钢桁架桥梁节点的焊接残余应力有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于焊接结构的诸多优点,焊接结构已日益广泛地应用于工业,船舶,建筑,桥梁建设中。近年来,随着焊接材料的发展,焊接技术和焊接工艺的不断进步和完善,焊接结构日趋大型化。特别是在高层建筑和大跨桥梁领域,大型和超大型的焊接结构日渐增多,但是由于焊接残余应力的存在经常会导致焊接结构性能的下降,例如使结构的抗疲劳、抗脆断、抗应力腐蚀的能力降低,使构件的稳定性下降,增大压杆的失稳性等。因而对重大焊接结构,从经济和消除应力的可能性方面考虑,有必要准确地了解焊接结构的残余应力分布规律,以便采取相应的措施进行控制消除。
     焊接是一个局部快速加热到高温,并随后快速冷却的过程。随着热源的移动,整个焊件的温度随时间和空间急剧变化,材料的物理性能参数也随温度剧烈变化,同时还存在熔化和相变时的潜热现象。因此,焊接温度场的分析属于典型的非线性瞬态热传导问题。因为焊接温度场分布十分不均匀,在焊接过程中和焊后将产生相当大的焊接应力和变形。焊接应力和变形的计算中既有大应变、大变形等几何非线性问题又有弹塑性变形等材料非线性问题。焊接温度场与应力场是双向耦合的,由于应力应变场对温度场的影响比较小,加上计算条件的限制,本文只考虑温度场对应力场的影响这一单向耦合。
     本文首先对焊接过程中的温度场和应力场的基本理论和数值模拟分析方法进行了阐述。在数值模拟计算过程中,本文采用ANSYS软件的热—结构耦合功能,利用间接耦合法,考虑了焊接温度场对应力应变场的单向耦合,对K型桥梁节点焊接过程中以及焊后的温度场进行模拟计算。为了提高收敛速度,本文对高温时的材料物理性能参数进行了适当的选取和处理,对焊缝处网格进行细化,选取高斯函数分布的热源模型,并利用ANSYS软件的APDL语言编写程序实现焊接热源的移动加载。最后通过后处理,给出了焊接温度场的动态变化图,不同时刻焊缝处各点的温度分布曲线,并描述了焊缝中心线及其热响应区各点的热循环。
     在温度场计算准确的基础上,将相应的热单元转换为结构单元,进行焊接残余应力的计算。通过后处理,给出了桥梁节点上各部位的热应力分布曲线以及焊缝部位残余应力的分布趋势。
Due to welding structure's many advantages, it is widely used in industry、boats、buildings and bridges. In recent years, with the development of welding material and technology, the welding structures become larger and larger. Especially in tall buildings and large span bridges, big even super structures stand out in our visions more and more.. But because of the existing of residual stress, it will leads to the decrease of structure's function. For example, the reduction of fatigue resistance, brittle fracture resistance, erosion resistance and stability .
     Welding process is that parts of an area is quickly heated to high temperature and then rapidly cooled. With the heat source moving, the whole welding temperature sharply changes, and the material's physical property parameters also sharply change. At the same time, there is latent heat of melt and phase-change. Therefore, the analysis of welding temperature field is a typical nonlinear transient heat conduction problem. Because of non-uniform temperature distribution, at the course of welding and post weld, welding takes on serious welding stress and deformation. Calculation of welding stress and deformation includes geometrical nonlinear problem and material nonlinear problem. Welding temperature field and stress, strain field are bi-directional couple, but the influence of stress and strain field on temperature is not so much,
     So this paper only considers the single couple which temperature field effects on stress and strain field.
     The paper firstly describes the basic theories and numerical analysis methods of the temperature field and residual stress field. In the process of numerical simulated calculating, with the thermal-structure coupling function of ANSYS software and indirect coupling this paper deals with the single coupling whose temperature field effects on stress and strain field and calculates the temperature field for the K-section welding line of bridge node. In order to improve the solution accuracy, it selects suitable material properties, refines the girding, chooses the Gauss function moving heat source model and uses ANSYS APDL language to compile program to apply moving heat source load in the process of numerical simulated calculating .Finally dynamic pictures of welding temperature field and temperature distribution curve of each point in welding line are shown, as well as heat circulation in heat response areas and welding centre line is described by post-solution.
     Based on accurate temperature field results, welding residual stress are also calculated by changing thermal elements into structural elements. A curve of regularity on transverse and longitudinal welding residual stresses and tendency of their distribution is presented by post-solution.
引文
[1]万明坤等.桥梁漫笔.北京:中国铁道出版社,1997
    [2]张玉玲,潘际炎,张建民,辛学忠.芜湖长江大桥钢梁细节疲劳强度的研究.中国铁道科学,2001,22(5):15-21
    [3]潘际炎.大跨度钢桥.中国铁道科学,2000,21(2):1-7
    [4]Gurney T.R.Fatigue of Welded Structures.Cambridge,UK:Cambridge University Press,1979
    [5]Maddox S.J.Fatigue Strength of Welded Structures(second edition).Cambridge,UK:Abington Publishing,1991
    [6]霍立兴.焊接结构工程强度.北京:机械工业出版社,1995
    [7]潘际炎.铁路钢桥疲劳.中国土木工程学会第八届年会论文集,1998 3
    [8]何波,胡宗武,商伟军,孙小明,孙涛.残余应力对对焊接头疲劳性能的影响[J].机械强度,1998,20(3):167-170.
    [9]李友国,康国政,江长安,窦鹏,王进.残余应力对接触疲劳裂纹萌生寿命的影响[J].清华大学学报(自然科学版),2005,45(12):1664-1667.
    [10]万秀琴,高明宝.焊接残余应力对压力容器疲劳裂纹扩展的影响[J].吉林化工学院学报,2007,24(2):61-63.
    [11]陈家权.焊接残余应力对疲劳裂纹萌生和扩展的影响[J].现代机械,2000,18(1),32-35.
    [12]Kazuyoshi M,Ichihiko T,Yokuharu Y.et al.Influence of Residual Stress on Fatigue Strength of Non-Load-Carrying Fillet Welded Joints,Transactions of the Japan Welding Society,1993,24(1),:70-77.
    [13]Galatolo R.and Lanciotti A.Fatigue Crack Propagation in Residual Stress Fields of Welded Plates,Int.J.Fatigue,1997,19(1),:43-49.
    [14]张彦华.焊接力学与结构完整性原理.北京:北京航空航天大学出版社,2007.8
    [15]游敏,郑小玲,余海洲.关于焊接残余应力形成机制的探讨。焊接学报.2003.4.51-58.
    [16]李耕俭.对钢构件中残余应力的探讨.西安公路交通大学学报,1999,19:63-65
    [17]米谷茂.残余应力的产生和对策[M].机械工业出版社,1983
    [18]增渊兴,张伟吕.焊接结构分析.机械工业出版社,1985
    [19]Yueda.Analysis of thermal elastic-plastic stress and strain during welding[J].Trans.Japan Welding Soc.,1971,2(2):90-94.
    [20]Vaidyanathan.Residual stresses due to circumferential welds[J].ASME Journal of Engineering Materials and Technology,1979,73(5):233-239.
    [21]Rybicki E.Comutation of residual stresses due to multi-pass welds in piping systems[J].Journal of pressure Vessel Technology,1979,10(1):149-153.
    [22]l.eblond J.B.A theoretical and numerical approach to the plastic bohaviour of steel s during,phase transfomations[J].J.Mech.Phys. Solids,1986,34(4):156-161.
    [23]Shim Y.Determination of residual stresses in thick-section weldments [J].Welding Journal,1992,5(9):28-36.
    [24]Teng T.L.Effect of welding conditions on residual stresses due to butt welds[J].International Journal of Pressure Vessels and Piping,1998,75(8):36-45.
    [25]Cao Z.Metallo-Thermo-Mechanics application to phase transformation incorporated processes[C].Proc.Theoretical Prediction in Joining and Welding,Osaka,Japan,2001.
    [26]张建强,吴甦,赵海燕,鹿安理,王煌.焊接应力与变形的数值模拟方法及应用[C].第十次全国焊接会议论文集。200 1:500-509.
    [27]鹿安理,史清宇,赵海燕,吴爱萍.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程,2001,12(2):183-187.
    [28]蔡志鹏,赵海燕,吴娃,鹿安理,史清宇.串热源模型及其在焊接数值模拟中的应用[J].机械工程学报,2001,37(4):25-29.
    [29]任维佳,吴爱萍,赵海燕,邹贵生.大型电机转子焊接残余应力的数值分析[J].焊接学报,2002,23(2):92-96.
    [30]徐家园.复杂构件三维焊接过程虚拟分析技术研究[D].广西大学硕士论文,2003(6).
    [31]张春平,李萌盛,秦琳.基于ANSYS的异种钢焊接残余应力的数值模拟[J].合肥工业大学学报(自然科学版),2003,26(3):460-463.
    [32]罗双双.大型水轮机转轮焊接残余应力热弹塑性有限元分析[D].西南交通火学硕士论文,2006(4)
    [33]陈虎,巩建鸣,涂善东.典型封闭环焊缝多道焊焊接残余应力的模拟分析[J].焊接学报,2006,27(10):73:78.
    [34]严浩.钢结构厚板焊接残余应力实验研究与有限元分析[D].武汉理工大学硕士论文,2006(11).
    [35]徐利霞.焊接残余应力场在交变载荷作用下的特性研究[D].大连理工大学硕士论文,2006(12).
    [36]赵锐.焊接残余应力的数值模拟及控制消除研究[D].人连理工大学硕士论文,2006(12).
    [37]张利国,姬书得,方洪渊,刘雪松.焊接顺序对T形接头焊接残余应力场的影响[J].机械工程学报,2007,43(2):234-238.
    [38]杨文,石永久,王元清,施刚.结构钢焊接残余应力二维有限元分析[J].吉林大学学报(工学版),2007,32(2):347-352.
    [39]薛忠明,杨广臣,张彦华.焊接温度场与力学场模拟的研究进展[J].中国机械工程,2006,13(11):976-981.
    [40]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65.
    [41]Brown,S.and Song,H.Finite simulation of weld ing of large structures[J].Journal of Engineering for Industuy,111:441-451.1992.
    [42]Andersen L.F.Residual stresses and deformations insteel steel structures[D].Denmark University of Technology,2000,12
    [43]Lindgren,L.and Karlsson,L.,Deformations and stresses in welding of shell structures[C].International journal for numerical methods in engineering,25:635-655,1988.
    [44]刘涛,杨凤鹏等.精通ANSYS[M].北京:清华大学出版社.2002.9.
    [45]王勖成.有限单元法[M].清华大学出版社,2004
    [46]林金木.有限单元法变分原理与应用[M].长沙:湖南大学出版社.2003:121-130
    [47]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2005.
    [48]周建兴等.凝固过程数值模拟中的潜热处理方法[J].铸造,2001,1(13):404-407
    [49]D.拉达伊.焊接热效应[M].北京:机械工业出版社,1997
    [50]陈楚等.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985,1:80-82
    [51]ANSYS.Inc.,ANSYS nonlinear analysis guide,ANSYS,Inc.,1999
    [52]武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990.
    [53]张文钱.焊接传热学[M].北京:机械工业出版社,1989,1142
    [54]ANSYS热分析指南
    [55]中国机械—工程学会焊接学会,焊接手册—焊接结构.北京机械工业出版社,2001
    [56]陈丙森.计算机辅助焊接技术.北京:机械工业出版社,1999.
    [57]纪峥.关于瞬态温度场有限元分析中采用协调或集中质量热容矩阵的探讨[[J].计算结构力学及其应用.1986,3(2):35-41
    [58]Goldak,J.Keynote address modeling thermal stresses and distorations in welds[M].Recent Trends in Welding Science and Technology,ASM International,1990
    [59]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):9396
    [60]谢元峰.基于ANSYSY的焊接温度场和应力场研究[D].武汉理工大学硕士学位论文,2006
    [61]K.Masubuchi.Prediction and control of residual stress in welded structures.Theoretical Prediction in Joining and Welding,1996:71-88
    [62]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700