用户名: 密码: 验证码:
活性氧在慢性间歇性低压低氧适应性心脏保护形成中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,慢性间歇性低压低氧(chronic intermittent hypobaric hypoxia,CIHH)对心脏的保护作用及其机制的研究越来越引起人们的关注,已成为临床医学、航天医学和高原医学等领域的研究热点之一。CIHH的心脏保护作用主要包括抗缺血性损伤,抗心律失常和改善心肌退行性变三个方面。其作用机制可能与促进心肌毛细血管增生、增加冠脉血流量、激活ATP敏感性钾通道、抑制线粒体通透转换孔以及抑制心肌细胞膜肾上腺素能受体活性等因素有关。然而,这些研究均是针对CIHH处理后结果,即CIHH处理的最终效应所进行的。然而,有关CIHH适应性心脏保护作用的形成过程及机制尚未见报道。目前一致的观点认为,活性氧(reactiveoxygen species,ROS)具有保护性或损伤性双重作用,取决于ROS的数量。大量证据表明,ROS在低浓度时表现心脏保护作用,而高浓度时可导致心肌损伤作用。在培养的细胞或者整体动物水平,间歇性低氧均可刺激ROS产生,ROS可以通过介导信号转导机制而参与细胞和机体对间歇性低氧的适应性反应。已有研究证实核转录因子2-硫氧还蛋白1-低氧诱导因子1(Nrf2-Trx1-HIF-1α)信号途径介导由ROS诱导的间歇性低氧反应。但迄今为止,尚不清楚ROS是否参与CIHH适应性心脏保护的形成。
     本研究旨在利用功能学、药物学、形态学和分子生物学等方法,在清醒动物整体、离体心脏和细胞分子水平动态观测CIHH适应性心脏保护的产生过程,并探讨ROS在其中的作用及其信号转导机制。研究分为以下三个部分:(1)利用生理信号遥测系统在清醒大鼠,动态观测CIHH适应形成过程中心血管活动的变化,并明确ROS在其中的作用。(2)证实Nrf2-Trx1-HIF1α分子途径及其主要的下游信号分子参与CIHH适应性心脏保护的形成,以及ROS在其中的作用。(3)明确CIHH对劲动脉体化学感受器敏感性的影响及ROS在其中的作用。Ⅰ活性氧参与清醒大鼠慢性间歇性低压低氧适应过程中心血管活动的动态变化
     目的:CIHH具有心脏保护作用。大量证据表明低氧刺激产生的ROS可作为第二信使激发机体产生各种适应性反应。本研究旨在探讨CIHH适应过程中心血管活动的动态变化,以及ROS所起的作用。
     方法:雄性SD大鼠随机分为四组:对照组(Control)、间歇性低压低氧处理组(CIHH)、抗氧化剂N-乙酰半胱氨酸处理组(Control+NAC)和应用N-乙酰半胱氨酸同时间歇性低压低氧处理组(CIHH+NAC)。CIHH组大鼠置于低压氧舱,给予42天模拟海拔5000米的低压低氧处理,每天6小时,其余时间处于常氧环境。Control+NAC组大鼠每天同一时间皮下注射NAC(80mg/kg)。CIHH+NAC组大鼠每天上仓前皮下注射NAC。Control组动物除不接受CIHH及NAC处理外,其余处理与CIHH大鼠相同。利用清醒动物生理信号遥测系统监测和分析大鼠在相应处理过程中平均动脉压(MAP)和心率(HR)的变化。应用ELISA方法测定左心室心肌组织中总超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化酶(GPX)、丙二醛(MDA)、类脂褐素(LFP)、蛋白羰基(PCL)和谷胱甘肽/二硫化谷胱甘肽的比值(GSH/GSSG)以监测心肌的氧化应激水平。
     结果:
     (1)CIHH大鼠心肌组织GSH-PX, MDA和LFP增加, GSH/GSSG降低(P<0.05),说明CIHH可提高心肌氧化应激水平和ROS的产生。
     (2)CIHH不影响常氧状态下各组动物的MAP。但可以取消HR随年龄的降低(P<0.05), NAC处理可部分阻断CIHH(P<0.05)这一作用。
     (3)在低压低氧仓内,CIHH大鼠的MAP和HR出现适应性变化。早期(上仓1小时内)MAP和HR迅速升高达到峰值(P<0.05),而后逐渐降至最低。后期(上仓2至6小时内),MAP和HR相对稳定,呈平台水平。随CIHH处理时间的延长,MAP和峰值和平台值逐渐升高,达峰值的时间缩短(P<0.05)。HR的峰值逐渐降低,达峰值时间延长,而其平台值逐渐升高(P<0.05)。NAC处理可部分取消MAP和HR的适应性变化。
     (4)给予急性常压低氧刺激,CIHH大鼠的MAP和HR升高幅度明显低于Control和Control+NAC组动物(P<0.05)。CIHH的这种抗低氧损伤作用至少可持续两周。NAC处理可部分阻断CIHH的此种作用(P<0.05)。
     结论:本研究首次在清醒大鼠证实,CIHH过程产生的适量ROS参与CIHH过程中MAP和HR的适应性变化,并参与形成对抗急性低氧损伤的适应性保护机制。这种ROS依赖的适应性保护作用产生至少需要28天的CIHH所激发;而且在CIHH处理结束后,这种保护作用可持续至少两周。Ⅱ活性氧激活的Nrf2-Trx1-HIF1信号途径参与大鼠慢性间歇性低压低氧适应性心脏保护的形成
     目的:探讨CIHH适应形成过程中Nrf2-Trx1-HIF1信号途径及其主要下游分子的激活,以及ROS在其中的作用。
     方法:实验分组和CIHH处理同本研究第一部分。利用Western印迹和免疫组织化学的方法观测左心室心肌组织中Nrf2, Trx1, HIF1α, iNOS,VEGF and EPO的表达。
     结果:
     (1)CIHH过程中Nrf2-Trx1-HIF1信号途径被激活。CIHH处理28天后,Nrf2, Trx1, HIF1α表达明显增强(P<0.05)。CIHH大鼠左心室心肌组织中,Nrf2的核转位及Nrf2阳性细胞核数均明显增加(P<0.05)。NAC处理可部分阻断这些效应(P<0.05)。
     (2)ROS可诱导Nrf2的核转位,即Nrf2的激活。CIHH处理1天后,心肌细胞核中Nrf2的表达明显升高,阳性细胞核数增加(P<0.05)。应用NAC抑制了Nrf2的表达(P<0.05),Nrf2的激活推迟至CIHH处理2天以后。
     (3)ROS介导CIHH过程中Nrf2-Trx1-HIF1信号途径的激活。在心肌的全细胞提取物中,Nrf2在CIHH处理的2天后被激活(P<0.05),Trx1和HIF1在CIHH处理3天后被激活(P<0.05)。应用NAC抑制这些信号分子的表达,并将Nrf2、Trx1和HIF1信号分子激活时间分别推迟至CIHH处理后3天或5天。
     (4)接受CIHH处理7或14天后,Nrf2-Trx1-HIF1信号途径的下游信号分子iNOS, VEGF和EPO的表达明显提高(P<0.05)。NAC可部分取消CIHH的上述作用(P<0.05)。
     结论:Nrf2-Trx1-HIF1信号途径及其主要下游分子iNOS, VEGF和EPO在CIHH适应形成过程中被激活。iNOS, VEGF和EPO参与ROS依赖的CIHH适应性心脏保护机制。Ⅲ慢性间歇性低压低氧通过适应过程中产生的ROS易化颈动脉体化学感受器活动
     目的:探讨CIHH对颈动脉体化学感觉器敏感性及呼吸频率(respiration frequency,RF)的影响,明确ROS在其中的作用。
     方法:实验分组和CIHH处理同本研究第一部分。利用生理信号遥测系统记录和分析不同处理过程中清醒动物的呼吸频率变化。采用全神经双根铂丝电极记录法记录颈动脉体窦神经放电活动(carotid sinus nerveactivity,CSNA)。
     结果:
     (1)Control组大鼠的RF无明显年龄依赖性变化。各组大鼠的基础RF无统计学差异。
     (2)在低压低氧仓内,CIHH大鼠的RF出现适应性变化。早期(上仓1小时内)RF迅速升高达到峰值,而后逐渐降至最低(P<0.05)。后期(上仓2至6小时内),RF相对稳定,呈平台水平。随CIHH处理时间的延长,RF的峰值逐渐降低,达峰值时间延长(P<0.05),而其平台值逐渐升高(P<0.05)。NAC处理可部分取消RF的适应性变化(P<0.05)。
     (3)给予急性常压低氧刺激,CIHH大鼠的RF升高幅度明显低于Control和Control+NAC组动物(P<0.05)。CIHH的这种抗低氧损伤作用至少可持续两周(P<0.05)。NAC处理可部分阻断CIHH的此种作用(P<0.05)。
     (4)与Control组大鼠相比,CIHH大鼠的CSNA对急性常压低氧刺激的反应明显增强(P<0.05)。NAC处理可完全取消CIHH的这一作用(P<0.05)。
     结论:CIHH可诱导ROS依赖性的RF适应性变化和抗急性低氧效应,这种抗急性低氧损伤作用可以维持至少两周。CIHH增强颈动脉体化学感觉器对低氧的敏感性,这种易化作用是由CIHH适应过程中产生的ROS所介导。
In recent years, the cardioprotective effect of chronic intermittenthypobaric hypoxia (CIHH) has been recognized and attracts the publicattention more and more. The study on the mechanism of CIHHcardioprotection is a hot research topic in clinical medicine, space medicineand high altitude medicine. The cardioprotective effects of CIHH can bemainly summarized as protecting the heart against ischemia injury,antagonizing arrhythmia, and improving the degeneration of myocardial cell.Multiple mechanisms or pathways have been suggested to contribute to thecardioprotection of CIHH, such as increase of myocardial capillaryangiogenesis and coronary flow, activation of ATP-sensitive K+channels,inhibition of mitochondrial permeability transition pores and suppression ofthe adrenergic receptor activity on cardiac membrane. However, these findingsare the end effects of CIHH treatment, that is to say, the observations of thefinal results of CIHH. What happened during CIHH exposure and how theseprotective effects of CIHH produced have not been reported. It is generallyaccepted that reactive oxygen species (ROS) exert both deleterious andbeneficial actions depending on the amount of ROS. A lot of evidence showsthat ROS are protective at low level but detrimental at high level on the heart.Intermittent hypoxia increases ROS generation both in cell culture and inintact animals and ROS-mediated signaling mechanisms contribute to cellularand systemic responses to intermittent hypoxia. The nuclear factor erythroid2-related factor2-thioredoxin1-hypoxia-inducible factor (Nrf2-Trx1-HIF-1α)signal transduction pathway was identified as ROS-induced mechanisms inresponse to intermittent hypoxia. However, it is still unknown whether ROSplay a role in the dynamic formation of CIHH cardiac protection.
     This study aimed to investigate the role of ROS in adaptivecardioprotection of CIHH dynamically and the mechanism underlying thisprocess in conscious rats through physiological, pharmacological,morphological and molecular biology techniques. Our study consisted of threeparts:(1) To clarify the dynamic changes of the cardiovascular activity and therole of ROS during CIHH adaptation.(2) To investigate the Nrf2-Trx1-HIF1αsignaling pathway with its main cardioprotective molecules in adaptivecardioprotection.(3) To determine the effect of CIHH on the sensitization ofcarotid body chemoreceptor.Ⅰ Reactive oxygen species contribute to the dynamic changes ofcardiovascular responses during the process of chronic intermittenthypobaric hypoxia adaptation in conscious rats
     Objective: CIHH has been reported to have cardioprotective effects.Cumulating evidences have indicated that ROS released during hypoxia assecond messengers may help to trigger various adaptive responses. The aim ofpresent study was to clarify the dynamic changes of the cardiovascular activityand the role of ROS during CIHH adaptation in conscious rats
     Methods: Adult male Sprague-Dawley rats were randomly divided intothe four groups: control group (Control), CIHH treatment group (CIHH),antioxidant N-Acetylcysteine group (Control+NAC), CIHH plus NACtreatment group (CIHH+NAC). The rats in CIHH group were exposed tohypoxia simulating5000m high altitude (oxygen11.1%) in a hypobaricchamber for42days,6hours each day. Control+NAC rats accepted ROSscavenger NAC(80mg/kg)injection subcutaneously each day for42days.CIHH+NAC rats were given NAC before the hypobaric hypoxic exposure.Control rats were living in the same environment as CIHH rats with freeaccess to food and water, except no CIHH and NAC treatment. The meanarterial pressure (MAP) and heart rate (HR) were recorded and analyzedcontinuously in conscious rats by using the PhysioTelTMTelemetry system.The activity of total superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), malondialdehyde (MDA), lipofuscin-like pigments (LFP),protein carbonyl (PCL) and the ratio of glutathioneto glutathione disulfide(GSH/GSSG) in ventricular myocardium were measured with ELISA kit.
     Results:
     (1) CIHH enhanced oxidative stress and ROS generation in myocardialtissue with the increased GSH-PX, MDA and LFP (P<0.05), and decreasedGSH/GSSG (P<0.05).
     (2) CIHH did not affect MAP, but abolished the age-dependent decreaseof HR under normobaric normoxia condition (P<0.05).
     (3) During CIHH exposure in hypobaric chamber, MAP and HRdisplayed adaptive changes. The MAP and HR increased rapidly from thebaseline to the peak level, and gradually returned to the lowest level within theearly period (first hour)(P<0.05). In late period (from second to six hours),MAP and HR were keeping in plateau level. Along with hypobaric hypoxiaexposure, the peak and plateau level of MAP gradually increased and the timeto reach the peak gradually shortened (P<0.05), but the peak HR graduallydecreased and the time to reach the peak gradually prolonged (P<0.05) in earlyperiod, while plateau HR gradually increased in late period (P<0.05). Suchadaptive changes of MAP and HR in CIHH rats were partly abolished by theROS scavenger NAC (P<0.05).
     (4) During acute normoxia hypoxia, MAP and HR of rats were increasedsignificantly (P<0.05), but the increasing of MAP and HR was much smallerin CIHH rats than those in Control and NAC rats (P<0.05). This anti-acutehypoxia effect of CIHH lasted for two weeks and could be partly abolished byNAC (P<0.05).
     Conclusion: The result of this study demonstrated for the first time thatappropriate ROS, produced during CIHH adaptation, contribute to theadaptive protection against acute hypoxia-induced changes of MAP and HR inconscious rats. Moreover, this ROS-dependent adaptive protection needs atleast28days CIHH to trigger, and can maintain effectively for two weeksafter CIHH schedule. Ⅱ The Nrf2-Trx1-HIF1pathway activated by reactive oxygen speciesparticipates the formation of chronic intermittent hypobaric hypoxiaadaptation in rats
     Objective: The aim of this study was to investigate the activation ofNrf2-Trx1-HIF1α signaling pathway with its main cardioprotective moleculesand the role of ROS in the activation during the process of CIHH adaptation.
     Methods: The experimental groups and CIHH exposure were the sameas those in Part. The expression of Nrf2, Trx1, HIF1α, inducible nitric oxidesynthase (iNOS), vascular endothelial growth factor (VEGF) anderythropoietin (EPO) in ventricular myocardium were detected by WesternBlot analysis and IHC staining.
     Results:
     (1) ROS-induced Nrf2-Trx1-HIF1α signaling pathway was activatedduring CIHH. The expression of Nrf2, Trx1and HIF1α were increased after28days of CIHH exposure (P<0.05). Consistently, CIHH significantlyenhanced nucleus Nrf2and increased the positive nuclei number in the LVmyocardial cells (P<0.05). NAC treatment abrogated these responses(P<0.05).
     (2) ROS induced the translocation of Nrf2from the cytosolic fraction tothe nucleus, i.e. the activation of Nrf2. Nrf2expression was significantlyenhanced in the nucleus fraction and the positive nuclei number was increasedafter one day CIHH exposure (P<0.05). NAC treatment delayed thistranslocation to2days after CIHH as well as significantly abrogated theactivation of Nrf2(P<0.05).
     (3) ROS mediated the activation of Nrf2-Trx1-HIF1α signaling pathwayduring CIHH. CIHH enhanced Nrf2protein in the whole-cell extraction after2days of CIHH exposure while increased Trx1and HIF1α after3days CIHHexposure (P<0.05). Chronic NAC injection attenuated the effects of CIHHmarkedly (P<0.05), and also prolonged the activation of Nrf2, Trx1and HIF1αto the3days and5days after CIHH exposure, respectively.
     (4) CIHH significantly promoted the expression iNOS, VEGF and EPO, the downstream protective molecules of HIF (P<0.05). Among which theexpression of iNOS and VEGF were increased after7days of CIHH exposure(P<0.05) while the expression of EPO (P<0.05) was enhanced after14days ofCIHH exposure. NAC partially blocked these effects (P<0.05).
     Conclusion: We found in this part of study that the Nrf2-Trx1-HIF1αpathway with its downstream genes iNOS, VEGF and EPO was activatedduring the formation of CIHH adaption. According to the fact thatenhancement of iNOS, VEGF and EPO attenuated by ROS scavenger NAC, itsuggests that activation of iNOS, VEGF and EPO genes induced byNrf2-Trx1-HIF1α pathway contribute to the ROS-depended adaptivecardiovascular protection.Ⅲ Chronic intermittent hypobaric hypoxia facilitates the chemoreceptoractivity in carotid body via reactive oxygen species during the process ofCIHH adaptation
     Objective: To investigate the effect of CIHH on carotid body (CB)sensitization and the respiration frequency (RF). And to verify the role of ROSplay on the CB sensitization during CIHH adaptation.
     Methods: The experimental groups and CIHH exposure were the sameas those in Part. The RF was recorded and analyzed continuously inconscious rats through the PhysioTelTMTelemetry system. The carotid sinusnerve activity (CSNA) was recorded by the conventional whole nerve bipolarplatinum electrodes recording techniques.
     Results:
     (1) The RF of control rats did not show age-dependent changes. Therewas no significant difference of RF among control, CIHH, Control+NAC andCIHH+NAC rats under normoxia conditions.
     (2) During CIHH exposure in hypobaric chamber,RF shown adaptivechanges. The RF increased rapidly from the baseline to reach the peak level,and gradually returned to the lowest level within the early period (first hour)(P<0.05). In late period (from second to six hours), RF were keeping in plateau level (P<0.05). Along with hypobaric hypoxia exposure, the peak RFgradually decreased and the time to reach the peak gradually prolonged inearly period (P<0.05), while plateau HR gradually increased in late period(P<0.05). Such adaptive changes were partly abolished by the ROS scavengerNAC (P<0.05).
     (3) During acute normoxia hypoxia, RF of rats was increasedsignificantly (P<0.05), but the increasing of RF was much smaller in CIHHrats than those in Control and NAC rats (P<0.05). This anti-acute hypoxiaeffect of CIHH lasted for two weeks and could be partly abolished by NAC(P<0.05).
     (4) Compared with the control rats, CSNA response to hypoxia in CIHHrats significantly increased (P<0.05). Chronic NAC treatment completelyblocked augmentation effect of CIHH on CSNA (P<0.05).
     Conclusion: CIHH can induce ROS-dependent adaptive respiratoryresponse and anti-acute hypoxia effect which can be preserved for two weeksat least. Also CIHH augments the carotid body chemoreceptor response tohypoxia and this CIHH-induced sensitization of CB activity is mediated byROS generated during CIHH exposure.
引文
1Kopecky, M.; Daum, S.[Adaptation of the myocardium to altitude anoxia].Cesk Fysiol7:218-219;1958
    2Beguin, P. C.; Belaidi, E.; Godin-Ribuot, D.; Levy, P.; Ribuot, C.Intermittent hypoxia-induced delayed cardioprotection is mediated byPKC and triggered by p38MAP kinase and Erk1/2. J Mol Cell Cardiol42:343-351;2007
    3Zhang, Y.; Yang, H. T.; Zhou, Z. N.[The cardioprotection of intermittenthypoxic adaptation.]. Sheng Li Xue Bao59:601-613;2007
    4Zhang, Y.; Zhong, N.; Gia, J.; Zhou, Z. Effects of chronic intermittenthypoxia on the hemodynamics of systemic circulation in rats. Jpn JPhysiol54:171-174;2004
    5Dong, J. W.; Zhu, H. F.; Zhu, W. Z.; Ding, H. L.; Ma, T. M.; Zhou, Z. N.Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis incardiac myocytes via regulating Bcl-2/Bax expression. Cell Res13:385-391;2003
    6Zhang, Y.; Zhong, N.; Zhu, H. F.; Zhou, Z. N.[Antiarrhythmic andantioxidative effects of intermittent hypoxia exposure on rat myocardium].Sheng Li Xue Bao52:89-92;2000
    7Zhong, N.; Zhang, Y.; Zhu, H. F.; Wang, J. C.; Fang, Q. Z.; Zhou, Z. N.Myocardial capillary angiogenesis and coronary flow in ischemiatolerance rat by adaptation to intermittent high altitude hypoxia. ActaPharmacol Sin23:305-310;2002
    8Zhu, H. F.; Dong, J. W.; Zhu, W. Z.; Ding, H. L.; Zhou, Z. N.ATP-dependent potassium channels involved in the cardiac protectioninduced by intermittent hypoxia against ischemia/reperfusion injury. LifeSci73:1275-1287;2003
    9Zhu, W. Z.; Xie, Y.; Chen, L.; Yang, H. T.; Zhou, Z. N. Intermittent highaltitude hypoxia inhibits opening of mitochondrial permeability transitionpores against reperfusion injury. J Mol Cell Cardiol40:96-106;2006
    10Guan, Y.; Gao, L.; Ma, H. J.; Li, Q.; Zhang, H.; Yuan, F.; Zhou, Z. N.;Zhang, Y. Chronic intermittent hypobaric hypoxia decreasesbeta-adrenoceptor activity in right ventricular papillary muscle. Am JPhysiol Heart Circ Physiol298:H1267-1272;2010
    11Schmidt, M. C.; Askew, E. W.; Roberts, D. E.; Prior, R. L.; Ensign, W. Y.,Jr.; Hesslink, R. E., Jr. Oxidative stress in humans training in a cold,moderate altitude environment and their response to a phytochemicalantioxidant supplement. Wilderness Environ Med13:94-105;2002
    12Moller, P.; Loft, S.; Lundby, C.; Olsen, N. V. Acute hypoxia and hypoxicexercise induce DNA strand breaks and oxidative DNA damage in humans.FASEB J15:1181-1186;2001
    13Askew, E. W. Work at high altitude and oxidative stress: antioxidantnutrients. Toxicology180:107-119;2002
    14Kolar, F.; Ostadal, B. Molecular mechanisms of cardiac protection byadaptation to chronic hypoxia. Physiol Res53Suppl1:S3-13;2004
    15Malec, V.; Gottschald, O. R.; Li, S.; Rose, F.; Seeger, W.; Hanze, J. HIF-1alpha signaling is augmented during intermittent hypoxia by induction ofthe Nrf2pathway in NOX1-expressing adenocarcinoma A549cells. FreeRadic Biol Med48:1626-1635;2010
    16Nguyen, T.; Nioi, P.; Pickett, C. B. The Nrf2-antioxidant response elementsignaling pathway and its activation by oxidative stress. J Biol Chem284:13291-13295;2009
    17Wang, G. L.; Semenza, G. L. Purification and characterization ofhypoxia-inducible factor1. J Biol Chem270:1230-1237;1995
    18Kolar, F.; Jezkova, J.; Balkova, P.; Breh, J.; Neckar, J.; Novak, F.;Novakova, O.; Tomasova, H.; Srbova, M.; Ost'adal, B.; Wilhelm, J.;Herget, J. Role of oxidative stress in PKC-delta upregulation andcardioprotection induced by chronic intermittent hypoxia. Am J PhysiolHeart Circ Physiol292:H224-230;2007
    19Wang, Q.; Zhou, H.; Gao, H.; Chen, S. H.; Chu, C. H.; Wilson, B.; Hong, J.S. Naloxone inhibits immune cell function by suppressing superoxideproduction through a direct interaction with gp91phox subunit of NADPHoxidase. J Neuroinflammation9:32;2012
    20Zang, Q.; Maass, D. L.; White, J.; Horton, J. W. Cardiac mitochondrialdamage and loss of ROS defense after burn injury: the beneficial effects ofantioxidant therapy. J Appl Physiol102:103-112;2007
    21Khalid, M. A.; Ashraf, M. Direct detection of endogenous hydroxyl radicalproduction in cultured adult cardiomyocytes during anoxia andreoxygenation. Is the hydroxyl radical really the most damaging radicalspecies? Circ Res72:725-736;1993
    22Adisakwattana, S.; Sompong, W.; Meeprom, A.; Ngamukote, S.;Yibchok-Anun, S. Cinnamic Acid and its derivatives inhibitfructose-mediated protein glycation. Int J Mol Sci13:1778-1789;2012
    23Ma, H.; He, Q.; Dou, D.; Zheng, X.; Ying, L.; Wu, Y.; Raj, J. U.; Gao, Y.Increased degradation of MYPT1contributes to the development oftolerance to nitric oxide in porcine pulmonary artery. Am J Physiol LungCell Mol Physiol299:L117-123;2010
    24Chen, L.; Lu, X. Y.; Li, J.; Fu, J. D.; Zhou, Z. N.; Yang, H. T. Intermittenthypoxia protects cardiomyocytes against ischemia-reperfusioninjury-induced alterations in Ca2+homeostasis and contraction via thesarcoplasmic reticulum and Na+/Ca2+exchange mechanisms. Am JPhysiol Cell Physiol290:C1221-1229;2006
    25Neckar, J.; Szarszoi, O.; Koten, L.; Papousek, F.; Ost'adal, B.; Grover, G. J.;Kolar, F. Effects of mitochondrial K(ATP) modulators on cardioprotectioninduced by chronic high altitude hypoxia in rats. Cardiovasc Res55:567-575;2002
    26Xu, W. Q.; Yu, Z.; Xie, Y.; Huang, G. Q.; Shu, X. H.; Zhu, Y.; Zhou, Z. N.;Yang, H. T. Therapeutic effect of intermittent hypobaric hypoxia onmyocardial infarction in rats. Basic Res Cardiol106:329-342;2011
    27Meerson, F. Z.; Ustinova, E. E.; Orlova, E. H. Prevention and eliminationof heart arrhythmias by adaptation to intermittent high altitude hypoxia.Clin Cardiol10:783-789;1987
    28Kolar, F.; Neckar, J.; Ostadal, B. MCC-134, a blocker of mitochondrialand opener of sarcolemmal ATP-sensitive K+channels, abrogatescardioprotective effects of chronic hypoxia. Physiol Res54:467-471;2005
    29Chang, S. W.; Stelzner, T. J.; Weil, J. V.; Voelkel, N. F. Hypoxia increasesplasma glutathione disulfide in rats. Lung167:269-276;1989
    30Chen, L.; Einbinder, E.; Zhang, Q.; Hasday, J.; Balke, C. W.; Scharf, S. M.Oxidative stress and left ventricular function with chronic intermittenthypoxia in rats. Am J Respir Crit Care Med172:915-920;2005
    31Nakanishi, K.; Tajima, F.; Nakamura, A.; Yagura, S.; Ookawara, T.;Yamashita, H.; Suzuki, K.; Taniguchi, N.; Ohno, H. Effects of hypobarichypoxia on antioxidant enzymes in rats. J Physiol489(Pt3):869-876;1995
    32Yoshikawa, T.; Furukawa, Y.; Wakamatsu, Y.; Takemura, S.; Tanaka, H.;Kondo, M. Experimental hypoxia and lipid peroxide in rats. Biochem Med27:207-213;1982
    33Singh, S. N.; Vats, P.; Kumria, M. M.; Ranganathan, S.; Shyam, R.; Arora,M. P.; Jain, C. L.; Sridharan, K. Effect of high altitude (7,620m) exposureon glutathione and related metabolism in rats. Eur J Appl Physiol84:233-237;2001
    34Zhu, W. Z.; Dong, J. W.; Ding, H. L.; Yang, H. T.; Zhou, Z. N. Postnataldevelopment in intermittent hypoxia enhances resistance to myocardialischemia/reperfusion in male rats. Eur J Appl Physiol91:716-722;2004
    35Becker, L. B. New concepts in reactive oxygen species and cardiovascularreperfusion physiology. Cardiovasc Res61:461-470;2004
    36Costa, A. D.; Jakob, R.; Costa, C. L.; Andrukhiv, K.; West, I. C.; Garlid, K.D. The mechanism by which the mitochondrial ATP-sensitive K+channelopening and H2O2inhibit the mitochondrial permeability transition. J BiolChem281:20801-20808;2006
    37Sadoshima, J. Redox regulation of growth and death in cardiac myocytes.Antioxid Redox Signal8:1621-1624;2006
    38Kris-Etherton, P. M.; Lichtenstein, A. H.; Howard, B. V.; Steinberg, D.;Witztum, J. L. Antioxidant vitamin supplements and cardiovasculardisease. Circulation110:637-641;2004
    39Takemura, G.; Onodera, T.; Ashraf, M. Quantification of hydroxyl radicaland its lack of relevance to myocardial injury during early reperfusionafter graded ischemia in rat hearts. Circ Res71:96-105;1992
    40Shackebaei, D.; King, N.; Shukla, B.; Suleiman, M. S. Mechanismsunderlying the cardioprotective effect of L-cysteine. Mol Cell Biochem277:27-31;2005
    41Ozgul, C.; Naziroglu, M. TRPM2channel protective properties ofN-acetylcysteine on cytosolic glutathione depletion dependent oxidativestress and Ca(2+) influx in rat dorsal root ganglion. Physiol Behav106:122-128;2012
    42Nanduri, J.; Nanduri, R. P. Cellular mechanisms associated withintermittent hypoxia. Essays Biochem43:91-104;2007
    43Osburn, W. O.; Kensler, T. W. Nrf2signaling: an adaptive responsepathway for protection against environmental toxic insults. Mutat Res659:31-39;2008
    44Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J. D.;Yamamoto, M. Keap1represses nuclear activation of antioxidantresponsive elements by Nrf2through binding to the amino-terminal Neh2domain. Genes Dev13:76-86;1999
    45Kobayashi, M.; Yamamoto, M. Molecular mechanisms activating theNrf2-Keap1pathway of antioxidant gene regulation. Antioxid RedoxSignal7:385-394;2005
    46Kensler, T. W.; Wakabayashi, N.; Biswal, S. Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway. Annu RevPharmacol Toxicol47:89-116;2007
    47Rushmore, T. H.; Morton, M. R.; Pickett, C. B. The antioxidant responsiveelement. Activation by oxidative stress and identification of the DNAconsensus sequence required for functional activity. J Biol Chem266:11632-11639;1991
    48Kaelin, W. G., Jr.; Ratcliffe, P. J. Oxygen sensing by metazoans: the centralrole of the HIF hydroxylase pathway. Mol Cell30:393-402;2008
    49Semenza, G. L. Targeting HIF-1for cancer therapy. Nat Rev Cancer3:721-732;2003
    50Wenger, R. H.; Stiehl, D. P.; Camenisch, G. Integration of oxygensignaling at the consensus HRE. Sci STKE2005:re12;2005
    1Kolar, F.; Jezkova, J.; Balkova, P.; Breh, J.; Neckar, J.; Novak, F.;Novakova, O.; Tomasova, H.; Srbova, M.; Ost'adal, B.; Wilhelm, J.;Herget, J. Role of oxidative stress in PKC-delta upregulation andcardioprotection induced by chronic intermittent hypoxia. Am J PhysiolHeart Circ Physiol292:H224-230;2007
    2Neckar, J.; Papousek, F.; Novakova, O.; Ost'adal, B.; Kolar, F.Cardioprotective effects of chronic hypoxia and ischaemic preconditioningare not additive. Basic Res Cardiol97:161-167;2002
    3Neckar, J.; Markova, I.; Novak, F.; Novakova, O.; Szarszoi, O.; Ost'adal,B.; Kolar, F. Increased expression and altered subcellular distribution ofPKC-delta in chronically hypoxic rat myocardium: involvement incardioprotection. Am J Physiol Heart Circ Physiol288:H1566-1572;2005
    4Manukhina, E. B.; Downey, H. F.; Mallet, R. T. Role of nitric oxide incardiovascular adaptation to intermittent hypoxia. Exp Biol Med(Maywood)231:343-365;2006
    5Mallet, R. T.; Ryou, M. G.; Williams, A. G., Jr.; Howard, L.; Downey, H. F.Beta1-Adrenergic receptor antagonism abrogates cardioprotective effectsof intermittent hypoxia. Basic Res Cardiol101:436-446;2006
    6Chen, L.; Lu, X. Y.; Li, J.; Fu, J. D.; Zhou, Z. N.; Yang, H. T. Intermittenthypoxia protects cardiomyocytes against ischemia-reperfusioninjury-induced alterations in Ca2+homeostasis and contraction via thesarcoplasmic reticulum and Na+/Ca2+exchange mechanisms. Am JPhysiol Cell Physiol290:C1221-1229;2006
    7Neckar, J.; Szarszoi, O.; Koten, L.; Papousek, F.; Ost'adal, B.; Grover, G. J.;Kolar, F. Effects of mitochondrial K(ATP) modulators on cardioprotectioninduced by chronic high altitude hypoxia in rats. Cardiovasc Res55:567-575;2002
    8Xu, W. Q.; Yu, Z.; Xie, Y.; Huang, G. Q.; Shu, X. H.; Zhu, Y.; Zhou, Z. N.;Yang, H. T. Therapeutic effect of intermittent hypobaric hypoxia onmyocardial infarction in rats. Basic Res Cardiol106:329-342;2011
    9Zhang, Y.; Zhong, N.; Zhu, H. F.; Zhou, Z. N. Antiarrhythmic andantioxidative effects of intermittent hypoxia exposure on rat myocardium.Sheng Li Xue Bao52:89-92;2000
    10Meerson, F. Z.; Ustinova, E. E.; Orlova, E. H. Prevention and eliminationof heart arrhythmias by adaptation to intermittent high altitude hypoxia.Clin Cardiol10:783-789;1987
    11Dong, J. W.; Zhu, H. F.; Zhu, W. Z.; Ding, H. L.; Ma, T. M.; Zhou, Z. N.Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis incardiac myocytes via regulating Bcl-2/Bax expression. Cell Res13:385-391;2003
    12Kolar, F.; Neckar, J.; Ostadal, B. MCC-134, a blocker of mitochondrialand opener of sarcolemmal ATP-sensitive K+channels, abrogatescardioprotective effects of chronic hypoxia. Physiol Res54:467-471;2005
    13Askew, E. W. Work at high altitude and oxidative stress: antioxidantnutrients. Toxicology180:107-119;2002
    14Schmidt, M. C.; Askew, E. W.; Roberts, D. E.; Prior, R. L.; Ensign, W. Y.,Jr.; Hesslink, R. E., Jr. Oxidative stress in humans training in a cold,moderate altitude environment and their response to a phytochemicalantioxidant supplement. Wilderness Environ Med13:94-105;2002
    15Becker, L. B. New concepts in reactive oxygen species and cardiovascularreperfusion physiology. Cardiovasc Res61:461-470;2004
    16Costa, A. D.; Jakob, R.; Costa, C. L.; Andrukhiv, K.; West, I. C.; Garlid, K.D. The mechanism by which the mitochondrial ATP-sensitive K+channelopening and H2O2inhibit the mitochondrial permeability transition. J BiolChem281:20801-20808;2006
    17Sadoshima, J. Redox regulation of growth and death in cardiac myocytes.Antioxid Redox Signal8:1621-1624;2006
    18Cohen, M. V.; Yang, X. M.; Downey, J. M. Acidosis, oxygen, andinterference with mitochondrial permeability transition pore formation inthe early minutes of reperfusion are critical to postconditioning's success.Basic Res Cardiol103:464-471;2008.
    19Hausenloy, D. J.; Wynne, A. M.; Yellon, D. M. Ischemic preconditioningtargets the reperfusion phase. Basic Res Cardiol102:445-452;2007
    20Heinzel, F. R.; Luo, Y.; Li, X.; Boengler, K.; Buechert, A.; Garcia-Dorado,D.; Di Lisa, F.; Schulz, R.; Heusch, G. Impairment of diazoxide-inducedformation of reactive oxygen species and loss of cardioprotection inconnexin43deficient mice. Circ Res97:583-586;2005
    21Penna, C.; Rastaldo, R.; Mancardi, D.; Raimondo, S.; Cappello, S.;Gattullo, D.; Losano, G.; Pagliaro, P. Post-conditioning inducedcardioprotection requires signaling through a redox-sensitive mechanism,mitochondrial ATP-sensitive K+channel and protein kinase C activation.Basic Res Cardiol101:180-189;2006
    22Wang, Z. H.; Chen, Y. X.; Zhang, C. M.; Wu, L.; Yu, Z.; Cai, X. L.; Guan,Y.; Zhou, Z. N.; Yang, H. T. Intermittent hypobaric hypoxia improvespostischemic recovery of myocardial contractile function via redoxsignaling during early reperfusion. Am J Physiol Heart Circ Physiol301:H1695-1705;2011
    23Kolar, F.; Ostadal, B. Molecular mechanisms of cardiac protection byadaptation to chronic hypoxia. Physiol Res53Suppl1:S3-13;2004
    24Malec, V.; Gottschald, O. R.; Li, S.; Rose, F.; Seeger, W.; Hanze, J. HIF-1alpha signaling is augmented during intermittent hypoxia by induction ofthe Nrf2pathway in NOX1-expressing adenocarcinoma A549cells. FreeRadic Biol Med48:1626-1635;2010
    25Osburn, W. O.; Kensler, T. W. Nrf2signaling: an adaptive responsepathway for protection against environmental toxic insults. Mutat Res659:31-39;2008
    26Nguyen, T.; Nioi, P.; Pickett, C. B. The Nrf2-antioxidant response elementsignaling pathway and its activation by oxidative stress. J Biol Chem284:13291-13295;2009
    27Kobayashi, A.; Kang, M. I.; Okawa, H.; Ohtsuji, M.; Zenke, Y.; Chiba, T.;Igarashi, K.; Yamamoto, M. Oxidative stress sensor Keap1functions as anadaptor for Cul3-based E3ligase to regulate proteasomal degradation ofNrf2. Mol Cell Biol24:7130-7139;2004
    28Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J. D.;Yamamoto, M. Keap1represses nuclear activation of antioxidantresponsive elements by Nrf2through binding to the amino-terminal Neh2domain. Genes Dev13:76-86;1999
    29Kobayashi, M.; Yamamoto, M. Molecular mechanisms activating theNrf2-Keap1pathway of antioxidant gene regulation. Antioxid RedoxSignal7:385-394;2005
    30Kensler, T. W.; Wakabayashi, N.; Biswal, S. Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway. Annu RevPharmacol Toxicol47:89-116;2007
    31Rushmore, T. H.; Morton, M. R.; Pickett, C. B. The antioxidant responsiveelement. Activation by oxidative stress and identification of the DNAconsensus sequence required for functional activity. J Biol Chem266:11632-11639;1991
    32Kaelin, W. G., Jr.; Ratcliffe, P. J. Oxygen sensing by metazoans: the centralrole of the HIF hydroxylase pathway. Mol Cell30:393-402;2008
    33Semenza, G. L. Targeting HIF-1for cancer therapy. Nat Rev Cancer3:721-732;2003
    34Wenger, R. H.; Stiehl, D. P.; Camenisch, G. Integration of oxygensignaling at the consensus HRE. Sci STKE2005:re12;2005
    35Tekin, D.; Dursun, A. D.; Xi, L. Hypoxia inducible factor1(HIF-1) andcardioprotection. Acta Pharmacol Sin31:1085-1094;2010
    36Simon, M. C.; Liu, L.; Barnhart, B. C.; Young, R. M. Hypoxia-inducedsignaling in the cardiovascular system. Annu Rev Physiol70:51-71;2008
    37Ma, H.; He, Q.; Dou, D.; Zheng, X.; Ying, L.; Wu, Y.; Raj, J. U.; Gao, Y.Increased degradation of MYPT1contributes to the development oftolerance to nitric oxide in porcine pulmonary artery. Am J Physiol LungCell Mol Physiol299:L117-123;2010
    38Kopecky, M.; Daum, S. Adaptation of the myocardium to altitude anoxia.Cesk Fysiol7:218-219;1958
    39Beguin, P. C.; Belaidi, E.; Godin-Ribuot, D.; Levy, P.; Ribuot, C.Intermittent hypoxia-induced delayed cardioprotection is mediated byPKC and triggered by p38MAP kinase and Erk1/2. J Mol Cell Cardiol42:343-351;2007
    40Zhang, Y.; Yang, H. T.; Zhou, Z. N. The cardioprotection of intermittenthypoxic adaptation.. Sheng Li Xue Bao59:601-613;2007
    41Zhong, N.; Zhang, Y.; Zhu, H. F.; Wang, J. C.; Fang, Q. Z.; Zhou, Z. N.Myocardial capillary angiogenesis and coronary flow in ischemiatolerance rat by adaptation to intermittent high altitude hypoxia. ActaPharmacol Sin23:305-310;2002
    42Zhu, H. F.; Dong, J. W.; Zhu, W. Z.; Ding, H. L.; Zhou, Z. N.ATP-dependent potassium channels involved in the cardiac protectioninduced by intermittent hypoxia against ischemia/reperfusion injury. LifeSci73:1275-1287;2003
    43Zhu, W. Z.; Xie, Y.; Chen, L.; Yang, H. T.; Zhou, Z. N. Intermittent highaltitude hypoxia inhibits opening of mitochondrial permeability transitionpores against reperfusion injury. J Mol Cell Cardiol40:96-106;2006
    44Guan, Y.; Gao, L.; Ma, H. J.; Li, Q.; Zhang, H.; Yuan, F.; Zhou, Z. N.;Zhang, Y. Chronic intermittent hypobaric hypoxia decreasesbeta-adrenoceptor activity in right ventricular papillary muscle. Am JPhysiol Heart Circ Physiol298:H1267-1272;2010
    45Nanduri, J.; Nanduri, R. P. Cellular mechanisms associated withintermittent hypoxia. Essays Biochem43:91-104;2007
    46Kido, M.; Du, L.; Sullivan, C. C.; Li, X.; Deutsch, R.; Jamieson, S. W.;Thistlethwaite, P. A. Hypoxia-inducible factor1-alpha reduces infarctionand attenuates progression of cardiac dysfunction after myocardialinfarction in the mouse. J Am Coll Cardiol46:2116-2124;2005
    47Date, T.; Mochizuki, S.; Belanger, A. J.; Yamakawa, M.; Luo, Z.; Vincent,K. A.; Cheng, S. H.; Gregory, R. J.; Jiang, C. Expression of constitutivelystable hybrid hypoxia-inducible factor-1alpha protects cultured ratcardiomyocytes against simulated ischemia-reperfusion injury. Am JPhysiol Cell Physiol288:C314-320;2005
    48Belaidi, E.; Beguin, P. C.; Levy, P.; Ribuot, C.; Godin-Ribuot, D.Prevention of HIF-1activation and iNOS gene targeting by low-dosecadmium results in loss of myocardial hypoxic preconditioning in the rat.Am J Physiol Heart Circ Physiol294:H901-908;2008
    49Vandervelde, S.; van Luyn, M. J.; Tio, R. A.; Harmsen, M. C. Signalingfactors in stem cell-mediated repair of infarcted myocardium. J Mol CellCardiol39:363-376;2005
    50Wang, C.; Weihrauch, D.; Schwabe, D. A.; Bienengraeber, M.; Warltier, D.C.; Kersten, J. R.; Pratt, P. F., Jr.; Pagel, P. S. Extracellular signal-regulatedkinases trigger isoflurane preconditioning concomitant with upregulationof hypoxia-inducible factor-1alpha and vascular endothelial growth factorexpression in rats. Anesth Analg103:281-288, table of contents;2006
    51Martin, C.; Yu, A. Y.; Jiang, B. H.; Davis, L.; Kimberly, D.; Hohimer, A.R.; Semenza, G. L. Cardiac hypertrophy in chronically anemic fetal sheep:Increased vascularization is associated with increased myocardialexpression of vascular endothelial growth factor and hypoxia-induciblefactor1. Am J Obstet Gynecol178:527-534;1998
    52Semenza, G. L. Regulation of tissue perfusion in mammals byhypoxia-inducible factor1. Exp Physiol92:988-991;2007
    53Cai, Z.; Manalo, D. J.; Wei, G.; Rodriguez, E. R.; Fox-Talbot, K.; Lu, H.;Zweier, J. L.; Semenza, G. L. Hearts from rodents exposed to intermittenthypoxia or erythropoietin are protected against ischemia-reperfusion injury.Circulation108:79-85;2003
    54Maloyan, A.; Eli-Berchoer, L.; Semenza, G. L.; Gerstenblith, G.; Stern, M.D.; Horowitz, M. HIF-1alpha-targeted pathways are activated by heatacclimation and contribute to acclimation-ischemic cross-tolerance in theheart. Physiol Genomics23:79-88;2005
    55Miro-Murillo, M.; Elorza, A.; Soro-Arnaiz, I.; Albacete-Albacete, L.;Ordonez, A.; Balsa, E.; Vara-Vega, A.; Vazquez, S.; Fuertes, E.;Fernandez-Criado, C.; Landazuri, M. O.; Aragones, J. Acute Vhl geneinactivation induces cardiac HIF-dependent erythropoietin gene expression.PLoS One6:e22589;2011
    56Ma H.J.; Zhang Y. Reactive oxygen species activated Nrf2-HIF1pathwaycontribute to the dynamic changes of cardiovascular responses during theprocess of chronic intermittent hypobaric hypoxia adaptation in awaken rat
    1Kopecky, M.; Daum, S. Adaptation of the myocardium to altitudeanoxia. Cesk Fysiol7:218-219;1958
    2Beguin, P. C.; Belaidi, E.; Godin-Ribuot, D.; Levy, P.; Ribuot, C.Intermittent hypoxia-induced delayed cardioprotection is mediated byPKC and triggered by p38MAP kinase and Erk1/2. J Mol Cell Cardiol42:343-351;2007
    3Zhang, Y.; Yang, H. T.; Zhou, Z. N. The cardioprotection of intermittenthypoxic adaptation.. Sheng Li Xue Bao59:601-613;2007
    4Zhang, Y.; Zhong, N.; Gia, J.; Zhou, Z. Effects of chronic intermittenthypoxia on the hemodynamics of systemic circulation in rats. Jpn JPhysiol54:171-174;2004
    5Zhang, Y.; Zhong, N.; Zhu, H. F.; Zhou, Z. N. Antiarrhythmic andantioxidative effects of intermittent hypoxia exposure on rat myocardium.Sheng Li Xue Bao52:89-92;2000
    6Dong, J. W.; Zhu, H. F.; Zhu, W. Z.; Ding, H. L.; Ma, T. M.; Zhou, Z. N.Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis incardiac myocytes via regulating Bcl-2/Bax expression. Cell Res13:385-391;2003
    7Peers, C.; Wyatt, C. N.; Evans, A. M. Mechanisms for acute oxygensensing in the carotid body. Respir Physiol Neurobiol174:292-298;2010
    8Peng, Y. J.; Prabhakar, N. R. Effect of two paradigms of chronicintermittent hypoxia on carotid body sensory activity. J Appl Physiol96:1236-1242; discussion1196;2004
    9Rey, S.; Del Rio, R.; Alcayaga, J.; Iturriaga, R. Chronic intermittenthypoxia enhances cat chemosensory and ventilatory responses to hypoxia.J Physiol560:577-586;2004
    10Peng, Y. J.; Yuan, G.; Ramakrishnan, D.; Sharma, S. D.; Bosch-Marce, M.;Kumar, G. K.; Semenza, G. L.; Prabhakar, N. R. HeterozygousHIF-1alpha deficiency impairs carotid body-mediated systemic responsesand reactive oxygen species generation in mice exposed to intermittenthypoxia. J Physiol577:705-716;2006
    11Sica, A. L.; Greenberg, H. E.; Ruggiero, D. A.; Scharf, S. M.Chronic-intermittent hypoxia: a model of sympathetic activation in the rat.Respir Physiol121:173-184;2000
    12Prabhakar, N. R.; Peng, Y. J.; Jacono, F. J.; Kumar, G. K.; Dick, T. E.Cardiovascular alterations by chronic intermittent hypoxia: importance ofcarotid body chemoreflexes. Clin Exp Pharmacol Physiol32:447-449;2005
    13Lesske, J.; Fletcher, E. C.; Bao, G.; Unger, T. Hypertension caused bychronic intermittent hypoxia--influence of chemoreceptors andsympathetic nervous system. J Hypertens15:1593-1603;1997
    14Ma, H. J.; Liu, Y. X.; Wang, F. W.; Wang, L. X.; He, R. R.; Wu, Y. M.Genistein inhibits carotid sinus baroreceptor activity in anesthetized malerats. Acta Pharmacol Sin26:840-844;2005
    15Ma, H. J.; Cao, Y. K.; Liu, Y. X.; Wang, R.; Wu, Y. M. Microinjection ofresveratrol into rostral ventrolateral medulla decreases sympatheticvasomotor tone through nitric oxide and intracellular Ca2+inanesthetized male rats. Acta Pharmacol Sin29:906-912;2008
    16Chen, L.; Lu, X. Y.; Li, J.; Fu, J. D.; Zhou, Z. N.; Yang, H. T. Intermittenthypoxia protects cardiomyocytes against ischemia-reperfusioninjury-induced alterations in Ca2+homeostasis and contraction via thesarcoplasmic reticulum and Na+/Ca2+exchange mechanisms. Am JPhysiol Cell Physiol290:C1221-1229;2006
    17Neckar, J.; Szarszoi, O.; Koten, L.; Papousek, F.; Ost'adal, B.; Grover, G.J.; Kolar, F. Effects of mitochondrial K(ATP) modulators oncardioprotection induced by chronic high altitude hypoxia in rats.Cardiovasc Res55:567-575;2002
    18Xu, W. Q.; Yu, Z.; Xie, Y.; Huang, G. Q.; Shu, X. H.; Zhu, Y.; Zhou, Z. N.;Yang, H. T. Therapeutic effect of intermittent hypobaric hypoxia onmyocardial infarction in rats. Basic Res Cardiol106:329-342;2011
    19Meerson, F. Z.; Ustinova, E. E.; Orlova, E. H. Prevention and eliminationof heart arrhythmias by adaptation to intermittent high altitude hypoxia.Clin Cardiol10:783-789;1987
    20Kolar, F.; Neckar, J.; Ostadal, B. MCC-134, a blocker of mitochondrialand opener of sarcolemmal ATP-sensitive K+channels, abrogatescardioprotective effects of chronic hypoxia. Physiol Res54:467-471;2005
    21Shi, M.; Cui, F.; Liu, A. J.; Li, J.; Ma, H. J.; Cheng, M.; Yang, J.; Zhang,Y. Protection of chronic intermittent hypobaric hypoxia againstcollagen-induced arthritis in rat through increasing apoptosis. Sheng LiXue Bao63:115-123;2011
    22Song, S. J.; Xu, Y.; Li, F. F.; Yuan, F.; Zhou, Z. N.; Zhang, Y. Effect ofchronic intermittent hypobaric hypoxia on contractile activity of arteriesin rats. Sheng Li Xue Bao63:205-210;2011
    23Peng, Y. J.; Overholt, J. L.; Kline, D.; Kumar, G. K.; Prabhakar, N. R.Induction of sensory long-term facilitation in the carotid body byintermittent hypoxia: implications for recurrent apneas. Proc Natl AcadSci U S A100:10073-10078;2003
    24Manalo, D. J.; Rowan, A.; Lavoie, T.; Natarajan, L.; Kelly, B. D.; Ye, S.Q.; Garcia, J. G.; Semenza, G. L. Transcriptional regulation of vascularendothelial cell responses to hypoxia by HIF-1. Blood105:659-669;2005
    25Prabhakar, N. R.; Dick, T. E.; Nanduri, J.; Kumar, G. K. Systemic,cellular and molecular analysis of chemoreflex-mediatedsympathoexcitation by chronic intermittent hypoxia. Exp Physiol92:39-44;2007
    26Mifflin, S. W. Arterial chemoreceptor input to nucleus tractus solitarius.Am J Physiol263:R368-375;1992
    27Zhang, W.; Mifflin, S. W. Excitatory amino acid receptors within NTSmediate arterial chemoreceptor reflexes in rats. Am J Physiol265:H770-773;1993
    28Chitravanshi, V. C.; Sapru, H. N. Chemoreceptor-sensitive neurons incommissural subnucleus of nucleus tractus solitarius of the rat. Am JPhysiol268:R851-858;1995
    29Ma H.J.; Zhang Y. Reactive oxygen species activated Nrf2-HIF1pathwaycontribute to the dynamic changes of cardiovascular responses during theprocess of chronic intermittent hypobaric hypoxia adaptation in awakenrat
    30Cheng M; Zhang Y. Effects of chronic intermittent hypobaric hypoxia onheart rate variability in conscious rats
    1Murray Cj, Lopez Ad. Alternate projections of mortality and disability bycause1990-2020: global burden of disease study. Lancet349:1498-1504,1997
    2Hurtado A. Some clinical aspects of life at high altitudes. Ann intern med53:247-258,1960.
    3Kopecky M, Daum S. Tissue adaptation to anoxia in rat myocardium (inczech). s fyziol7:518-521,1958
    4Poupa O, Krofta K, Procházka J. Acclimatization to simulated highaltitude and acute cardiac necrosis. Fed proc25:1243-1246,1966
    5Maroko Pr, Kjekshus Jk, Sobel Be. Factors influencing infarct sizefollowing experimental coronary artery occlusions. Circulation43:67-82,1971
    6Murry Ce, Jennings Rb, Reimer Ka. Preconditioning with ischemia: adelay of lethal cell injury in ischemic myocardium. Circulation74:1124-1136,1986
    7Kloner Ra, Przyklenk K, Shook T. Protection conferred by preinfarctangina is manifest in the aged heart: evidence from the timi4trial. Jthromb thrombolysis6:89-92,1998
    8Zaugg M, Schaub Mc. Signaling and cellular mechanisms in cardiacprotection by ischemic and pharmacological preconditioning. J muscle rescell motil24:219-249,2003
    9Mcgrath Jj, Procházka J, Pelouch V. Physiological response of rats tointermittent high altitude stress: effect of age. J appl physiol34:289-293,1973
    10O ádal B, Procházka J, Pelouch V. Comparison of cardiopulmonaryresponses of male and female rats to intermittent high altitude hypoxia.Physiol bohemoslov33:129-138,1984
    11Turek Z, Kubat K, Ringnalda Bem. Experimental myocardial infarction inrats acclimated to simulated high altitude. Basic res cardiol75:544-553,1980
    12Widimsky J, Urbanová D, Ressl J. Effect of intermittent altitude hypoxiaon the myocardium and lesser circulation in the rat. Cardiovasc res7:798-808,1973
    13Tajima M, Katayose D, Bessho M. Acute ischaemic preconditioning andchronic hypoxia independently increase myocardial tolerance to ischaemia.Cardiovasc res28:312-319,1994
    14Meerson Fz, Ustinova Ee, Manukhina Eb. Prevention of cardiacarrhythmias by adaptation: regulatory mechanisms and cardiotropic effect.Biomed biochim acta48:583-588,1989
    15Asemu G, Necká J, Szárszoi O. Effects of adaptation to intermittent highaltitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol res49:597-606,2000
    16Baker Je, Boerboom Le, Olinger Gn. Age related changes in the ability ofhypothermia and cardioplegia to protect ischemic rabbit myocardium. Jthorac cardiovasc surg96:717-724,1998
    17O ádal B, O ádalová I, Dhalla Ns. Development of cardiac sensitivity tooxygen deficiency: comparative and ontogenetic aspects. Physiol rev73:635-659,1999
    18Baker Ej, Boerboom Le, Olinger Gn. Tolerance of the developing heart toischemia: impact of hypoxemia from birth. Am j physiol268:h1165-h1173,1995
    19O ádalová I, O ádal B, Jarkovská D. Ischemic preconditioning inchronically hypoxic neonatal rat heart. Pediatr res52:561-567,2002
    20Ferreiro Cr, Chagas Ac, Carvalho Mh. Influence of hypoxia on nitric oxidesynthase activity and gene expression in children with congenital heartdisease: a novel pathophysiological adaptive mechanism. Circulation103:2272-2276,2001
    21Rafiee P, Shi Y, Kong X. Activation of protein kinases in chronicallyhypoxic infant human and rabbit hearts: role in cardioprotection.Circulation106:239-245,2002
    22O ádal B, Kolá F, Pelouch V. Intermittent high altitude and thecardiovascular system. In: the adapted heart, m nagano, n takeda, ns dhalla(eds), raven press, new york,1994, pp173-182
    23Kolá F. Cardioprotective effects of chronic hypoxia: relation topreconditioning. In: myocardial preconditioning, cl wainwright, jr parratt(eds), springer, berlin,1996, pp261-275
    24O ádal B, O ádalová I, Kolá F. Cardiac adaptation to chronic hypoxia.In: advances in organ biology, vol.6, myocardial preservation and cellularadaptation, ee bittar, dk das (eds), jai press, stamford, london,1998, pp46-60
    25Oldenburg O, Cohen Mv, Yellon Dm. Mitochondrial katp channels: role incardioprotection. Cardiovasc res55:429-437,2002
    26Garlid Kd, Dos Santos P, Xie Z-J. Mitochondrial potassium transport: therole of the mitochondrial atp-sensitive k+channels in cardiac function andcardioprotection. Biochim biophys acta1606:1-21,2003
    27Gross Gj, Peart Jn. Katp channels and myocardial preconditioning: anupdate. Am j physiol285: h921-h930,2003
    28Cameron Js, Baghdady R. Role of atp sensitive potassium channels in longterm adaptation to metabolic stress. Cardiovasc res28:788-796,1994
    29Crawford Rm, Jovanovi S, Budas Gr. Chronic mild hypoxia protectsheart-derived h9c2cells against acute hypoxia/reoxygenation by regulatingexpression of the sur2a subunit of the atp-sensitive k+channel. J biol chem278:21444-31455,2003
    30Kolá F, O ádalová I, O ádal B. Role Of Mitochondrial Katp ChannelsIn Improved Ischemic Tolerance Of Chronically Hypoxic Adult AndImmature Hearts. In: Signal Transduction And Cardac Hypertrophy, NsDhalla, Lv Hryshko, E Kardami, Pk Singal (Eds), Kluwer AcademicPublishers, Boston,2003, Pp69-83
    31Necká J, Szárszoi O, Koten L. Effects Of Mitochondrial Katp ModulatorsOn Cardioprotection Induced By Chronic High Altitude Hypoxia In Rats.Cardiovasc Res55:567-575,2002
    32Necká J, Papou ek F, O ádal B. Antiarrhythmic effect of adaptation tohigh altitude hypoxia is abolished by5-hydroxydecanoate. J mol cellcardiol31: a51,2001
    33Asemu G, Papou ek F, O ádal B. Adaptation to high altitude hypoxiaprotects the rat hearts against ischemia-induce arrhythmias. Involvementof mitochondrial katp channels. J mol cell cardiol31:1821-1831,1999
    34Zhu Hf, Dong Jw, Zhu Wz. Atp-dependent potassium channels involved inthe cardiac protection induced by intermittent hypoxia againstischemia/reperfusion injury. Life sci73:1275-1287,2003
    35Eells Jt, Henry Mm, Gross Gj. Increased mitochondrial katp channelactivity during chronic myocardial hypoxia: is cardioprotection mediatedby improved bioenergetics? Circ res87:915-921,2000
    36Kong X, Tweddell Js, Gross Gj. Sarcolemmal and mitochondrial katpchannels mediate cardioprotection in chronically hypoxic hearts. J mol cellcardiol33:1041-1045,2001
    37Suzuki M, Sasaki N, Miki T. Role of sarcolemmal katp channels incardioprotection against ischemia/reperfusion injury in mice. J clin invest109:509-516,2002
    38Suzuki M, Saito T, Sato T. Cardioprotective effect of dazoxide is mediatedby activation of sarcolemmal but not mitochondrial atp-sensitivepotassium channels in mice. Circulation107:682-685,2003
    39Notsu T, Ohhashi K, Tanaka I.5-Hydroxydecanoate Inhibits Atp-SensitiveK+Channel Currents In Guinea-Pig Single Ventricular Myocytes. Eur JPharmacol220:35-41,1992
    40D′Hahan N, Moreau C, Prost Al. Pharmacological plasticity of cardiacatp-sensitive potassium channels towards diazoxide revealed by adp. Procnatl acad sci usa96:12162-12167,1999
    41Matsuoka T, Matsushita K, Katayama Y. C-terminal tails of sulfonylureareceptors control adp-induced activation and diazoxide modulation ofatp-sensitive potassium channels. Circ res87:873-880,2000
    42Hanley Pj, Mickel M, Loffler M. Channel-independent targets of diazoxideand5-hydroxydecanoate in the heart. J physiol lond542:735-741,2002
    43Liu Y, O′Rourke B. Opening of mitochondrial katp channels triggerscardioprotection. Are reactive oxygen species involved? Circ res88:750-752,2001
    44Patel Hh, Gross Gj. Diazoxide induced cardioprotection: what comes first,katp channels or reactive oxygen species? Cardiovasc res51:633-636,2001
    45Pain T, Yang X-M, Critz Sd. Opening of mitochondrial katp channelstriggers the preconditioned state by generating free radicals. Circ res87:460-466,2000
    46Forbes Ra, Steenbergen C, Murphy E. Diazoxide-induced cardioprotectionrequires signaling through a redox-sensitive mechanism. Circ res88:802-809,2001
    47Nakanishi K, Tajima F, Nakamura A. Effect of hypobaric hypoxia onantioxidant enzymes in rats. J physiol lond489:869-876,1995
    48Yoshikawa T, Furikawa Y, Wakamatsu Y. Experimental hypoxia and lipidperoxide in rats. Biochem med27:207-213,1982
    49Herget J, Wilhelm J, Novotná J. A possible role of the oxidant tissue injuryin the development of hypoxic pulmonary hypertension. Physiol res49:493-501,2000
    50Szárszoi O, Asemu G, O ádal B. The role of reactive oxygen species andnitric oxide in ischemia/reperfusion injury of chronically hypoxic rat heart.Eur j heart failure suppl2/1:53,2003
    51Kolá F, Szárszoi O, Necká J. Improved Cardiac Ischemic Tolerance InRats Adapted To Chronic Hypoxia Is Reduced By Simultaneous TreatmentWith N-Acetylcysteine. Eur J Heart Failure Suppl2/1:46,2003
    52Necká J, Szárszoi O, Herget J. Cardioprotective effect of chronic hypoxiais blunted by concomitant hypercapnia. Physiol res52:171-175,2003
    53Ferdinandy P, Schulz R. Nitric Oxide, superoxide, and peroxynitrite inmyocardial ischaemia-reperfusion injury and preconditioning. Br jpharmacol138:532-543,2003
    54Végh A, Szekeres L, Parratt Jr. Preconditioning of the ischaemicmyocardium; involvement of the l-arginine nitric oxide pathway. Br jpharmacol107:648-652,1992
    55Bolli R. The late phase of preconditioning. Circ res87:972-983,2000
    56Beckman Js, Koppenol Wh. Nitric oxide, superoxide, and peroxynitrite:the good, the bad and ugly. Am j physiol271: c1424-c1437,1996
    57Baker Je, Holman P, Kalyanaraman B. Adaptation To Chronic HypoxiaConfers Tolerance To Subsequent Myocardial Ischemia By IncreasedNitric Oxide Production. Ann N Y Acad Sci874:236-253,1999
    58Shi Y, Pritchard Ka, Holman P. Chronic myocardial hypoxia increasesnitric oxide synthase and decreases caveolin-3. free radic biol med29:695-703,2000
    59Shi Y, Baker Je, Zhang C. Chronic hypoxia increases endothelial nitricoxide synthase generation of nitric oxide by increasing heat shock protein
    90association and serin phosphorylation. Circ res91:300-306,2002
    60Forkel J, Chen X, Wandinger S. Responses of chronically hypoxic rathearts to ischemia: katp channel blockade does not abolish increased rvtolerance to ischemia. Am j physiol286: h545-h551,2004
    61Kolá F, Szárszoi O, Necká J. Role Of Nitric Oxide And Reactive OxygenSpecies In Reperfusion-Induced Arrhythmias And Cardioprotection InChronically Hypoxic Rat Hearts. Physiol Res52:52p,2003
    62Grilli A, De Lutiis Am, Patruno A. Inducible nitric oxide synthase andheme oxygenase-1in rat heart: direct effect of chronic exposure to hypoxia.Ann clin lab sci33:208-215,2003
    63Szárszoi O, Asemu G, O ádal B. Cardioprotection By Chronic Hypoxia:Role Of Nitric Oxide. Physiol Res51:69p,2002
    64Mitchell Mb, Meng X, Ao L. Preconditioning of isolated rat heart ismediated by protein kinase c. Circ res76:73-81,1995
    65Speechly-Dick Me, Mocanu M, Yellon Dm. Protein kinase c: its role inischemic preconditioning in the rat. Circ res75:586-590,1994
    66Wang Y, Takashi E, Xu M. Downregulation of protein kinase c inhibitsactivation of mitochondrial katp channels by diazoxide. Circulation104:85-90,2001
    67Krenz M, Oldenburg O, Wimpee H. Opening of atp-sensitive potassiumchannels causes generation of free radicals in vascular smooth muscle cells.Basic res cardiol97:365-373,2002
    68Nishikawa T, Edelstein D, Du Xl. Normalizing mitochondrial superoxideproduction blocks three pathways of hyperglycaemic damage. Nature104:787-790,2000
    69Samavati L, Monick Mm, Sanlioglu S. Mitochondrial katp channelopeners activate the erk kinase by an oxidant-dependent mechanism. Am jphysiol283: c273-c281,2002
    70Fryer Rm, Hsu Ak, Gross Gj. Erk and p38map kinase activation arecomponents of opioid induced delayed cardioprotection. Basic res cardiol96:136-142,2001
    71Mocanu Mm, Baxter Gf, Yue Y. The p38mapk inhibitor, sb203580,abrogates ischaemic preconditioning in rat heart but timing ofadministration is critical. Basic res cardiol95:472-478,2000
    72Morel O-E, Burvy A, Le Corvoisier P. Effects Of Nifedipine-InducedPulmonary Vasodilatation On Cardiac Receptors And Protein Kinase CIsoforms In The Chronically Hypoxic Rats. Pflügers Arch446:356-364,2003
    73Je ková J, Nováková O, Kolá F. Chronic hypoxia alters fatty acidcomposition of phospholipids in right and left ventricular myocardium.Mol cell biochem232:49-56,2002
    74Necká J, Szárszoi O, Marková I. Increased expression and alteredsubcellular distribution of PKC-delta in chronically hypoxic ratmyocardium: involvement in cardioprotection. Am J Physiol Heart CircPhysiol. Apr;288(4):H1566-72.2005
    75Cai Z, Manalo Dj, Wei G. Hearts from rodents exposed to intermittenthypoxia or erythropoietin are protected against ischemia-reperfusion injury.Circulation108:79-85,2003
    76Deindl E, Kolá F, Neubauer E. Effect of intermittent high altitude hypoxiaon gene expression in rat heart and lung. Physiol res52:147-157,2003
    77Rouet-Benzineb P, Eddahibi S, Raffestin B. Induction of cardiac nitricoxide synthase2in rats exposed to chronic hypoxia. J mol cell cardiol31:1697-1708,1999
    78Dong Jw, Zhu Hf, Zhu Wz. Intermittent hypoxia attenuatesischemia/reperfusion induced apoptosis in cardiac myocytes via regulatingbcl-2/bax expression. Cell res13:385-391,2003
    79Weiland Jf, Johns Ra, Ihling C. Chronic hypoxia induces apoptosis incardiac myocytes: a possible role for bcl-like proteins. Biochem biophysres commun286:419-425,2001
    80Lishmanov Yb, Uskina Ev, Krylatov Av. A modulated effect ofendogenous opioids in antiarrhythmic effect of hypoxic adaptation (inrussian). Russian j physiol84:363-372,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700