与工程振动,1988(2):57-69.
    [19]杨亚弟,李桂荣.电气设施抗震研究概述[J].世界地震工程,1996(2):20-22.
    [20]李子国,史守峡,于海年.变压器结构的动力反应分析[J].世界地震工程,1996(1):49-52.
    [21]郭惠勇,张陵,蒋健.电力电容器组架结构抗震性能的优化分析和计算[J].工程抗震,2002(4):31-36.
    [22] Kiureghian A D,Sackman A L,Hong K J.Interaction in interconnected electrical substation equipment subjected to earthquake ground motions [R].PEER 1999:104-106.
    [23]张其浩.电力系统地震灾害的预测及其防灾对策[R].北京:国际地震局工程力学研究所研究报告,1994.
    [24] O,Rourke T D.Lessons learned for lifeline engineering from major urban earthquake [A].proc.of llth world conference on earthquake engineering,No.2172,1996.
    [25] APPlied Technology Couneil(ATC),Seismic Evaluation and Retrofit of Existing Concrete Buildings[R].ATC40,1996.
    [26] Anagnos T. DeveloPment of an Electrical Substation EquiPment Performance Database for Evaluation of Equipment Fragilities[R].Proceedings Fifth National Conference on Lifeline Earthquake Engineering,Seattle.1999.
    [27] Anagnos, T . Improvement of Fragilities for Electrical Substation Equipment[A].Proceedings Fifth National Conference on Lifeline Earthquake Engineering,Seattle.1999.
    [28] Federal Emergency Management Agency(FEMA) , Earthquake Loss EstimationMethodology-HAZUS99[R].Technical Manunual.Federal Emergeney Management Agency,1999.
    [29] Bellorini S,Salvetti M,Zafferani G.Seismic qualification of transformer high voltage bushings[J].Transactions on Power Delivery,IEEE 1998.
    [30] Der Kiureghian A,Sackman JL,Hong KJ.Seismic Interaction in Linearly Connected Electrical Substation Equipment[J] . Earthquake Engineering and Structural Dynamics.2001,30(3):327-347.
    [31] Song Junho , Der Kiureghian Armen , Reliability of Electrical SubstationEquipment Connected by Rigid Bus[A].13th wcee,Canada,2004,No:186.
    [32] Hong K.J.Der Kiureghian A. Interaction,Effect on Cable-Connected Electrical Equipment[A]. 13th wcee, Canada,2004, No:186.
    [33] H.M.Hwang,Chou T.Evaluation of Seismie Performance of an electric Substation using event tree/fault tree teehnique[J]. probabilistic Engineering Mechannics.1988,13(2).
    [34]傅修恒.GW6、Gw9型高压隔离开关模拟地震试验及其抗震能力分析[R].沈阳高压开关厂,1989.
    [35]国家地震局工程力学研究所,西北电力设计院,西安高压电瓷厂.单柱式电气设备支架动力响应放大系数试验研究报告[R].《电气设施抗震设计规范》(电气部分)专题之十一,1988.
    [36]曲乃泅,沈幸修,张钟鼎等.少油断路器的动力地震响应[A].设备抗震学术会议报告汇编.1987.
    [37]西北电力设计院.设备支架、导线对电气设备动力特性影响的初步探讨[A].《电力设施抗震设计规范》(电气部分)专题之九,1986.
    [38]陈淮,孙增寿.高压变电器抗震可靠度分析[J].世界地震工程,2001,17(4):1-4.
    [39]文波.隔震技术在变电建筑物中的应用研究[D].西安:西安理工大学,2004.
    [40]张伯艳,杜修力.500kV高压开关抗震性能计算分析[J].工程抗震,1999,(2):34-37.
    [41]刘晓明,曹云东.220kV高压SF6电流互感器抗震性能分析[J].变压器,2001,38(2):21-24.
    [42]程永锋,朱全军,卢智成.变电站电力设施抗震措施研究现状与发展趋势.电网技术[J],2008,32(22):1-5.
    [43]文波,张俊发,韩永兴,张小民.变电站配电楼的隔震设计[J].建筑结构.2005,35(11):1-4.
    [44]文波,牛荻涛,赵鹏.电力系统抗震可靠性研究与分析综述[J].灾害学.2007,22(4):1-2.
    [45]文波,牛荻涛,赵鹏.考虑结构-电气设备相互作用的配电楼系统地震反应分析[J].世界地震工程,2009,25(3): 1-5.
    [46]李杰,陈淮,孙增寿,赵晓.工业结构-设备体系在地震作用下的动力相互作用研究[J].地震工程与工程震动,1997,17(2):1-6.
    [47]薛茹,安里千,李怀奇.建筑物-设备互动体系的减震机理研究[J].力学与实践,2004(26):1-5.
    [48]孙增寿,陈淮,李杰.结构-设备复合复合系统振动特性研究[J].工业建筑,1997,27(2):1-5.
    [49]陈建兵,李杰.结构-设备体系动力相互作用研究[J].地震工程与工程震动,2001,21(3):1-6.
    [50]张向东,单海波.选煤厂结构-设备复合体系抗震研究现状[J].煤质技术,2003,1(1):1-3.
    [51]薛茹,安里千,刘升贵.结构-设备互动减震体系的时程分析[J].辽宁工程技术大学学报[J].2005,24(1):1-3.
    [52]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报,2006,15(4):1-6.
    [53]姜绍飞,陈强,吴兆旗.考虑的钢管混凝土框架结构易损性分析[J].武汉理工大学学报,32(9):1-5.
    [54]刘晶波,刘阳冰,闫秋实,韩强.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,43(2):1-6.
    [55]常泽民.钢筋混凝土结构非线性抗震可靠度及地震易损性分析[D].哈尔滨:哈尔滨工业大学,2006.
    [56]朱健,谭平,卜国雄,周福霖.钢筋混凝土低层框架结构易损性分析[J].华中科技大学学报(自然科学版),2010,38(5):1-5.
    [57]潘峰.钢筋混凝土框架结构的整体概率地震需求分析[D].哈尔滨:哈尔滨工业大学,2009.
    [58]黄明刚.钢筋混凝土连续梁桥的地震易损性、危险性及风险分析[D].哈尔滨:哈尔滨工业大学,2009.
    [59]高孟潭.新的国家地震区划图[J].地震学报,2001,25(6):630-636.
    [60] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出社,2010:1-249.
    [61]尚志海.静力与动力弾塑性分析在超限高层建筑结构抗震设计应用的研究[D].西安:西安建筑科技大学,2006.
    [62]马爱武.建筑结构地震易损性曲线的应用研究[J].中国水运,2010,10(11):1-3.
    [63] Orsini , G . A model for buildings, vulnerability assessment using the parameterless scale of seismic intesity(PSI)[J].Earthq Spec 1999,15(3):
    [64]张46菊3-4辉83,.胡世德.桥梁地震易损性分析的研究现状[J].结构工程师,2005,21(5):76-80.
    [65] ATC-13.Earthquake damage evaluation data for California[J].Redwood city(Palo Alto,California):Applied Technology Council,1985:367-346.
    [66] Mosalam KM,Ayala G,White RN,Roth C.Seismic fragility of LRC frames with and without masonry infill walls[J].J Earthq Eng 1997,1(4):693-720.
    [67] Kappos A,Pitilakis K,Stylianidis K,Morfidis K,Asimakopoulos D.Cost-benefit analysis for the seismic rehabilitation of buildings in Thessaloniki,based on a hybrid method of vulnerability assessment[J].In:Proceedings of the fifth international conference on seismic zonation,vol.I, Nantes(France):Ouset edition,1995:406-413.
    [68]中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-92).北京:中国计划出版社,1992.
    [69]赵国藩,金伟良,贡金鑫.结构可靠性理论[D].中国建筑工业出版社,2002,11.
    [70]张荣花.基于可靠性理论的立式储罐地震易损性研究[D].大庆:大庆石油学院,2009.
    [71]中国地震局工程力学研究所.建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.
    [72]建筑地震破坏等级划分标准[R].北京:中华人民共和国建设部,1990.
    [73]余安东.建筑结构的安全性与可靠性[M].上海:上海科学技术出版社,1985:83-98.
    [74]韩淼,李守静.基于能力谱法的框架-剪力墙结构地震易损性分析[J].土木工程学报(增刊),2010,vol(43):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700