用户名: 密码: 验证码:
液压提升机电液比例伺服系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压提升机作为矿山的关键设备,广泛应用于井下人员、物料的提升和下放,是典型的大惯量、变参数、时滞非线性液压系统。现有液压提升机控制系统为手动开环控制,存在自动化水平低、控制精度不高、驱动系统与制动系统工作协同性差等问题,严重影响矿井提升系统的效率和安全生产。为提高矿井液压提升机的控制性能,将电液比例伺服技术应用于液压提升机,建立了液压提升机电液比例伺服控制系统,实现了液压提升机速度控制系统的闭环自动控制和驱动与制动系统协同工作。
     基于A4VSO电液比例伺服变量泵的数学模型,通过仿真分析了该泵的性能特点以及斜盘反力对变量机构的影响;采用广义误差平方积分性能指标最优进行PI校正,得到了变量泵系统的最优PI控制参数;对校正后的变量泵动、静态性能进行了实验测试。建立了电液比例伺服速度控制系统数学模型,针对其时滞、变参数和大惯量负载特性,分别开展了PID优化控制和模糊PID-Smith预估优化控制的研究,对不同控制策略下系统的稳定性和对负载变化的适应性进行了分析、对比,结果表明,模糊PID-Smith预估优化控制能够更好地满足液压提升机对控制性能的要求。对液压提升机常规制动系统的动态特性进行了理论分析,得到了影响制动系统响应时间的主要因素和影响规律,指出提升负载的大范围变化是驱动系统与制动系统无法协同工作的根本原因;把电液比例控制和模糊控制策略引入液压提升机制动系统,建立了液压提升机模糊自协同制动系统。为验证和实现上述控制策略及分析结果,开发了液压提升机电液比例伺服实验系统并进行了相关实验。从模型的建立、控制策略分析研究、试验结果验证各方面系统地进行了液压提升机电液比例伺服控制系统的性能分析研究,对液压提升机控制系统的设计、改造具有理论指导意义和实用价值。
Hydraulic hoister is widely used in lifting and droppin personnel and materiel as a important equipment of mine, which is a typical hydraulic system with large inertia, time-varying parameters and time delay non-linear properties. The existing hydraulic hoister control system seriously affects the efficiency of mine hoisting system and production safety, due to its manual open-loop control which result in low control level, poor precision and lack of cooperation between the driving and braking system. The electro-hydraulic proportional servo technology is applied in hydraulic hoister to improve the control level, so the electro-hydraulic proportional servo system for hydraulic hoister is established, the close loop automatic speed control system and working cooperation between the driving system and braking system of hydraulic hoister is achieved.
     Based on the dynamic machematic model of A4VSO electro-hydraulic proportional servo variable displacement pump, the performance of pump and the influence of oblique plate reacting force to variable displacement mechanism is analyzed through simulation. The optimized PI parameters were gained by adopting PI adjustment aimed for generalized error square integral optimization, the dynamic and steady performances of adjusted variable displacement pump were tested. The mathematical model of electro-hydraulic proportional servo speed control system was established and the study on PID optimizing control and fuzzy PID smith pre-estimated optimizing control were promoted aimed at the properties of time delay, varying parameters and large inertia load. Through the analysis and comparison of the stability and adaptability with variational inertia load under different control policy, the result indicated that fuzzy PID smith pre-estimated optimizing control can satisfy the control performances of hydraulic hoister.The main facts that influenced response time of braking system is gained through the dynamic performances analysis of existing hydraulic hoister braking system, and the basal reason of lack of cooperation between the driving system and braking system is widely variable load were indicated. The fuzzy auto-cooperating braking system of hydraulic hoister is established through the application of electro-hydraulic proportional control technic and fuzzy control policy. The experimental platform of hydraulic hoister electro-hydraulic proportional servo system was built up, and the relational experiment is done to realize above control policies and validate analysis results.This dissertation analyzed the performance of hydraulic hoister electro-hydraulic proportional servo system through the establishment of the model, the research of control policy, the verification of the test results, it has theoretical significance and practical value to the design and reconstruction of hydraulic hoister.
引文
[1]彭佑多.论液压防爆提升机的竞争优势与发展趋势[J].中国矿业,2002,11(1):70-73.
    [2]毕士凯.浅析液压防爆提升机的竞争优势与发展趋势[J].内蒙古煤炭经济,2008(3):33-34.
    [3]彭佑多等.液压防爆提升机的发展概况[J].矿山机械,2001(9):23-25.
    [4]彭佑多等.液压防爆提升机发展面临的问题[J].煤矿机械,2001(9)1-4.
    [5]彭佑多等.液压提升机发展中须解决的若干技术问题[J].煤炭科学技术,2001(7)45-51.
    [6]叶笑洋.液压提升机现存技术问题分析及其解决方案[J].工矿自动化,2001(5)23-26.
    [7]许彦科.JYB-2型液压防爆提升机技术经济分析[J].矿山机械,2000(3):41-42.
    [8]张兰俊.电控防爆和液压防爆提升机比较分析[J].煤矿机械,1999(3):45-46.
    [9]李文民.乔文存.李先英.液压防爆提升机传动方式分析[J].矿山机械, 2000(8):7-8.
    [10]彭延顺.JKY2.0/1.3BS型液压绞车在矿山的应用[J].煤炭技术,2004(10):7-8.
    [11]王守全.矿井提升机变频技术的应用与发展[J].矿山机械,2008(23):71-74.
    [12]何晓群.矿井提升机调速和控制系统的发展[J].工矿自动化,2009(7):121-125.
    [13]贺风华.液压提升机最大提升加速度的控制[J].煤矿机械,2004(10)116-117.
    [14]彭佑多等.矿井提升机驱动系统合理加速度曲线的确定[J].湘潭矿业学院学报,2001(9)59-64.
    [15]李建设,矿用液压提升机起步工况下负载瞬时下滑机理与对策,湘潭矿业学院学报,1999 Vol 14(1):72-75.
    [16]彭佑多,张永忠,液压提升机的起动与制动工作协同性分析[J],矿山机械,2001(3 ):32-34.
    [17]彭佑多,液压提升机起动时负载瞬时下滑机理分析[J],煤矿机械,2001(11):30-32.
    [18]彭佑多等.影响液压提升机乘坐舒适性的主要因素分析[J].煤矿机械,2002(2):22-24.
    [19]刘繁茂等.基于状态方程的液压提升机起动特性研究[J].计算机仿真,2009(5):313-316.
    [20]曹海洋等.基于模型参考自适应的矿井提升机液压制动控制系统[J].煤矿机械,2009,30(4):112-114.
    [21]李文斌.提升机液压制动系统的升级改造[J].机械工程与自动化,2006(6):145-146.
    [22]杨仁华.基于神经网络的汽车液压制动系统可靠性研究[J].机床与液压,2008,36(6):176-178.195.
    [23]高伟等.基于AMESim的汽车液压制动系统HBS仿真研究[J].液压气动与密封,2009(2):35-38.
    [24]彭天好.变频泵控马达调速系统节能实验研究[J].煤炭学报.2004,29(1).
    [25]胡东明.变频驱动的闭式回路节能型液压升降系统[J].浙江大学学报(工学版),2008,42(2):209-213.
    [26]徐兵.采用闭式油路的节能液压电梯研究[J],2007(1):16-19.
    [27]欧阳小平等.液压变压器在液压电梯系统中的节能应用[J].中国机械工程,2003,14(19):1660-1662.
    [28]彭佑多等.矿井液压提升机的负载发电运行状态分析[J].中国工程科学,2006,8(12):97-101.
    [29]彭佑多等.煤矿液压提升机的安全功能与安全隐患分析[J].中国安全科学学报,2001,Vol11(4):25-28.
    [30]彭佑多等.电液集成式液压提升机的电液速度伺服控制系统的分析与综合[J].中国机械工程,2007(11):2682-2686.
    [31]彭佑多.张永忠.提高液压提升机速度特性的几种伺服控制方案比较.液压与气动[J],2001(12):25-28.
    [32]毛征宇.基于液压提升机速度控制研究的综合控制试验系统.矿山机械[J],2001(5):46-47.
    [33]毛征宇.基于电液比例技术的液压提升机提升速度的微机控制[J].矿山机械,2007(3):69-72.
    [34]毛征宇.防爆液压提升机提升速度的PLC控制系统[J].矿山机械,2007(2):69-71.
    [35]毛征宇.防爆液压提升机提升速度控制技术研究[D].武汉:武汉理工大学,2001.
    [36]毛征宇.防爆液压提升机提升速度的电液比例控制系统[J].矿山机械,2001(2).
    [37]赵继云.防爆液压提升机的运行控制问题分析与研究.煤矿机械[J],2006(9):52-54.
    [38]姚松涛.比例伺服阀在铝带箔轧机中的应用[J].冶金设备,2003(6):5.34-36.
    [39]丁曙光.电液比例伺服阀特性自动测试系统设计[J].合肥工业大学学报(自然科学版),2001,24(4):575-577.
    [40]黄新年等.非线性比例伺服阀在精密冷辗机中的应用[J].流体传动与控制,2005(1):39-41.
    [41]李丹.李斌.精密冷辗机液压比例伺服系统特性分析[J].流体传动与控制,2003(11):47-48.
    [42]王涛.数字式电液比例伺服系统的研究与实践[J].水利水电技术,2001,32(7):11-14.
    [43]王庆丰.基于压差传感的电液进、出口节流独立调节原理及控制特性研究[J].机械工程学报,2001(4):21-24.
    [44]王庆丰.大惯量负载电液进出口节流独立调节系统研究[J].中国机械工程,1999,10 (8): 853-855.
    [45]顾临怡等.由液压总线和开关液压源构成的新原理液压系统[J].机械工程学报,2003,39(1):84-88.
    [46]顾临怡.王庆丰.路甬祥.液压驱动的大惯量负载加减速特性研究[J].机械工程学报,2002,38(10):46-49.
    [47]秦华伟.顾临怡.陈鹰.基于开关液压源的大惯量负载速度控制系统[J].机械工程学报,2004,40(9):106-110.
    [48] Shoorehdeli, M.A. etc. Velocity control of an electro hydraulic servosystem[C]. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control (IEEE Cat. No. 06EX1267), p 985-8, 2006.
    [49] Qin Huawei. Velocity control system for high inertia loads based on switch mode hydraulic power supply[J]. Chinese Journal of Mechanical Engineering, 2004,40(9):106-10.
    [50] Dean, P.T.; Fales, R.C.Modern control design for a variable displacement hydraulic pump[C]. 2007 American Control Conference, p 3535-40, 2007.
    [51] Tai, Junjun. Simulation study on the digital electro-hydraulic servo system of speed governor system of turbine[C]. 2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010.
    [52]资新运等.电液比例变量泵控定量马达调速特性研究[J].工程机械,2007,38(7):45-48.
    [53]杨阳.钢包液压升降系统比例变量泵的调速控制[J].液压与气动,2006(2):63-65.
    [54]程坷飞.基于T_S模型的比例变量泵模糊控制系统[J].液压与气动,2007(7):37-40.
    [55]刘仕平.泵控马达调速系统单神经元PID控制参数优化的改进算法[J].液压气动与密封,2007(2):12-14.
    [56]李帅.自整定模糊PID在改善泵控马达动态特性中的应用[J].液压气动与密封,2009(3):18-22.
    [57]沈岩.自整定PID模糊控制器在泵控马达系统中的应用[J].机床与液压,2006(10):142-143.
    [58]桑勇.基于广义预测控制的泵控马达调速系统的研究[J].湖南科技大学学报(自然科学版),2007,22(4),34-37.
    [59]魏建.基于干扰观测器的泵控马达系统自适应模糊控制[J].机床与液压,2009,37(12):154 -156.
    [60] Dean, P.T. Modern control design for a variable displacement hydraulic pump[C]. 2007 American Control Conference, 9-13 July 2007 , New York, NY, USA.
    [61] Ming-Hwei Chu. The swashplate angle control of a variable displacement pump with an electro-hydraulic proportional valve[J]. Materials Science Forum, v 594, 389-400, 2008.
    [62] Chiang, Mao-Hsiung. Velocity control for a variable displacement hydraulic servo systemusing adaptive fuzzy sliding-mod[C].17th World Congress, International Federation of Automatic Control, IFAC, July 6, 2008 - July 11, 2008.
    [63]胡军.比例伺服阀控系统Fuzzy_PID复合控制器的研究[J].流体传动与控制,2005(1):17-20.
    [64]薛斯远.矿井提升机的模糊控制系统设计[D].太原:太原理工大学,2007.
    [65]邬昌军.铜板轧制智能模糊控制系统的应用研究[D].北京:北京工业大学,2006.
    [66]张志.液压拉伸机模糊控制系统设计中的问题研究[J].武汉科技大学学报(自然科学版),2000,23(3):267-271.
    [67] Jia Chun-yu.etc. Fuzzy control system of hydraulic roll bending based on genetic neural network[J]. Journal of Iron and Steel Research International, 2005 12(3): p 22-7.
    [68] Yang Jianwei.etc. Simulation of hydraulic semi-active suspension system based on the adaptive fuzzy control[C]. Second International Conference on Intelligent Computation Technology and Automation,2009.
    [69] Yan Wang.etc. Optimization and design of compound fuzzy control for hydraulic bending roll system[C]. Research Reports on Information Science and Electrical Engineering of Kyushu University, 2007,12(2):75-80.
    [70]桑勇.基于广义预测控制的泵控马达调速系统的研究[J].湖南科技大学学报(自然科学版),2007,22(4):34-37.
    [71] Yijian Liu. Predictive control of hydraulic winch motion control. Advances in Computation and Intelligence[C]. Third International Symposium,2008.
    [72] Zhou Entao. Predictive control of hydraulic winch motion control[C]. 2009 2nd IEEE International Conference on Computer Science and Information Technology,2009.
    [73] Changlin Ma. Simulation studies on improved generalized predictive control of hydraulic-driven erecting system[C]. Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing,2008.
    [74] Yang, Yongsheng. Electro-hydraulic servo system with predictive control[C]. 4th IEEE Conference on Industrial Electronics and Applications,2009.
    [75] Dahunsi, O.A. etc. Neural network based model predictive control of a servo hydraulic vehicle suspension system[C]. IEEE AFRICON ,2009.
    [76]管成.电液伺服系统的非线性鲁棒自适应控制[J].中国电机工程学报,2007,27(24):107-112.
    [77]曾克俭.非线性液压伺服系统的自适应控制[J].机械工程与自动化,2007,(1):102-104.
    [78]孙俊磊.高频电液振动台的模型参考自适应控制的研究[J].液压与气动,2008(10):24-26.
    [79]李迅.铝板带材板形和厚度解耦自适应控制策略[J].控制理论与应用,2010,27(1):116-120.
    [80]杨景明等.神经网络自适应控制在冷轧机AGC系统中的应用[J].冶金设备,2009(2):14-17.
    [81]杨俭.液压压力机模型参考自适应控制系统的研究[J].机床与液压,2009,37(6):83-85.
    [82] Gizatullin, A.O. etc. Adaptive control for a multi-axis hydraulic test rig[C]. Proceedings of the Institution of Mechanical Engineers, Part I (Journal of Systems and Control Engineering), 2007,221(12): 183-98.
    [83] Dong Liu.etc. Model reference adaptive control for time varying hydraulic systems[C]. International Conference on Machine Learning and Cybernetics (ICMLC), 2008.
    [84] Lee, Ji Min. A position control of electro-hydraulic actuator systems using the adaptive control scheme[C]. 7th Asian Control Conference, ,2009.
    [85] Yang Xiaole. Electro-Hydraulic Servo System Control Technology Based on Fuzzy-Multi-PID[C]. International Workshop on Intelligent Systems and Applications, 2009.
    [86]彭天好.大惯量变转速泵控马达调速系统模糊控制.机床与液压,2004(10):77.78.201.
    [87]王海霞.大惯性液压AGC系统的模糊控制仿真[J].有色金属加工,2007,36(3):53-55.
    [88]王锴等,电液仿真转台控制系统设计与仿真研究[J].宇航学报,2007(1):178-182.
    [89]童南建.基于DSPACE的大惯量转台控制系统设计[J].机床与液压,2007,35(12):138.142.
    [90]彭佑多.基于计算机控制的大惯量时变负载泵控马达液压试验系统[J].液压与气动,2002(9):37-40.
    [91]黄效国.一种高精度大惯性液压伺服控制系统及其控制方法[J].液压与气动,20023(8):37-38.
    [92] Pengfei Li. etc. Study on Predictive Fuzzy Control of Great Inertia System Based on Grey Model[C],Intelligent Computation Technology and Automation, 2009. ICICTA '09. Second International Conference on,Oct. 2009,On page(s): 801– 804.
    [93]曾宗桢.大时滞大惯性变频泵控马达调速系统研究[J].机床与液压,2007,35(6):130-131.
    [94]薛健.纯滞后控制系统的补偿及其MATLAB仿真[J].才智,2009(4):156-157.
    [95]刘晓峰.一种克服大纯滞后的预测控制方法[J].河南科技大学学报:自然科学版,2007,28(1):49-52.
    [96]李祖林.纯滞后过程模糊预测控制研究[J].自动化与仪器仪表,2009(4):8-10.
    [97] Kaddissi, C. Identification and Real-Time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping[C].IEEE/ASME Transactions on Mechatronics, 2007.
    [98] Wang, Dazhong. Model Following Control System for Descriptor of Linear Time-Delay System[C]. Proceedings - 2009 International Conference on Information Engineering and Computer Science, 2009.
    [99] Wang, Zhongwen. Research on controller design and simulation of electro-hydraulic servo system[C]. 2009 IEEE International Conference on Mechatronics and Automation,2009.
    [100] Wang, Zhongwen. Research on controller design and simulation of electro-hydraulic servo system[C].2009 IEEE International Conference on Mechatronics and Automation, 2009.
    [101]钟天宇等.大惯性双向变张力电液比例张力控制系统的研究[J].浙江大学学报(工学版),2007,41(8):1394-1399.
    [102]曹明.电液比例技术在摩擦焊压力控制系统中的应用[J].液压与气动,2008(1):43-45.
    [103]徐敬广.电液力伺服控制系统设计与动态仿真[J].宿州学院学报,2008,23(4):111-113.
    [104]于少娟.电液伺服力控系统的模糊学习控制[J].电机与控制学报,2004,8(1):56-59.
    [105] Jian-ying Li. etc. Study of electro-hydraulic force servo control system based on fuzzy control [C]. IEEE International Conference on Intelligent Computing and Intelligent Systems ,2009.
    [106] Gong Mingde. Force feedback model of electro-hydraulic servo tele-operation robot based on velocity control [C]. IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2008.
    [107] Yadong Meng. Research of the synthesis control of force and position in electro-hydraulic servo system [C]. International Conference on Computer Engineering and Technology (ICCET 2009), 2009.
    [108] Atos.伺服比例阀样本.Servoproportional Valves type DLHZO and DLKZOR(F180-15).
    [109] Atos.放大器样本.Analog electronic drivers type E-RI-TE and E-RI-LE(G200-17).
    [110]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2007:463.
    [111]王春行.液压控制系统[M].北京:机械工业出版社,2007:40.
    [112]杨叔子.机械工程控制基础[M].武汉:华中科技大学出版社2005:190.
    [113]盖志武.MATLAB_NCD优化模糊控制的仿真研究[J].计算机仿真,2004,21(10):130-132.
    [114]文定都.基于Smith模糊PID控制算法的炉温控制系统[J].仪表技术与传感器,2009(4):107-108.
    [115]张琦.基于施密斯补偿原理的模糊PID控制器设计[J].自动化技术与应用,20084,27(5):39-42.
    [116]郝鹏飞.时滞系统Fuzzy_Smith控制的仿真研究[J].陕西科技大学学报,2008,26(5):84-86.
    [117]何春华.基于LabVIEW的模糊PID控制系统[J].仪表技术,2010(7):57-59.
    [118]刘涛.基于LabVIEW的压缩机吸气压力模糊控制系统的设计[J].机床与液压,2009,37(3):114-115.
    [119]段其昌.基于LabVIEW模糊控制PID底盘测功机设计[J].电子测量技术,2007,30(2):87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700