用户名: 密码: 验证码:
Orexin对慢性低压低氧模型大鼠呼吸活动的调节及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的随着肥胖和代谢综合症的发病率不断升高,近年来阻塞性睡眠呼吸暂停低通气综合症(obstructive sleep apnea hypopnea syndrome, OSAHS)的发病率也逐年增加。该疾病以睡眠过程中反复出现的上气道阻塞为主要特征。长期的低氧、高碳酸血症和影响睡眠质量可诱发高血压,心肌梗塞,中风等疾病。目前OSAHS发病的原因和机制还未完全阐明,哪些因素在OSAHS的发生和发展过程中影响了呼吸中枢的调节尚不明了。近来的研究发现,下丘脑合成的一种具有重要作用的神经肽--Orexin (OX,食欲素),参与摄食、能量代谢、内分泌、心血管活动、睡眠-觉醒等多种生理功能,最新的研究还发现其可能参与了中枢对呼吸活动的调节,临床研究报告指出OSAHS患者血浆中Orexin的含量显著下降,给予患者正压通气治疗后,不仅临床症状有明显改善,患者血浆中的Orexin水平也显著上升了。另有动物实验证明:Orexin基因敲除小鼠会出现反复的睡眠呼吸暂停的现象。因此本实验利用低压氧舱处理诱导大鼠模拟OSAHS病程,观察慢性低压低氧(chronic hypobaric hypoxia, CHH)模型大鼠动脉血气、肺组织病理学、肺功能和舌下神经放电活动的改变,以及中枢OXA的表达。并进一步观察在正常大鼠下丘脑外侧区特异性损毁Orexin神经元后,肺功能和舌下神经放电活动的改变。本文研究OX对慢性低压低氧模型大鼠呼吸活动的调节作用。为进一步探讨OX在OSAHS发生和发展过程中对呼吸活动的调节机制提供实验依据。
     方法1.慢性低压低氧模型大鼠制备:本研究选用正常成年雄性Sprague-Dawley (SD)大鼠制备慢性低压低氧模型。利用低压氧舱对大鼠进行为期28天,每天6小时的间歇性低压低氧处理(低压氧舱模拟海拔高度5000米,氧分压53.9KPa,氧浓度10%-11.2%)。并观察大鼠在舱内和出舱后的表现。2.28天造模后:(1)对CHH模型大鼠进行血气分析、肺组织病理学和肺功能测定;(2)下丘脑Orexin A神经元的免疫组织化学染色,并进行相对光密度(relative optical density, ROD)值分析;(3)舌下神经放电活动的记录;(4)上气道(喉+主支气管)的CT断层扫描,并对图像进行三维立体重建,测量上气道容积。3.特异性损毁正常大鼠下丘脑Orexin神经元,饲养两周后:(1)下丘脑尼氏染色和OrexinA免疫组织化学观察;(2)肺功能测定;(3)舌下神经放电活动的记录。
     结果
     1.观察到大鼠在入舱开始减压低氧后,即出现呼吸加快、变深、腹式呼吸明显,即早期的过度通气的生理反应;六小时出舱后观察到大鼠耳廓、足爪色泽变浅、口唇轻度紫绀等现象,表明其血氧饱和度可能降低。低压低氧28天后模型组大鼠与对照组相比,血气分析显示:pH明显下降,PCO2增加,PO2下降;肺组织病理学显示:模型组大鼠的肺组织表现为弥漫性的充血、出血、水肿;气道阻力明显增大(P<0.05,n=6),肺动态顺应性减小(P<0.05,n=6),潮气量减小,但无统计学差异,表明肺的通气功能下降。
     2.与对照组相比,模型组下丘脑Orexin A神经元的免疫组织化学染色相对光密度(ROD)值显著升高(P<0.01,n=5)。
     3.低压低氧28天后模型组大鼠与对照组相比,舌下神经放电的频率降低(P<0.05,n=6)和幅度变小(P<0.01,n=6),提示舌下神经放电活动减弱。
     4.利用重建后的三维立体图像,测量大鼠上气道容积,对照组与模型组相比无统计学差异。
     5.正常SD大鼠双侧LH区注射Orexin-SAP (0.043mg/ml, 100nl/侧)两周后,尼氏染色结果显示与生理盐水对照组比较LH区的神经元数量明显减少,通过免疫组织化学实验也观察到LH的Orexin A神经元数量明显减少,仅有少量残存。应用电生理的实验技术,观察到损毁组大鼠与生理盐水对照组相比:气道阻力明显增大(P<0.001,n=6),肺动态顺应性减小(P<0.001,n=6)。舌下神经放电的频率降低(P<0.05,n=6)和幅度变小(P<0.01,n=6)。
     结论
     1.低压氧舱能成功制作慢性低压低氧模型大鼠。
     2.28天的慢性低压低氧导致大鼠pH和PO2下降,CO2潴留;并引起大鼠肺的通气功能明显下降;舌下神经放电的幅度减小、呼吸频率减慢,提示舌下神经放电活动明显减弱;但还未造成大鼠上气道容积的器质性改变。
     3.慢性低压低氧模型大鼠下丘脑OXA神经元的合成加速,提示OXA可能参与慢性低压低氧的病理过程,其在中枢的显著增高为其参与中枢对呼吸活动的调节提供了实验证据。
     4.正常SD大鼠特异性损毁LH区Orexin神经元后,Orexin A神经元表达明显减少,肺的通气功能下降,舌下神经放电活动减弱。提示,Orexin神经元分泌内源性Orexin可以兴奋舌下神经、促进对上气道的控制。
     5.本文的结果提示Orexin神经元参与了慢性低压低氧模型大鼠OSAHS的病理生理学过程。Orexin神经元的分泌增加,可能是为了对抗慢性低压低氧引起的大鼠呼吸活动的减弱。
Objective:
     In recent years, with the incidence of obesity and metabolic syndrome rising, incidence of obstructive sleep apnea hypopnea syndrome (OSAHS) increased year by year. The disease's characteristic is recurrent upper airway obstruction during sleep. Long-term hypoxia, hypercapnia and low sleep quality can induce hypertension, myocardial infarction, stroke and other diseases. At present the reason and mechanisms of OSAHS development are not fully clear. Orexin from the neurons in the hypothalamus has established as important neuropeptide for feeding, energy metabolism, endocrine, cardiovascular activity, sleep-arousal cycle and other physiological function. Recently, Orexin has been found to regulate respiratory activity in respiratory center. Further more, plasma Orexin A levels was lower in OSAHS patients. Orexin-knockout mice performed sleep apnea. In the present study, we used a rat model of chronic hypobaric hypoxia (CHH) to investigate Orexin A (OXA) expression in the hypothalamus and its effect on respiration. Test the hypothesis that chronic hypobaric hypoxia treatment changes ventilation, hypoglossal nerve discharge and Orexin system in rat. It will determine Orexin contribution in the regulation respiration of OSAHS.
     Methods:
     1. Animal preparation and (CHH) model:(1) The Sprague-Dawley rats were exposed to hypobaric hypoxia in a complete airtight chamber (the altitude at 5000m, PO2 53.9KPa, concentration of O2 10%-11.2%) 6h/day for 28 days. The rats were observed their behavior in and out of chamber.2. At the end of 28 days, (1) Rats were measured of blood gas, lung pathology and pulmonary function; (2) Expression and distribution of Orexin A-like-immunoreactivity in hypothalamus were observed by immunohistochemistry. The staining density of Orexin A expression neurons in hypothalamus was evaluated as relative optical density. (3) Hypoglossal nerve discharge was recorded by bipolar platinum-iridium electrode. (4) The upper airway (throat+main bronchus) of rat was scanned by CT and three-dimensional image was reconstructed. 3. The Orexin containing neurons of LH were lesioned by microinjection of Orexin-SAP bilaterally. Two weeks after the treatment, the lung function, Orexin A expression in LH, hypoglossal nerve discharge were detected by the methods mentioned above.
     Results:
     1. The CHH model was evaluated on the basis of blood gas, lung pathology and pulmonary function. Blood gas analysis showed:pH and PO2 decreased, PCO2 increased. Lung pathological change showed pulmonary edema, congestive and hemorrhage. Compared with control rats, pulmonary function in CHH rats had deteriorated with evidence of decreased dynamic compliance (P<0.05, n=6) and increased airway resistance (P<0.05, n=6).
     2. In the hypothalamus, OXA expression was located mainly in the lateral hypothalamus and perifornical nucleus with significantly higher OXA expression detected in CHH compared with control rats. The relative optical density (ROD) of OXA positive cells in hypothalamus was greater in the CHH rats than in control rats (**P<0.01,n=5).
     3. The intensity and frequency of hypoglossal nerve discharge were both significantly decreased in CHH compared with control groups (**P<0.01, *P<0.05, respectively, n=6).
     4. The upper airway volume was no significant difference between CHH and control rats using three-dimensional image reconstruction.
     5. There was significant loss of Nissl bodies and Orexin neurons in the LH of Orexin-SAP-treated rats relative to the normal saline (NS) treated rats. Few residual Orexin neurons remained in Orexin-SAP treated rats, two weeks after treatment. There was significantly decreased in pulmonary dynamic compliance and increased in airway resistance in LH lesion group (both ***P<0.001, n=6 v.s. NS treated group). And the intensity and frequency of hypoglossal nerve discharge were significantly decreased in LH lesion group compared with the NS treated group (**P<0.01, *P<0.05 respectively, n=6).
     Conclusions:
     1. A rat model of chronic hypobaric hypoxia was produced in hypobaric hypoxia chamber successfully.
     2. At the end of 28 days, there were decreased pH, PO2 and increased PCO2 in CHH rats. The Lung pathological changed and pulmonary function had deteriorated in CHH rats. Hypoglossal nerve discharge was significantly reduced. There was no significant difference in upper airway between CHH and control rat by CT.
     3. OXA maybe the important role in central regulation on respiration in CHH rats with the experimental evidences of OXA's synthesis are significantly increased in hypothalamus.
     4. In Orexin-SAP treated rats, expression of Orexin A neurons, lung ventilation and hypoglossal nerve discharge were decreased significantly than in NS treated rats. It shows that Orexin neurons administrate hypoglossal nerves on the upper airway control activities.
     5. The findings of the present study demonstrate the weakened hypoglossal nerve discharge is due to endogenous Orexin less, as in number or amount. Following it genioglossus activity decreased, which caused the upper airway collapse and hypoventilation in OSAHS. Expression of Orexin A increased may be attributed to enhancing respiratory activity in CHH rats.
引文
[1]E. van Lunteren. Muscles of the pharynx:structural and contractile properties[J]. Ear Nose Throat J,1993,72 (1):27-29,33
    [2]W. S. Mezzanotte, D. J. Tangel, D. P. White. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism)[J]. J Clin Invest,1992,89 (5):1571-1579
    [3]J. E. Remmers, W. J. DeGroot, E. K. Sauerlandet al. Pathogenesis of upper airway occlusion during sleep[J].J Appl Physiol,1978,44 (6):931-938
    [4]A. Jelev, S. Sood, H. Liuet al. Microdialysis perfusion of 5-HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep-wake states in rats [J]. J Physiol,2001,532 (Pt 2):467-481
    [5]G. J. Hervieu, J. E. Cluderay, D. C. Harrisonet al. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord[J]. Neuroscience, 2001,103 (3):777-797
    [6]T. Sakurai, A. Amemiya, M. Ishiiet al. Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell,1998,92 (5):1-696
    [7]S. Taheri, D. Sunter, C. Dakinet al. Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system[J]. Neurosci Lett,2000, 279 (2):109-112
    [8]T. Nambu, T. Sakurai, K. Mizukamiet al. Distribution of orexin neurons in the adult rat brain[J]. Brain Res,1999,827 (1-2):243-260
    [9]D. J. Cutler, R. Morris, V. Sheridharet al. Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord[J]. Peptides,1999,20 (12):1455-1470
    [10]J. L. Guan, T. Saotome, Q. P. Wanget al. Orexinergic innervation of POMC-containing neurons in the rat arcuate nucleus[J]. Neuroreport,2001,12(3) 547-551
    [11]T. Sakurai, A. Amemiya, M. Ishiiet al. Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell,1998,92 (5):1-696
    [12]S. J. Fung, J. Yamuy, S. Sampognaet al. Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat:a double-labeling immunohistochemical study[J]. Brain Res,2001,903 (1-2):257-262
    [13]J. K. Young, M. Wu, K. F. Manayeet al. Orexin stimulates breathing via medullary and spinal pathways[J]. J Appl Physiol,2005,98 (4):1387-1395
    [14]D. V. Volgin, M. Saghir, L. Kubin. Developmental changes in the orexin 2 receptor mRNA in hypoglossal motoneurons[J].Neuroreport,2002,13 (4):433-436
    [15]W. Zhang, Y. Fukuda, T. Kuwaki. Respiratory and cardiovascular actions of orexin-A in mice[J].Neurosci Lett,2005,385 (2):131-136
    [16]R. M. Chemelli, J. T. Willie, C. M. Sintonet al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation[J]. Cell,1999,98 (4):437-451
    [17]T. C. Thannickal, R. Y. Moore, R. Nienhuiset al. Reduced number of hypocretin neurons in human narcolepsy [J]. Neuron,2000,27 (3):469-474
    [18]B. Ripley, S. Overeem, N. Fujikiet al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions[J]. Neurology,2001,57 (12):2253-2258
    [19]M. O. AMDUR, J. MEAD. Mechanics of respiration in unanesthetized guinea pigs[J]. Am J Physiol,1958,192 (2):364-368
    [20]S. Jafarian, F. Gorouhi, A. Taghvaet al. High-altitude sleep disturbance:results of the Groningen Sleep Quality Questionnaire survey[J]. Sleep Med,2008,9(4):446-449
    [21]K. R. Burgess, P. Johnson, N. Edwardset al. Acute mountain sickness is associated with sleep desaturation at high altitude[J]. Respirology,2004,9(4):485-492
    [22]M. H. Wilkinson, S. Cranage, P. J. Bergeret al. Changes in the temporal structure of periodic breathing with postnatal development in preterm infants [J]. Pediatr Res, 1995,38 (4):533-538
    [23]J. A. Dempsey, J. B. Skatrud. A sleep-induced apneic threshold and its consequences[J]. Am Rev Respir Dis,1986,133 (6):1163-1170
    [24]Y. Fukuda. Difference in glossopharyngeal and phrenic inspiratory activities of rats during hypocapnia and hypoxia[J]. Neurosci Lett,1992,137 (2):261-264
    [25]T. Kato, F. Hayashi, K. Tatsumiet al. Inhibitory mechanisms in hypoxic respiratory depression studied in an in vitro preparation [J]. Neurosci Res,2000,38(3):281-288
    [26]T. Sakurai, A. Amemiya, M. Ishiiet al. Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell,1998,92 (5):1-696
    [27]L. de Lecea, T. S. Kilduff, C. Peyronet al. The hypocretins:hypothalamus-specific peptides with neuroexcitatory activity[J]. Proc Natl Acad Sci U S A,1998,95 (1): 322-327
    [28]Y. Date, Y. Ueta, H. Yamashitaet al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems [J]. Proc Natl Acad Sci U S A,1999,96 (2):748-753
    [29]C. Peyron, D. K. Tighe, A. N. van den Polet al. Neurons containing hypocretin (orexin) project to multiple neuronal systems[J]. J Neurosci,1998,18 (23): 9996-10015
    [30]W. K. Samson, B. Gosnell, J. K. Changet al. Cardiovascular regulatory actions of the hypocretins in brain[J]. Brain Res,1999,831 (1-2):248-253
    [31]T. Shirasaka, M. Nakazato, S. Matsukuraet al. Sympathetic and cardiovascular actions of orexins in conscious rats[J]. Am J Physiol,1999,277 (6 Pt 2): R1780-R1785
    [32]R. M. Chemelli, J. T. Willie, C. M. Sintonet al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation[J]. Cell,1999,98 (4):437-451
    [33]J. J. Hagan, R. A. Leslie, S. Patelet al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat[J]. Proc Natl Acad Sci U S A,1999,96 (19): 10911-10916
    [34]S. J. Fung, J. Yamuy, S. Sampognaet al. Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat:a double-labeling immunohistochemical study[J]. Brain Res,2001,903 (1-2):257-262
    [35]J. Sunanaga, B. S. Deng, W. Zhanget al. CO2 activates orexin-containing neurons in mice[J].Respir Physiol Neurobiol,2009,166 (3):184-186
    [36]E. C. Fletcher, G. Bao. Effect of episodic eucapnic and hypocapnic hypoxia on systemic blood pressure in hypertension-prone rats[J]. J Appl Physiol,1996,81 (5): 2088-2094
    [37]G. Bao, P. M. Randhawa, E. C. Fletcher. Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats[J]. J Appl Physiol,1997,82 (4): 1071-1078
    [1]T. Wu, S. Ding, J. Liuet al. Ataxia:an early indicator in high altitude cerebral edema[J]. High Alt Med Biol,2006,7 (4):275-280
    [2]T. Y. Wu, S. Q. Ding, J. L. Liuet al. Who should not go high:chronic disease and work at altitude during construction of the Qinghai-Tibet railroad [J]. High Alt Med Biol,2007,8 (2):88-107
    [3]P. H. Hackett, D. Rennie. Rales, peripheral edema, retinal hemorrhage and acute mountain sickness[J]. Am J Med,1979,67 (2):214-218
    [4]M. Maggiorini, B. Buhler, M. Walteret al. Prevalence of acute mountain sickness in the Swiss Alps[J]. BMJ,1990,301 (6756):853-855
    [5]J. P. Richalet, A. Hornych, C. Rathatet al. Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia[J]. Respir Physiol,1991,85 (2): 205-215
    [6]P. Kubes. Nitric oxide and microvascular permeability:a continuing dilemma[J]. Eur Respir J,1997,10 (1):4-5
    [7]P. H. Hackett, P. R. Yarnell, R. Hillet al. High-altitude cerebral edema evaluated with magnetic resonance imaging:clinical correlation and pathophysiology[J]. JAMA, 1998,280 (22):1920-1925
    [8]S. P. Yang, G. W. Bergo, E. Krasneyet al. Cerebral pressure-flow and metabolic responses to sustained hypoxia:effect of CO2[J]. J Appl Physiol,1994,76 (1): 303-313
    [9]F. Xu, J. W. Severinghaus. Rat brain VEGF expression in alveolar hypoxia:possible role in high-altitude cerebral edema[J]. J Appl Physiol,1998,85 (1):53-57
    [10]J. P. Richalet. High altitude pulmonary oedema: still a place for controversy?[J]. Thorax,1995,50 (9):923-929
    [11]N. D. MENON. HIGH-ALTITUDE PULMONARY EDEMA:A CLINICAL STUDY[J]. N Engl J Med,1965,273:66-73
    [12]H. N. HULTGREN, C. E. LOPEZ, E. LUNDBERGet al. PHYSIOLOGIC STUDIES OF PULMONARY EDEMA AT HIGH ALTITUDE[J]. Circulation,1964,29: 393-408
    [13]P. Bartsch, S. Shaw, M. Franciolliet al. Atrial natriuretic peptide in acute mountain sickness[J]. J Appl Physiol,1988,65 (5):1929-1937
    [14]Y. Droma, T. Hayano, Y. Takabayashiet al. Endothelin-1 and interleukin-8 in high altitude pulmonary oedema[J]. Eur Respir J,1996,9 (9):1947-1949
    [15]U. Scherrer, L. Vollenweider, A. Delabayset al. Inhaled nitric oxide for high-altitude pulmonary edema[J]. N Engl J Med,1996,334 (10):624-629
    [16]M. H. Wilkinson, S. Cranage, P. J. Bergeret al. Changes in the temporal structure of periodic breathing with postnatal development in preterm infants[J]. Pediatr Res, 1995,38 (4):533-538
    [17]J. A. Dempsey, J. B. Skatrud. A sleep-induced apneic threshold and its consequences [J]. Am Rev Respir Dis,1986,133 (6):1163-1170
    [18]S. Jafarian, F. Gorouhi, A. Taghvaet al. High-altitude sleep disturbance:results of the Groningen Sleep Quality Questionnaire survey[J]. Sleep Med,2008,9(4):446-449
    [19]K. R. Burgess, P. Johnson, N. Edwardset al. Acute mountain sickness is associated with sleep desaturation at high altitude[J]. Respirology,2004,9(4):485-492
    [20]J. D. Anholm, A. C. Powles, R. Rd Downeyet al. Operation Everest II:arterial oxygen saturation and sleep at extreme simulated altitude [J]. Am Rev Respir Dis, 1992,145 (4 Pt 1):817-826
    [21]S. Lahiri, K. Maret, M. G. Sherpa. Dependence of high altitude sleep apnea on ventilatory sensitivity to hypoxia[J]. Respir Physiol,1983,52 (3):281-301
    [22]T. H. Mader, G. Tabin. Going to high altitude with preexisting ocular conditions[J]. High Alt Med Biol,2003,4 (4):419-430
    [23]C. H. Imray, K. T. Pattinson, S. Myerset al. Intrapulmonary and intracardiac shunting with exercise at altitude[J]. Wilderness Environ Med,2008,19 (3):199-204
    [24]V. Nair, A. K. Mohapatro, M. Sreedharet al. A case of hereditary protein S deficiency presenting with cerebral sinus venous thrombosis and deep vein thrombosis at high altitude[J].Acta Haematol,2008,119 (3):158-161
    [25]P. Boulos, C. Kouroukis, G. Blake. Superior sagittal sinus thrombosis occurring at high altitude associated with protein C deficiency[J]. Acta Haematol,1999,102 (2): 104-106
    [26]R. W. Baumgartner, A. M. Siegel, P. H. Hackett. Going high with preexisting neurological conditions [J]. High Alt Med Biol,2007,8 (2):108-116
    [27]R. Nicholas, P. D. O'Meara, N. Calonge. Is syncope related to moderate altitude exposure?[J]. JAMA,1992,268 (7):904-906
    [28]J. Virues-Ortega, G. Buela-Casal, E. Garridoet al. Neuropsychological functioning associated with high-altitude exposure[J]. Neuropsychol Rev,2004,14(4):197-224
    [29]X. Wu, X. Li, L. Hanet al. Effects of acute moderate hypoxia on human performance of arithmetic[J]. Space Med Med Eng (Beijing),1998,11 (6):391-395
    [30]G. Pelamatti, M. Pascotto, C. Semenza. Verbal free recall in high altitude:proper names vs common names [J]. Cortex,2003,39 (1):97-103
    [31]Du JY, X. Y. Li, Y. Zhuanget al. [Effects of acute mild and moderate hypoxia on human short memory][J]. Space Med Med Eng (Beijing),1999,12 (4):270-273
    [32]C. A. Bouquet, B. Gardette, C. Gortanet al. Psychomotor skills learning under chronic hypoxia[J]. Neuroreport,1999,10 (14):3093-3099
    [33]M. Reite, D. Jackson, R. L. Cahoonet al. Sleep physiology at high altitude[J]. Electroencephalogr Clin Neurophysiol,1975,38 (5):463-471
    [34]D. T. Berry, J. W. McConnell, B. A. Phillipset al. Isocapnic hypoxemia and neuropsychological functioning[J]. J Clin Exp Neuropsychol,1989,11(2):241-251
    [35]T. Stobdan, J. Karar, M. A. Pasha. High altitude adaptation:genetic perspectives[J]. High Alt Med Biol,2008,9 (2):140-147
    [36]M. Nelson. Psychological testing at high altitudes [J]. Aviat Space Environ Med, 1982,53 (2):122-126
    [37]M. Regard, O. Oelz, P. Bruggeret al. Persistent cognitive impairment in climbers after repeated exposure to extreme altitude[J]. Neurology,1989,39 (2 Pt 1): 210-213
    [38]T. F. Hornbein, B. D. Townes, R. B. Schoeneet al. The cost to the central nervous system of climbing to extremely high altitude[J]. N Engl J Med,1989,321 (25): 1714-1719
    [39]P. J. Fagenholz, A. F. Murray, J. A. Gutmanet al. New-onset anxiety disorders at high altitude[J]. Wilderness Environ Med,2007,18 (4):312-316
    [40]J. S. Windsor. Voices in the air[J]. BMJ,2008,337:a2667
    [41]张翼,杨黄恬,周兆年.间歇性低氧适应的心脏保护[J].生理学报,2007,(05).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700