用户名: 密码: 验证码:
以CaO为吸收体的生物质无氧气化制氢的机理与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料是当今世界的主要能源。然而,化石燃料不仅面临日益短缺的问题,其利用还带来了严重的环境污染并加剧了温室效应。充分利用可再生能源,开发清洁、高效、低碳排放的先进能源利用技术尤为重要。以CaO为吸收体的生物质无氧气化制氢技术是近年来兴起的一种新型制氢方法。利用该技术不但可以利用可再生的生物质资源制取高纯度H2、构建高效的能源利用系统,而且能同时获得高浓度的CO2气体、便于实现温室气体CO2的运输和储存。本文主要针对该技术开展相关的机理和试验研究。
     研究高CaO/C摩尔比条件下的生物质热解机理对分析生物质无氧气化反应物的分布具有重要意义,也有助于分析CaO对CO2和生物质焦油析出的影响规律。利用热重-傅里叶变换红外光谱联用方法进行了不同CaO添加量、不同升温速率下麦秆热解特性的试验研究。研究表明,在高CaO/C摩尔比条件下添加CaO后麦秆热解呈现出两个不同的阶段。在热解第一阶段(主要阶段),添加CaO明显降低了热解挥发分包括H2O、CO、CO2、CH4以及焦油类物质甲苯、间二甲苯、苯酚、蚁酸等的析出,该阶段热解失重量相应减少。CaO在麦秆热解中起到了CO2吸收剂和焦油分解催化剂的双重作用。动力学计算表明添加CaO还降低了麦秆热解反应的活化能。添加CaO后麦秆热解第二阶段主要是第一阶段所生成的CaCO3煅烧分解重新释放出CO2的过程,在实际气化过程中应该防止热解第二阶段的发生。
     加压不仅有利于提高气化强度,还将促进CaO碳酸化反应的进行,从而有利于进一步促进水煤气反应和水煤气变换反应。利用加压热重分析仪研究了不同总压、不同CO2浓度条件下CaO碳酸化反应的动力学特性。结果表明,提高总压和提高CO2浓度均能提高碳酸化初始阶段的反应速率和CaO的最终转化率。采用收缩核机理模型进行了等温反应动力学研究。发现CaO碳酸化反应的活化能随着压力的升高而逐渐降低。提出了综合考虑反应温度和CO2分压的CaO碳酸化反应速率经验方程。
     CaO的循环碳酸化反应活性对系统的经济性至关重要。利用加压热重分析仪考查了不同煅烧压力对CaO循环碳酸化反应活性的影响,同时研究了常压蒸馏水活化和加压水蒸汽活化两种方法对CaO循环碳酸化活性改进的效果。结合扫描电镜技术分析了CaO循环反应活性变化的原因。结果表明,低压煅烧时获得的吸收剂具有更高的孔隙率,其碳酸化活性随循环次数增加而降低的程度较加压煅烧时要低。两种活化方法均有效改善了CaO的孔隙结构,经过6次“煅烧-碳酸化”循环CaO的碳酸化平均活性分别提高了约22%和27%。
     流化床运行条件下气化操作变量的变化将对所研究的技术产生重要影响。利用自行搭建的常压流化床研究了CaO/C摩尔比、H2O/C摩尔比以及气化温度T对木屑无氧气化制氢过程的影响。结果表明,在研究范围内(CaO/C:0~2;H2O/C:1.2~2.18,T:489~740℃),CaO/C摩尔比、H20/C摩尔比和气化温度的提高均有利于提高合成气中H2的产量和浓度。在CaO/C摩尔比为1、H2O/C摩尔比为2.18、温度为740℃的条件下获得了H2浓度达62%的气化合成气,H2产量达72g/kg生物质。与先前其他生物质气化实验结果的对比验证了该技术在制取含高浓度H2和低浓度CO2的合成气方面具有优势。
     为开展加压条件下生物质无氧气化制氢的试验研究,自行设计、搭建了一台最大工作压力为1.0MPa的加压双循环流化床反应装置。在冷态试验的基础上,利用该试验台进行了加压条件下木屑无氧气化制氢的热态试验研究(反应压力1~4bar,反应温度530~760℃,CaO/C摩尔比0~1.2,H20/C摩尔比0.72~0.89)。结果表明:加压有利于提高合成气中H2的浓度和产量。与常压试验相比,加压反应进一步降低了合成气中CO2的浓度、减少了水蒸汽的消耗量,并提高了生物质气化的碳转化率和冷煤气效率。在反应压力为4bar、反应温度为680℃、H2O/C摩尔比为0.89、CaO/C摩尔比为1.2的条件下,合成气中H2的浓度和产量分别达到了67.7%、68g/kg木屑。
     为了全面获得系统的运行特性,为下一步试验研究提供理论指导,建立了以CaO为吸收体的生物质无氧气化制氢系统的动力学模型。模型考虑了气化炉和燃烧炉的物质和能量平衡,包含了生物质热解、生物质热解产物气化、CaO碳酸化、生物质半焦燃烧以及CaCO3煅烧等重要的反应过程。利用该模型全面预测了压力、温度、反应气氛对系统运行特性的影响。预测结果表明,比较合理的反应条件为:气化和煅烧压力~1MPa、气化温度~973K、燃烧温度~1173K。在典型工况计算条件下,系统达到了较合理的运行特性和制氢效果。
Fossil fuels are the main energy sources in the world. However, fossil fuels will be in large shortage in the near future. Moreover, the utilization of fossil fuels makes great challenge in environment protection and aggravates the global warming. As a result, it is rather significant to use renewable energy and develop advanced energy utilization technologies, which are clean, highly efficient and with low carbon emission. The CaO sorption enhanced biomass anaerobic gasification is a novel technology to produce hydrogen, which can not only produce syngas with high purity hydrogen using renewable biomass resource, but also be capable to obtain flue gases with high CO2concentration. The development of this technology will helps to construct high efficiency energy utilization system and be beneficical for CO2transport and storage. This thesis focuses on both mechanism and experimental studies relating to CaO sorption enhanced biomass anaerobic gasification.
     The study on biomass pyrolysis mechanism in the presence of abundant CaO is important to analyze reactant distributions prior to biomass anaerobic gasification and examine the influences of CaO additives on the evolution of CO2and biomass tar species. Using thermogravimetric Fourier transform infrared (TG-FTIR) analysis, wheat-straw pyrolysis experiments were conducted under different CaO addition amounts and heating rates. Results show that wheat-straw pyrolysis exhibits two stages in the presence of CaO. In the first and also the main stage, the addition of CaO apparently reduces the yields of H2O、CO、CO2、CH4and biomass tar species such as toluene, p-xylene, phenol and formic acid, and the total mass loss in this stage correspondingly decreases. CaO plays dual roles of both CO2sorbent and tar reduction catalyst in this stage. Kinetic calculation reveals that the addition of CaO can also lower the activation energy of biomass pyrolysis. The second stage is caused by the decomposition of CaCO3at high temperatures and should be avoided during realistic gasification operations.
     Pressurized operation implies great benefit for CaO carbonation and plays a key role to enhance hydrogen production reactions. The kinetic reaction properties of CaO carbonation under high pressure were examined using a pressurized thermogravimetric analyzer. Experiments were performed at different total pressures and different CO2concentrations. It is found that the increase in total pressure and CO2concentration both accelerate the initial reaction rate of CaO carbonation and increase the final conversion of CaO sorbents. The shrinking core model is adopted for the isothermal kinetic analysis. Results of kinetic calculation show that the activation energy of CaO carbonation decreases with increasing pressures. An empirical reaction rate equation for CaO carbonation is proposed coupling both reaction temperature and CO2partial pressure.
     The cyclic carbonation reactivity of CaO sorbents is critical for the economic of the whole system. Using a pressurized thermogravimetric analyzer and Scanning Electron Microscopy (SEM) technology, the effect of calcination pressure on CaO cyclic carbonation reactivity was examined. Meanwhile, the reactivation of CaO sorbents during cyclic calcination-carbonation (CC) reactions was also surveyed using distilled water hydration at atmospheric pressure and saturated steam hydration at high pressure. It is found that CaO sorbents calcined under lower CO2partial pressure exhibit higher porosity and lose reactivity more slowly with increasing cycle number than those calcined at high pressure. Both two hydration methods efficiently improve the CaO reactivity during cyclic CC reactions as a result of the promoted surface area and porosity. The mean values of reactivity increase for water hydration and steam hydration after6cycles were~22%and~27%respectively.
     The change of gasification operating variables under realistic fluidized bed conditions will have large influences on the investigated technology. The effects of CaO to carbon mole ratio (CaO/C), H2O to carbon mole ratio (H2O/C) and gasification temperature (T) on hydrogen production from sawdust anaerobic gasification were examined at atmospheric pressure, using a self-design bubbling fluidized bed reactor. Results show that, over the ranges examined in this study (CaO/C:0-2; H2O/C:1.2-2.18, T:489-740℃), the increase of CaO/C, H2O/C and T are all favorable for promoting H2production. A maximum H2output with a concentration of62%and a yield of72g/kg-biomass is achieved at CaO/C=1, H2O/C=2.18and T=740℃. The comparison with previous studies on fluidized bed biomass gasification reveals that this method has the advantage of being capable to produce a syngas with high H2concentration and low CO2concentration.
     In order to investigate the effects of reaction pressure on CaO sorption enhanced biomass anaerobic gasification, a pressurized dual circulating fluidized beds reactor was designed and constructed, which can be operated at pressures up to1.0MPa. After the cold state tests, hydrogen production experiments were performed in this facility using sawdust anaerobic gasification within the following experimental ranges: pressure (P)1-4bar, T530-760℃, CaO/C0-1.2and H2O/C0.72-0.89. Results show that pressurized operations are beneficial to increase both H2concentration and H2yield. Compared with the atmospheric runs, pressurized gasification further decreases the CO2concentration in syngas, reduces the consumption of steam and promotes the biomass carbon conversion and cold gas efficiency. H2output with a concentration of67.7%and a yield of68g/kg-sawdust was achieved at P=4bar, CaO/C=1.2, H2O/C=0.89and T=680℃.
     To get systematic operation properties of the whole H2production system and provide theoretical guide for the realistic dual fluidized bed runs in next step, a kinetic model for CaO sorption enhanced biomass anaerobic gasification was established. This model involves in five key reaction processes, i.e., biomass pyrolysis, gasification of the pyrolysis products, CaO carbonation, biomass char combustion and CaCO3calcination. Using this model, effects of reaction pressure, temperature and reaction atmosphere on system operation properties were systematically predicted. According to the calculation results, the suitable operation conditions are:gasification and calcination pressure1MPa, gasification temperature973K, calcination temperature1173K. At a typical calculation condition, the whole system achieves reasonable operation properties and H2output.
引文
[1]http://www.eia.doe.gov/oiaf/ieo/world.html.
    [2]国网能源研究院,2010世界能源与电力统计分析报告.北京,中国电力出版社,2010.
    [3]张国宝,中国能源发展报告2010.北京,经济科学出版社,2010.
    [4]刘广青;董仁杰;李秀金,生物质能源转化技术.北京,化学工业出版社,2009.
    [5]http://www.ipcc.ch.
    [6]张建安;刘德华,生物质能源利用技术.北京,化学工业出版社.2009.
    [7]Petrecca, G.; Decarli, M. In A review of hydrogen applications:Technical and economic aspects, International Symposium on Power Electronics.Electrical Drives, Automation and Motion,2008. 837-841.
    [8]钱伯章,氢能和核能技术与应用.北京,科学出版社,2010.
    [9]Ewan, B. C. R.; Allen, R. W. K., A figure of merit assessment of the routes to hydrogen. International Journal of Hydrogen Energy.2005,30, (8),809-819.
    [10]Barelli, L.; Bidini, G.:Gallorini, F.; Servili, S., Hydrogen production through sorption-enhanced steam methane reforming and membrane technology:A review. Energy.2008,33, (4),554-570.
    [11]Wilhelm, D. J.; Simbeck, D. R.; Karp. A. D.; Dickenson, R. L., Syngas production for gas-to-liquids applications:technologies, issues and outlook. Fuel Processing Technology.2001.71, (1-3),139-148.
    [12]Collot, A. G.. Matching gasification technologies to coal properties. International Journal of Coal Geology.2006,65, (3-4),191-212.
    [13]Shafirovich. E.; Varma, A., Underground Coal Gasification:A Brief Review of Current Status. Industrial & Engineering Chemistry Research.2009,48. (17),7865-7875.
    [14]Evans. R.; Boyd. L.; Elam, C.; Czernik. S.:French. R.:Feik. C.; Philips. S.; Chaornet. E.; Parent. Y. Hydrogen from biomass-catalytic reforming of pyrolysis vapors, FY 2003 Progress Report:National Renewable Energy Laboratory:2003.
    [15]Ni, M.; Leung, D. Y. C.; Leung, M. K. H.; Sumathy, K., An overview of hydrogen production from biomass. Fuel Processing Technology.2006,87, (5),461-472.
    [16]Yu, D. H.:Aihara, M.; Antal, M. J., Hydrogen-Production by Steam Reforming Glucose in Supercritical Water. Energy & Fuels.1993,7, (5),574-577.
    [17]Xu, X. D.; Matsumura, Y.; Stenberg, J.; Antal, M. J., Carbon-catalyzed gasification of organic feedstocks in supercritical water. Industrial & Engineering Chemistry Research.1996,35. (8). 2522-2530.
    [18]戚峰.生物质高效水解及发酵产氢的机理研究[戚峰博士学位论文].杭州,浙江大学.2007.
    [19]US, Fuel Cells and Infrastructure Technologies Program, Multi-Year Research, Development and Demonstration Plan. U.S. Department of Energy.
    [20]毛宗强,无碳能源:太阳氢.北京,化学工业出版社,2010.
    [21]王勤辉:沈洵;骆仲泱;岑可法,新型近零排放煤气化燃烧利用系统.动力工程.2003.23.(5).2711-2715.
    [22]王智化;王勤辉;骆仲泱:周俊虎;樊建人;岑可法.新型煤气化燃烧集成制氢系统的热力学研究.中国电机工程学报.2005.25,(12),91-97.
    [23]关键;王勤辉;骆仲泱:岑可法,新型近零排放煤气化燃烧利用系统的优化及性能预测.中国电机工程学报.2006,26,(9),7-13.
    [24]关键;王勤辉;骆仲泱:岑可法,新型近零排放煤利用系统中污染元素的迁移转化规律研究.浙江大学学报(工学版).2007,41,(12),2063-2068.
    [25]关键.新型近零排放煤气化燃烧集成利用系统的机理研究[关键博士学位论文].杭州,浙江大学.2007.
    [26]Guan, H.; Wang, Q. H.; Li, X. M.; Luo, Z. Y.; Cen, K. F., Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO. Renewable Energy.2007, 32, (15),2502-2515.
    [27]Squires, A. M., Cyclic Use of Calcined Dolomite to Desulfurize Fuels Undergoing Gasification. Advances in Chemistry Series.1967, (69).205-229.
    [28]Curran, G. P.; Fink, C. E.; Gorin, E. In CO2 acceptor gasification process, American Chemical Society Symposium on Fuel Gasification, Washington, D.C.,1966,141.
    [29]Ziock H J, Anthony E J, Brosha E L et al, Technical progress in the development of Zero Emission Coal technologies.
    [30]Rizeq. G.; West, J.; Frydman, A., Fuel-flexible gasification-combustion technology for production of hydrogen and sequestration-ready carbon dioxide.
    [31]Lin, S. Y.; Suzuki, Y.; Hatano, H.; Harada, M., Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method). Energy & Fuels.2001.15, (2),339-343.
    [32]Lin, S. Y.; Harada, M.; Suzuki, Y.; Hatano, H., Hydrogen production from coal by separating carbon dioxide during gasification. Fuel.2002,81, (16),2079-2085.
    [33]Florin, N. H.; Harris, A. T., Hydrogen production from biomass coupled with carbon dioxide capture:The implications of thermodynamic equilibrium. International Journal of Hydrogen Energy. 2007,32, (17),4119-4134.
    [34]Acharya, B.; Dutta, A.; Basu, P., An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. International Journal of Hydrogen Energy.2010,35, (4), 1582-1589.
    [35]Lin, S. Y.; Harada, M.; Suzuki. Y.; Hatano, H., Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (Ⅰ) gas products. Fuel.2004,83, (7-8),869-874.
    [36]Lin. S. Y.; Harada, M.; Suzuki, Y.; Hatano, H., Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (Ⅱ) solid formation. Fuel.2006,85, (7-8),1143-1150.
    [37]Sato, S.; Lin, S. Y.; Suzuki, Y.; Hatano, H., Hydrogen production from heavy oil in the presence of calcium hydroxide. Fuel.2003,82, (5),561-567.
    [38]Hanaoka, T.; Yoshida, T.; Fujimoto, S.; Kamei, K.; Harada, M.; Suzuki, Y.; Hatano, H.; Yokoyama, S.; Minowa, T., Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass & Bioenergy.2005,28, (1),63-68.
    [39]Fujimoto, S.; Yoshida, T.; Hanaoka. T.; Matsumura, Y.; Lin, S. Y.; Minowa, T.; Sasaki, Y. A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production. Biomass & Bioenergy.2007,31, (8).556-562.
    [40]Mahishi. M. R.; Goswami, D. Y.. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent. International Journal of Hydrogen Energy.2007,32, (14), 2803-2808.
    [41]Wei, L. G.; Xu, S. P.; Liu, J. G.; Liu, C. H.; Liu, S. Q., Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy & Fuels.2008,22, (3),1997-2004.
    [42]Hu. G. X.; Huang, H., Hydrogen rich fuel gas production by gasification of wet biomass using a C02 sorbent. Biomass & Bioenergy.2009.33, (5).899-906.
    [43]Xu, G. W.; Murakami, T.; Suda. T.; Kusama. S.:Fujimori. T.. Distinctive effects of CaO additive on barospheric gasification of biomass at different temperatures. Industrial & Engineering Chemistry Research.2005.44, (15).5864-5868.
    [44]Acharya. B.; Dutta. A.; Basu. P., Chemical-Looping Gasification of Biomass for Hydrogen-Enriched Gas Production with In-Process Carbon Dioxide Capture. Energy & Fuels.2009, 23.5077-5083.
    [45]Koppatz. S.; Pfeifer. C.; Rauch. R.; Hofbauer. H.; Marquard-Moellenstedt. T.:Specht. M.. H-2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Processing Technology.2009,90, (7-8),914-921.
    [46]Pfeifer, C.; Puchner, B.; Hofbauer, H.. Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chemical Engineering Science.2009,64. (23), 5073-5083.
    [47]Hughes, R. W.; Lu, D.; Anthony, E. J.; Wu, Y. H.. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Industrial & Engineering Chemistry Research.2004,43, (18).5529-5539.
    [48]Abanades, J. C.; Alvarez, D., Conversion limits in the reaction of CO2 with lime. Energy & Fuels. 2003,17, (2).308-315.
    [49]Salvador, C.; Lu, D.; Anthony, E. J.; Abanades, J. C., Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal.2003,96, (1-3),187-195.
    [50]Florin, N. H.; Harris, A. T., Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science.2008,63, (2).287-316.
    [51]Sutton. D.; Kelleher. B.; Ross, J. R. H., Review of literature on catalysts for biomass gasification. Fuel Processing Technology.2001.73, (3).155-173.
    [52]Han, J.; Kim, H., The reduction and control technology of tar during biomass gasification/pyrolysis:An overview. Renewable & Sustainable Energy Reviews.2008,12, (2). 397-416.
    [53]Li, C. S.; Suzuki. K., Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renewable & Sustainable Energy Reviews.2009.13, (3),594-604.
    [54]Gil, J.; Caballero, M. A.; Martin, J. A.; Aznar, M. P.:Corella. J.. Biomass gasification with air in a fluidized bed:Effect of the in-bed use of dolomite under different operation conditions. Industrial & Engineering Chemistry Research.1999,38, (11),4226-4235.
    [55]Narvaez, I.; Orio, A.; Aznar, M. P.; Corella. J., Biomass gasification with air in an barospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Industrial & Engineering Chemistry Research.1996.35, (7).2110-2120.
    [56]Orio, A.; Corella, J.; Narvaez. I., Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Industrial & Engineering Chemistry Research.1997.36, (9).3800-3808.
    [57]Simell. P. A.; Leppalahti, J. K.; Bredenberg, J. B. S.. Catalytic Purification of Tarry Fuel Gas with Carbonate Rocks and Ferrous Materials. Fuel.1992.71. (2).211-218.
    [58]赵辉.生物质高温气流床气化制取合成气的机理试验研究[赵辉博士学位论文].杭州.浙江大学,2007.
    [59]Raveendran, K.; Ganesh, A.; Khilar. K. C., Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel.1995,74. (12),1812-1822.
    [60]Pan, W. P.; Richards, G. N., Influence of Metal-Ions on Volatile Products of Pyrolysis of Wood. Journal of Analytical and Applied Pyrolysis.1989,16, (2),117-126.
    [61]Shimada, N.; Kawamoto, H.; Saka, S., Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis.2008,81, (1),80-87.
    [62]Mowakowski, D. J.; Jones, J. M.; Brydson, R. M. D.; Ross, A. B., Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel.2007,86, (15).2389-2402.
    [63]Wornat. M. J.; Nelson, P. F., Effects of Ion-Exchanged Calcium on Brown Coal-Tar Composition as Determined by Fourier-Transform Infrared-Spectroscopy. Energy & Fuels.1992,6, (2),136-142.
    [64]Masek, O.; Sonoyama, N.; Ohtsubo, E.; Hosokai, S.:Li, C. Z.; Chiba, T.:Hayashi. J., Examination of catalytic roles of inherent metallic species in steam reforming of nascent volatiles from the rapid pyrolysis of a brown coal. Fuel Processing Technology.2007,88, (2).179-185.
    [65]Jensen, A.; Dam-Johansen, K.; Wojtowicz, M. A.; Serio, M. A., TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy & Fuels.1998,12, (5),929-938.
    [66]Liu, Q.; Wang, S. R.; Zheng, Y.; Luo, Z. Y.; Cen, K. F., Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis.2008,82, (1),170-177.
    [67]Yang, C. Y.; Lu, X. S.; Lin, W. G.; Yang, X. M.; Yao, J. Z., TG-FTIR study on corn straw pyrolysis-influence of minerals. Chemical Research in Chinese Universities.2006.22, (4),524-532.
    [68]Liu, Q. R.; Hu, H. Q.; Zhou, Q.; Zhu. S. W.; Chen, G. H., Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel.2004,83, (6),713-718.
    [69]Zhu, T. Y.; Zhang, S. Y.; Hung, J. J.; Wang, Y.. Effect of calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology.2000,64, (1-3),271-284.
    [70]Bassilakis, R.; Carangelo, R. M.; Wojtowicz, M. A., TG-FTIR analysis of biomass pyrolysis. Fuel. 2001,80,(12),1765-1786.
    [71]Biagini, E.; Barontini, F.; Tognotti, L., Devolatilization of Biomass fuels and Biomass components studied by TG/FTIR technique. Industrial & Engineering Chemistry Research.2006.45, (13), 4486-4493.
    [72]de Jong, W.; Di Nola, G.; Venneker, B. C. H.; Spliethoff, H.:Wojtowicz. M. A.. TG-FTIR pyrolysis of coal and secondary biomass fuels:Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel.2007,86, (15),2367-2376.
    [73]Jiang, X. G.; Li, C. Y.; Wang, T.; Liu, B. C.; Chi, Y.; Yan, J. H., TG-FTIR study of pyrolysis products evolving from dyestuff production waste. Journal of Analytical and Applied Pyrolysis.2009, 84.(1),103-107.
    [74]胡荣祖;史启祯,热分析动力学.北京,科学出版社,2001.
    [75]卢涌泉;邓振华,实用红外光谱解析.北京,电子工业出版社,1989.
    [76]Narayan, R.; Antal, M. J., Thermal lag. fusion, and the compensation effect during biomass pyrolysis. Industrial & Engineering Chemistry Research.1996.35, (5),1711-1721.
    [77]Bhatia, S. K.; Perlmutter, D. D., Effect of the Product Layer on the Kinetics of the Co2-Lime Reaction. Aiche Journal.1983.29, (1).79-86.
    [78]Volker, S.; Rieckmann, T., Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results. Journal of Analytical and Applied Pyrolysis.2002,62. (2),165-177.
    [79]Lanzetta, M.; Di Blasi, C., Pyrolysis kinetics of wheat and corn straw. Journal of Analytical and Applied Pyrolysis.1998,44.(2),181-192.
    [80]Abu El-Rub. Z.; Bramer, E. A.:Brem. G., Review of catalysts for tar elimination in Biomass gasification processes. Industrial & Engineering Chemistry Research.2004.43. (22).6911-6919.
    [81]Jess. A., Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels. Fuel.1996,75, (12).1441-1448.
    [82]Jia, Y. B.; Huang. J. J.; Wang. Y., Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed. Energy & Fuels.2004.18, (6),1625-1632.
    [83]Khalil, R.; Varhegyi, G.; Jaschke. S.:Gronli. M. G.; Hustad, J.. CO2 Gasification of Biomass Chars: A Kinetic Study. Energy & Fuels.2009,23, (I),94-100.
    [84]Evans, R. J.; Milne, T. A., Molecular Characterization of the Pyrolysis of Biomass.1. Fundamentals. Energy & Fuels.1987,1, (2),123-137.
    [85]Abanades. J. C., The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chemical Engineering Journal.2002,90, (3).303-306.
    [86]Lee, D. K., An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal.2004,100, (1-3),71-77.
    [87]Sun, P.;Grace, J. R.; Lim, C. J.; Anthony, E. J., Determination of intrinsic rate constants of the CaO-CO2 reaction. Chemical Engineering Science.2008,63. (1),47-56.
    [88]Oakeson, W. G.; Cutler. I. B., Effect of Co2 Pressure on the Reaction with Cao. Journal of the American Ceramic Society.1979,62, (11-1),556-558.
    [89]Fuertes, A. B.; Alvarez, D.; Rubiera. F.; Pis, J. J.; Marban, G.; Palacios, J. M., Surface-Area and Pore-Size Changes during Sintering of Calcium-Oxide Particles. Chemical Engineering Communications.1991,109,73-88.
    [90]Ciambelli, P.; Lucarelli. D.; Valentino, R., Sulfur-Dioxide Reactivity of Carbonate Rocks.3. Influence of Porosity and Purity of Sorbents. Fuel.1985,64, (6).816-820.
    [91]Agnihotri, R.; Mahuli, S. K.; Chauk, S. S.; Fan. L. S., Influence of surface modifiers on the structure of precipitated calcium carbonate. Industrial & Engineering Chemistry Research.1999.38. (6),2283-2291.
    [92]Gupta. H.; Fan. L. S., Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research.2002.41. (16). 4035-4042.
    [93]Li, Z. S.:Cai, N. S.; Huang, Y. Y., Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent. Industrial & Engineering Chemistry Research.2006,45, (6),1911-1917.
    [94]Li, Z. S.; Cai, N. S.; Huang, Y. Y.; Han, H. J., Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy & Fuels.2005.19, (4),1447-1452.
    [95]Aihara, M.; Nagai, T.; Matsushita, J.; Negishi, Y.; Ohya, H., Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Applied Energy.2001,69, (3).225-238.
    [96]Li, Y. J.:Zhao, C. S.; Duan. L. B.; Liang. C.; Li. Q. Z.;Zhou, W.;Chen. H. C.. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture. Fuel Processing Technology.2008,89, (12),1461-1469.
    [97]Li, Y. J.; Zhao, C. S.; Qu, C. R.; Duan. L. B.; Li. Q. Z.; Liang. C., CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation. Chemical Engineering & Technology.2008,31, (2),237-244.
    [98]Fennell, P. S.:Pacciani, R.; Dennis, J. S.; Davidson, J. F.; Hayhurst, A. N., The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand. Energy & Fuels.2007.21, (4),2072-2081.
    [99]Kuramoto, K.; Fujimoto. S.;Morita. A.; Shibano. S.; Suzuki. Y.; Hatano. H.; Lin. S. Y.;Harada, M.; Takarada, T., Repetitive carbonation-calcination reactions of Ca-based sorbents for efficient CO2 sorption at elevated temperatures and pressures. Industrial & Engineering Chemistry Research.2003, 42,(5),975-981.
    [100]Manovic, V.; Anthony, E. J., Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environmental Science & Technology.2007,41, (4),1420-1425.
    [101]Borgwardt, R. H., Calcium-Oxide Sintering in Atmospheres Containing Water and Carbon-Dioxide. Industrial & Engineering Chemistry Research.1989,28, (4).493-500.
    [102]Manovic, V.; Anthony, E. J., Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent. Fuel.2008,87, (8-9),1564-1573.
    [103]Corella, J.; Aznar, M. P.; Delgado, J.; Aldea, E., Steam Gasification of Cellulosic Wastes in a Fluidized-Bed with Downstream Vessels. Industrial & Engineering Chemistry Research.1991,30, (10), 2252-2262.
    [104]Herguido, J.; Corella, J.; Gonzalezsaiz, J., Steam Gasification of Lignocellulosic Residues in a Fluidized-Bed at a Small Pilot Scale-Effect of the Type of Feedstock. Industrial & Engineering Chemistry Research.1992,31, (5),1274-1282.
    [105]Turn, S.; Kinoshita, C.; Zhang, Z.; Ishimura, D.; Zhou, J., An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy.1998,23, (8),641-648.
    [106]Han, L.; Wang, Q. H.; Ma. Q. A.; Yu, C. J.; Luo, Z. Y.; Cen, K. F., Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis. 2010,88, (2),199-206.
    [107]Florin, N. H.; Harris, A. T., Mechanistic study of enhanced H-2 synthesis in biomass gasifiers with in-situ CO2 capture using CaO. Aiche Journal.2008,54, (4),1096-1109.
    [108]Jia, L.; Hughes, R.; Lu, D.; Anthony, E. J.; Lau, I., Attrition of calcining limestones in circulating fluidized-bed systems. Industrial & Engineering Chemistry Research.2007,46, (15),5199-5209.
    [109]Blarney, J.; Anthony, E. J.; Wang, J.; Fennell, P. S., The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science.2010,36, (2),260-279.
    [110]Wang, Z. H.; Zhou, J. H.; Wang, Q. H.; Fan, J. R.; Cen, K. F., Thermodynamic equilibrium analysis of hydrogen production by coal based on Coal/CaO/H2O gasification system. International Journal of Hydrogen Energy.2006,31, (7),945-952.
    [111]王同章,煤炭气化原理与设备.北京.机械工业出版社,2001.
    [112]岑可法;倪明江;骆仲泱;严建华;池涌;方梦祥;李绚天;程乐鸣,循环流化床锅炉理论设计与运行.杭州,中国电力出版社,1999.
    [113]白树华;王志杰;房倚天;王洋,流化床气化炉带出细粉非机械返料机构研究.燃料化学学报.2004,32,(3),329-334.
    [114]Li, X.; Grace, J. R.; Watkinson, A. P.; Lim, C. J.; Ergudenler, A., Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel.2001,80, (2),195-207.
    [115]McLendon, T. R.; Lui, A. P.; Pineault. R. L.;Beer. S. K.; Richardson, S. W., High-pressure co-gasification of coal and biomass in a fluidized bed. Biomass & Bioenergy.2004,26, (4),377-388.
    [116]崔意华;袁善录,GSP加压气流床气化技术工艺分析.煤炭转化.2008,31,(1),93-96.
    [117]李庆;蔡雅娟;魏先全;冯凯;李天文,加压气流床煤气化单元技术及工艺选择.沪天化科技.2007,(4).
    [118]肖睿;金保升;熊源泉;段钰锋;仲兆平;周宏仓;黄亚继;陈晓平;章名耀,2MW加压喷 动流化床煤部分气化特性的研究.中国动力工程学报.2005,25,(2),211-216.
    [119]肖睿;金保升:周宏仓:黄亚继;章名耀.气化剂预热温度对加压喷动流化床煤部分气化的影响,.中国电机工程学报.2005.25,(22),109-113.
    [120]Knight. R. A., Experience with raw gas analysis from pressurized gasification of biomass. Biomass & Bioenergy.2000,18. (1),67-77.
    [121]陈寒石;房倚天;黄戒介;徐奕丰;杨金权;张建民:洋,加压灰融聚流化床粉煤气化技术的研究与开发.煤炭转化.2000,23,(1),56-60.
    [122]黄海峰;秦育红:吴志斌;杰,冯.,加压流化床中影响生物质气化气组成因素的研究.太原理工大学学报.2007.38,(2),125-129.
    [123]戢绪国;邓一英;王鹏,褐煤加压流化床气化的试验研究.煤气与热力.2006,26,(1).17-20.
    [124]Diblasi. C., Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels. Progress in Energy and Combustion Science.1993.19, (1),71-104.
    [125]Liliedahl, T.; Sjostrom, K., Modeling of Coal Pyrolysis Kinetics. Aiche Journal.1994,40, (9), 1515-1523.
    [126]Winter, F.:Prah, M. E.; Hofbauer. H., Temperatures in a fuel particle burning in a fluidized bed: The effect of drying, devolatilization, and char combustion. Combustion and Flame.1997,108, (3), 302-314.
    [127]Alves, S. S.; Figueiredo, J. L., A Model for Pyrolysis of Wet Wood. Chemical Engineering Science.1989,44, (12),2861-2869.
    [128]Pitt, G. J., The Kinetics of the Evolution of Volatile Products from Coal. Fuel.1962,41, (3), 267-274.
    [129]Boroson, M. L.; Howard. J. B.; Longwell. J. P.:Peters. W. A., Product Yields and Kinetics from the Vapor-Phase Cracking of Wood Pyrolysis Tars. Aiche Journal.1989.35. (1).120-128.
    [130]Luo. C. H.:Aoki. K.; Uemiya, S.:Kojima. T., Numerical modeling of a jetting fluidized bed gasifier and the comparison with the experimental data. Fuel Processing Technology.1998,55, (3). 193-218.
    [131]Merrick, D., Mathematical-Models of the Thermal-Decomposition of Coal.1. The Evolution of Volatile Matter. Fuel.1983.62, (5),534-539.
    [132]Ma, Z. H.:Zhang, C. F.:Zhu, Z. B.; Sun, E. L.. A Study on the Intrinsic Kinetics of Steam Gasification of Jincheng Coal Char. Fuel Processing Technology.1992,31, (1),69-76.
    [133]Li, S. F.; Sun, R. Z., Kinetic-Studies of a Lignite Char Pressurized Gasification with Co2, H2 and Steam. Fuel.1994,73, (3),413-416.
    [134]Blackwood. J. D.:Ingeme, A. J., The Reaction of Carbon with Carbon Dioxide at High Pressure. Australian Journal of Chemistry.1960.13, (2),194-209.
    [135]Muhlen, H. J.; Vanheek. K. H.; Juntgen, H.. Kinetic-Studies of Steam Gasification of Char in the Presence of H-2, Co2 and Co. Fuel.1985.64, (7).944-949.
    [136]Wall, T. F.; Liu, G. S.; Wu. H. W.; Roberts, D. G.; Benfell, K. E.; Gupta, S.; Lucas, J. A.:Harris, D. J., The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science.2002.28. (5).405-433.
    [137]Blackwood. J. D.; Mcgrory, F., The Carbon-Steam Reaction at High Pressure. Australian Journal of Chemistry.1958.11, (1).16-33.
    [138]Niksa. S.;Liu. G, S.:Hurt. R. H., Coal conversion submodels for design applications at elevated pressures. Part Ⅰ. devolatilization and char oxidation. Progress in Energy and Combustion Science. 2003.29, (5),425-477.
    [139]Bhatia, S. K.; Perlmutter, D. D., A Random Pore Model for Fluid-Solid Reactions.1. Isothermal, Kinetic Control. Aiche Journal.1980,26, (3),379-386.
    [140]Kajitani, S.; Suzuki, N.; Ashizawa, M.; Hara. S., CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel.2006,85, (2),163-169.
    [141]杨帆;范晓雷;周志杰;刘海峰;龚欣;于遵宏,随机孔模型应用于煤焦与CO2气化的动力学研究.燃料化学学报.2005,33,(6),671-676.
    [142]李政;王天骄;韩志明;郑洪韬;倪维斗,Texaco煤气化炉数学模型的研究—建模部分.动力工程.2001,21,(2),1161-1165.
    [143]Xu, J. G.; Froment. G. F., Methane Steam Reforming. Methanation and Water-Gas Shift.1. Intrinsic Kinetics. Aiche Journal.1989,35, (1),88-96.
    [144]Govind. R.; Shah, J., Modeling and Simulation of an Entrained Flow Coal Gasifier. Aiche Journal. 1984,30, (1),79-92.
    [145]Bhatia, S. K.; Perlmutter, D. D., A Random Pore Model for Fluid-Solid Reactions.2. Diffusion and Transport Effects. Aiche Journal.1981,27, (2),247-254.
    [146]Hong, J.; Hecker, W. C.; Fletcher, T. H., Modeling high-pressure char oxidation using Langmuir kinetics with an effectiveness factor. Proceedings of the Combustion Institute.2000,28,2215-2223.
    [147]Hurt, R. H.; Calo, J. M., Semi-global intrinsic kinetics for char combustion modeling. Combustion and Flame.2001,125, (3),1138-1149.
    [148]Yan, H. M.; Heidenreich, C.:Zhang, D. K., Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of 'net flow'. Fuel.1998,77, (9-10),1067-1079.
    [149]毛玉如;方梦祥;骆仲泱,O2/CO2气氛下石灰石煅烧分解的动力学和热力学研究.电力环境保护.2004,20,(4),43-45.
    [150]Borgwardt, R. H., Calcination Kinetics and Surface-Area of Dispersed Limestone Particles. Aiche Journal.1985,31, (1),103-111.
    [151]Dennis, J. S.; Hayhurst, A. N., The Effect of Co2 on the Kinetics and Extent of Calcination of Limestone and Dolomite Particles in Fluidized-Beds. Chemical Engineering Science.1987.42. (10), 2361-2372.
    [152]Ar, I.; Dogu, G., Calcination kinetics of high purity limestones. Chemical Engineering Journal. 2001,83,(2),131-137.
    [153]Keener, S.; Khang, S. J., A Structural Pore Development Model for Calcination. Chemical Engineering Communications.1992,117,279-291.
    [154]Silcox, G. D.; Kramlich, J. C.:Pershing, D. W., A Mathematical-Model for the Flash Calcination of Dispersed Caco3 and Ca(Oh)-2 Particles. Industrial & Engineering Chemistry Research.1989,28, (2),155-160.
    [155]岑可法;姚强:骆仲泱;李绚天,高等燃烧学.杭州.浙江大学出版社,2002.
    [156]Giddings, E. N. F. P. D. S. J. C., A new method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry.1966,58,19-27.
    [157]Fuller, E. N.; Schettle.Pd; Giddings, J. C., A New Method for Prediction of Binary Gas-Phase Diffusion Coeffecients. Industrial and Engineering Chemistry.1966,58, (5),19-&.
    [158]仲兆平:MarineTelfer;章名耀;李大骥;徐跃年;金保升;兰计香;张东柯Caroline石灰石煅烧的实验研究.洁净煤燃烧与发电技术.2000,30,18-24.
    [159]Garcia-Labiano, F.; Abad, A.; de Diego, L. F.; Gayan, P.; Adanez, J., Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science.2002,57, (13),2381-2393.
    [160]谢克昌.煤的结构与反应性.北京.科学出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700