用户名: 密码: 验证码:
氧乐果合成过程集成智能控制方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国作为一个人口大国,农业始终是国民经济的基础,关系国家的稳定和发展。农药是保证农作物稳定高产的重要因素之一,农药的生产水平和质量对我国农业乃至整个国民经济的发展有很大的影响。为了提高农药生产的技术水平和产品质量,对传统的农药生产过程进行自动化改造,是非常必要的。本文以氧乐果合成过程为研究对象,研究了氧乐果合成过程的智能控制方法,并开发了已获得实际应用的氧乐果合成过程集成智能控制系统。
     本文阐述了氧乐果合成的工艺流程,对氧乐果合成的特性和对象模型进行了详细分析,说明氧乐果合成具有非线性、时变、大滞后、扰动复杂的特点,并从系统可测参数和不可测参数两个方面分析了氧乐果合成中的影响因素。研究了基于神经网络的氧乐果合成过程的系统辨识,并针对氧乐果合成过程中影响最大的温度因素利用BP网络进行辨识。针对静态BP网络对系统动态模型辨识效果不佳的缺陷,采用分阶段BP网络和由静态BP网络加TDL环节所构成的回归网络对氧乐果合成中的温度对象进行了动态辨识,并对三种方法的辨识性能进行了比较分析。
     根据氧乐果合成过程不同阶段的复杂特性,分别研究了相应的智能控制方法,作为整体设计氧乐果集成智能控制方案的基础。第一,针对氧乐果合成具有非线性、大滞后的特点,设计了一种参数反馈模糊控制器,并对其性能进行了仿真验证。
     第二,针对氧乐果合成具有非线性、时变的特点,提出了基于递归遗传算法的混合学习算法,来对用于辨识的神经网络的结构和连接权值进行自动优化设计。针对模糊神经网络应用中存在的问题,提出了基于模糊补偿算子的神经网络控制器结构和算法。通过采用基于递归遗传算法的神经网络辨识器对氧乐果合成的温度对象进行辨识,与递归补偿模糊神经网络控制器组成温度智能控制系统,并对该控制系统的性能进行了仿真研究。
     第三,针对氧乐果合成具有典型间歇过程的特点,在分析了迭代学习控制基本原理的基础上,通过在迭代学习控制中引入预测的思想,提出了一种改进的迭代学习算法。并将模糊模型辨识技术、预测控制和迭代学习控制三者相结合,设计了基于模糊预测的迭代学习控制器。以氧乐果合成过程中的温度为被控对象,仿真研究了所设计的控制器的性能。
     根据一甲胺累积投料量,将氧乐果合成过程划分为四个阶段:反应初始阶段,温度上升阶段,稳定反应阶段和反应结束阶段,并根据不同阶段的反应特点,分别采用上述所研究的多种智能控制算法,组成氧乐果合成过程的集成智能控制方案,并开发了成套的氧乐果合成过程集成智能控制系统,包括控制系统信号处理、控制系统故障诊断、系统软件设计等。研制的两套系统分别在沙隆达郑州农药有限公司的两个农药分厂投入使用,2003年投入使用以来的运行效果表明:该系统技术先进、性能优良、工作可靠,取得了显著的社会经济效益。
As a great population country, agriculture is the base of national economy of China and has great relation with our country's stability and development. Pesticide is one of the main influencing elements on agriculture stability and high production. Production level and quantity of pesticide have great influence on our agriculture, then on the total national economy. To improve the technique level and production quality of pesticide production, it is very necessary to rebuild the traditional pesticide production precess. Omethod composition process as the research object, this paper researches the intelligent control methods during the Omethod composition process, and develops an Omethod composition procedure integrated intelligent control system that has been used in practice.
     The technique flow of Omethod composition is introduced, and the reaction features and the subject model of Omethod composition are analyzed in detail. It is shown that Omethod composition reaction has the following characteristics: multi-variable, non-linear, time-changing, and complex disturbance. The influencing elements during Omethod composition procedure are analyzed from system measureable and non-measureable aspects. Furthermore, Omethod composition procedure system identification based on neural network is introduced. To the greatest influence element, temperature, during Omethod composition, a BP network is adopted to identify the temperature in the composition reaction. In order to overcome the shortcoming of static BP network in identifying the dynamic system parameters, a segmental BP network and recursive network composed of static BP and TDL are used to dynamically identify the temperature parameter. The identification results of BP Network, segmental BP network and recursive network are compared and analyzed.
     According to the complex features during the Omethod composition, the corresponding intelligent control approaches are studied as the total design base of the Omethod composition reaction integrated intelligent control system. Due to the features of nonlinear, big lag, for the temperature control in Omethod composition, a parameter feedback fuzzy controller is designed and the controller performance is simulated.
     Due to the features of nonlinear, time changing, recursive genetic algorithm is advanced which can design the network structure and weights automatically. For the existing problems in fuzzy neural network application, the neural network controller structure and algorithm based on fuzzy compensation operator are proposed. Neural network based on recursive genetic algorithm is adopted to identify the temperature during Omethod composition procedure. Combining the neural network identifier with the recursive fuzzy neural network construct a temperature intelligent control system. The control quality of the intelligent system is tested through simulation.
     Due to Omethod composition being an intermission process, based on the principle of iterative learning control, the forecasting thought is introduced in the iterative learning control, and an improved iterative learning algorithm is put forward. Combining the fuzzy model identification technique, forecasting control and iterative learning control, an iterative learning controller based on the fuzzy forecasting is designed. Taking the temperature during the Omethod composition as the controlled object, the control quality of this controller is simulated.
     According to the amic sum input, the Omethod composition procedure can be divided into four phases: initial reaction phase, temperature increasing phase, stable reaction phase and end phase. According to the different features in different phases, the intelligent control algorithms discussed in former chapters are used to construct the integrated intelligent control system. A total integrated intelligent control system for Omethod composition is developed actually and it's main function includes control system signal processing, control system fault diagnosis, system software design, etc. Two integrated intelligent control systems of Omethod composition have been used in the two pesticide branch plants of Zhengzhou Sha-Long-Da pesticide limited firm. Working effect shows that this system has high technique, eccellent performance and stable working since 2003. It has obtained obvious social and economic benefits.
引文
[1]田华,席裕庚,张钟俊.间歇反应过程的智能控制系统[J].系统工程与电子技术,1995,(4):73-80.
    [2]刘双刚,秦海英,俞文光等.间歇生产过程的自动控制[J].机电工程,2000,17(3):95-97.
    [3]胡燕祝,郎琦,张仲义.间歇生产过程的控制系统[J].现代化工,2003,23(8):42-45.
    [4]宋小平,韩长日,舒火明.农药制造技术[M].科学技术文献出版社,北京,2000。
    [5]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述[J].系统工程与电子技术,2002,24(1):52-57.
    [6]项云伟,王耀南.复杂工业过程的智能控制和智能管理系统集成[J].湖南大学学报(自然科学版),2000,27(1):62-67.
    [7]王耀南,王辉,彭建春,刘国才.复杂工业过程的综合集成智能控制[J].信息与控制,1999,28(4):298-304.
    [8]杜云,吴学礼,田强,孟凡华,任海萍.复杂工业过程智能协调控制系统的设计与应用[J].河北科技大学学报,2005,26(2):146-149.
    [9]冯纯伯.复杂系统的控制问题-试谈控制科学的发展[J].控制理论与应用,2004,21(6):855-857.
    [10]Tony Lange,Johann Botha.An overview of intelligent control systems in cement plants[J].IEEE instrumentation and measurement magazine,2004(12):20-25.
    [11]孙增圻,张再兴,邓志东等.智能控制理论与技术[M].清华大学出版社,北京,1997.
    [12]张志君,曹晓英,周小林,冯大勇.一种新的模糊神经网络及在化工过程控制系统的应用研究[J].工业仪表与自动化装置,2001,4:3-5.
    [13]章兢,张小刚,刘小燕.回转窑集成智能控制系统[J].电工技术学报,2002.17(4):62-66
    [14]Chia Ju Wu,Huang ching Huo.Fuzzy parameter identification of direct drive robots[J].Journal of Franklin Institute,1996,333(B):289-310.
    [15]Ok S Y,Kim D S,et al.Semi-active fuzzy control of cable-stayed bridges using magnetorheological dampers.Eng Struct,2007,29(6):776-788.
    [16]R.Agrawal,J.Gehrke,D.Gunopulos,P.Raghavan.Automatic subspace clustering of high dimensional data for data mining applications[C].In Proc.1998,ACM-SIGMOD Int.Conf.Management of Data,1998,6:94- 105
    [17]R.R.Yager,D.P.Filer.Approximate clustering via the mountain method[J].IEEE Transactions on Systems,Man,and Cybernetics,1994,24,(8):1279-1284.
    [18]Yan-Qing Zhang,Abraham Kandel.Compensatory Neurofuzzy Systems with Fast Learning Algorithms[J].Transactions on neural networks,1998,9(1):83-105.
    [19]张友旺.基于动态递归模糊神经网络的动态系统辨识[J].中南工业大学学报,2003,34(3):277-280.
    [20]曾宪华,赖晓风.补偿模糊神经网络的改进及实例分析[J].四川师范学院学报,2002,23(3):249-252.
    [21]Yu Meng hong,Qu Shuang hong,Jiang-changsheng.The Application of compensatory Fuzzy Neural Network in Plastics Thickness Control System [C].8th International Conference on Control,Automation,Robotics and Vision,2004:2155-2159.
    [22]Huseyin Seker,David H.Evans,Nizamettin Aydin.Compensatory Fuzzy Neural Networks-Based Intelligent Detection of Abnormal Neonatal Cerebral Doppler Ultrasound Waveforms[J].IEEE Transactions on Information Technology in Biomedicine,2001,5(3):187-193.
    [23]Tang L,Huang P Z,Xie W X.A new method of FCM considering the distribution of data[J].Genetic and Information Science of Wuhan University,2003,28(4):476-479
    [24]周新华,黄道.一种基于蚁群算法的模糊C均值聚类[J].控制工程,2005,12(2):
    [25]JIN L,Nikiforuk P N,Gupta M M.Dynamic recurrent networks for control of unknown nonlinear systems[J].J Dyn Syst Measur Contr,1994,116(4):567-576.
    [26]Srinivasan B,Prasad U R,Rao N J.Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models[J].IEEE Trans Neural Networks,1994,5:213-228.
    [27]Tommy W S,YONG Fang.A recurrent neural network based real-time learning control strategy applying to nonlinear system with unknown dynamics[J].IEEE Trans Industrial Electronics,1998,45(1):151-161.
    [28]LIN C H,CHOU W D,LIN F J.Adaptive hybrid control using a recurrent neural network for a linear synchronous motor servo-drive system[J].IEEE Proc Control Theory Application,2001,148(2):156-168.
    [29]Marcelo Godoy Simoes,Bimal K.Bose,Ronald J.Spiegel,Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System[J].1997,12(1):87-95.
    [30]李书臣,李平,徐心和,胡玉娥.迭代学习控制理论现状与展望[J].系统仿真学报,2005,17(4):904-908.
    [31]Chiou Y C,Lan L W.Genetic fuzzy logic cont roller:An iterative evolution algorithm with new encoding method[J].Fuzzy Set s and Systems,2005,152(3).
    [32]Fu K S.Learning Control System-Review and Outlook.IEEE Trans on Automatic Control,1970,AC-15:210-221.
    [33]Uchiyama M.Formulation of high-speed motion of a mechanical arm by trial.Trans[J].Society of Instrumentation and Control Engineers(in Japanese),1978,14(6):706-712.
    [34]Arimoto S,Kawamura S,Miyazaki F.Bettering Operation of robotics by learning[J].J.Robotic System,1984,1(2):123-140.
    [35]Bien Z,Huh K M.Higher-order iterative learning control algorithm[J].IEE Proc.-D:Control Theory and Applications,1989,136(3):105-112.
    [36]Chen Y Q,Gong Z M,Wen C Y.Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays[J].Automatica,1998,34(3):345-353.
    [37]Chow T WS,Li X,Fang Y.A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks[J].IEEE Trans.Industrial Electronics,2000,47(2):478-486.
    [38]Amann N,Owens D H,Rogers E.Predictive optimal iterative learning control [J].Int.J.Control,1998,69(2):203-226.
    [39]徐敏,林辉.迭代学习控制理论与应用新进展[J].自动化技术与应用,2003,22(1):4-7.
    [40]陆燕,杜继宏,李春文.延迟时间未知的时延系统神经网络补偿控制[J].清华大学学报,1998,38(9):67-69.
    [41]张乃尧,弈天.基于模糊神经网络的模型参考自适应控制[J].自动化学报,1996,22(4):476-480.
    [42]邓秋琼,黄道平.基于神经网络的非线性预测控制的进一步研究[J].现代计算机,1998,(6):24-27.
    [43]杨智,高靖.神经元自适应预测PID控制器及实现[J].信息与控制,1999,28(5):345-349.
    [44]陈龙,马伯渊,张雪峰.智能PID控制在电石炉电极调节系统中的应用[J].系统仿真学报,2007,17(7):1544-1547.
    [45]靳其兵,李鸿儒.带神经网络补偿的Smith预估极点配置自校正控制[J].东北大学学报,1999,20(2):133-136.
    [46]谭永红,范·高温伯格.基于神经网络的非线性Smith预估器[J].控制理论与应用,2000,17(3):410-414.
    [47]杜涛等.基于人工神经网络的大滞后系统控制的研究[J].控制理论与应用(增刊),1996,178-180.
    [48]Richalet J,et al.Model Predictive Heuristic Control:Applications to Industrial process[J].Automatica,1978,14(5):413-428.
    [49]De Keyser R M C,Van Cauwenberghe A R.Extended Prediction Self-adaptive Control.IN:Barker H A,Young P C eds.Identification and system Parameter Estimation 1985 V.2.Oxford:Pergamon Press,1985,1255-1260.
    [50]Clarke D W,Mohtadi C,Tuffs P S.Generalized Predictive Control[J].Automatic,1987,23(2):137-162.
    [51]Oliver Hacker,Oliver Nelles,Olaf Moseler.Nonlinear system identification and predictive control of a heat exchanger based on local fuzzy model.In:proceedings of the ACC.1997:3294-3298.
    [52]翟春艳,李书臣.模糊预测控制算法[J].自动化仪表,2004,25(3):1-5.
    [53]雎刚,陈来九.多变量模糊预测控制及其应用研究[J].控制与决策,1997,12(1):83-87.
    [54]金晓明,荣冈,王树青.基于模糊模型的多变量预测控制算法[J].控制与决策,1998,13(4):332-336.
    [55]雎刚,陈来九.一种新的预测控制算法:模糊预测控制算法[J].控制理论与应用,1998,15(1):143-147.
    [56]Dongqing Feng,Minrui Fei,et al.Research of Intelligent Control Method for the Temperature of Fermentation[C].ISICT'2003,Beijing,China,SPIE 5253:792-796
    [57]Wu Yongjian,Tan Minghao,Zhou Xiaojie,Chai Tianyou.The Design and Application of Hybrid Intelligent Control System for Rotary Kiln Process in Alumina Production[C].Proceedings of the 26th Chinese Control Conference July 26-31,2007,Zhangjiajie,Hunan,China,222-227.
    [58]Dongqing Feng,Xinzheng Zhang,Minrui Fei,et al.Intelligent Fuzzy Control Method for Soaking Pit Economical Combustion[C].IFAC Workshop on New Technologies for Automation of Metallurgical Industry,Shanghai,China.2003.IFAC/Elsevier Science B.V.,Amsterdam:123-127.
    [59]A.Selk Ghafari,A.Meghdari,G.R.Vossoughi.Intelligent Control of owered Exoskeleton to Assist Paraplegic Patients Mobility using Hybrid Neuro-Fuzzy ANFIS Approach[C].Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics December 17 - 20,2006,Kunming,China,733-738.
    [60]Dongqing Feng,Xuehong Xu,Minrui Fei,et al.Application of Fuzzy Neural Network Predictive Control in Material Proportioning System[C].1st IEEE Conference on Industrial Electronics Applications(ICIEA 2006),Singapore,PROCEEDINGS,VOLS 1-3,WA5.6:146-151.
    [61]刘祥官,曾九孙,郝志忠,鹿智勇.多模型集成的高炉炼铁智能控制专家系统[J].浙江大学学报(工学版),2007,41(10):1637-1642.
    [62]毛征宇,胡小平.微操作机器人集成智能运动控制系统[J].农业机械学报,2008,39(6):170-173.
    [63]徐辰华,吴敏.铅锌烧结过程质量产量的智能集成优化控制[J].控制理论与应用,2008,25(4):688-692.
    [64]XU ZhaoDong,GUO YingQing.Integrated intelligent control analysis on semi-active structures by using magnetorheological dampers[J].Science in China Series E:Technological Sciences,2008,51(12):2270-2284.
    [65]谢森林,王钦若,杜玉晓.智能控制方法在反应釜温度控制中的运用[J].自动化仪表,2008,29(8):15-18.
    [66]廖亦凡,高金定.基于组合智能控制的柔性臂微机控制系统研究[J].数学理论与应用,2008,28(2):47-50.
    [67]Xiaojie Zhou,Tianyou Chai.Pattern-based Hybrid Intelligent Control for Rotary Kiln Process[C].16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore,1-3 October 2007,30-35.
    [68]E.N.Sanchez,E.A.Hernandez,C.Cadet,J.F.Beteau.Hybrid Intelligent Control Scheme for Activated Sludge Wastewater Treatment[C].2008 IEEE International Symposium on Intelligent Control Part of 2008 IEEE Multi-conference on Systems and Control San Antonio,Texas,USA,September 3-5,2008,156-161.
    [69]Kwang S.Lee,Jay H.Lee,Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables[J],Journal of Process Control,2003,(13):607-621.
    [70]Feng Pan,Dong-Mei Feng,Ru-Cheng Hart,Ze-Ying Zhi,Shao-Juan Yu,An Intelligent Control Stratagem For Time-Varying Large Delay System[C].Proceedings of the Third International Conference on Machine Learning and Cybernetics,2004,453-456.
    [71]Nan Ye,Sairam Valluri,et al.Integration of advanced process control and full-scale dynamic simulation[J].ISA Transaction,2000,39(2):273-280.
    [72]项云伟,王耀南.复杂工业过程的智能控制和智能管理系统集成[J].湖南大学学报(自然科学版),2000,27(1):1-17.
    [73]王耀南,张昌凡,李孟秋.复杂工业过程的模糊神经网络自适应控制[J].电子测量与仪器学报,2000,14(2):46-51.
    [74]李平,王子威.间歇聚合反应过程的计算机控制及先进控制技术应用进展[J].化工进展,2004,23(8):841-845.
    [75]杜红彬.间歇过程时频域建模及其模型预测控制研究[D].大连理工大学博士论文,2002.
    [76]Lee J H,Lee K S,Kim W C.Model-based iterative learning control with a quadratic criterion for time-varying linear systems[J].Automatica.200036(5):641-657.
    [77]Lee K S,Lee J H.Convergence of constrained model-based predictive control for batch processes[J].IEEE Transactions on Automatic Control.2000a 45(10):1928 - 1932.
    [78]Lee K S,Chin I S,Lee H J,Lee J H.Model predictive control technique combined with iterative learning for batch processes[J]AIChE J.,1999,45(10):2175-2187.
    [79]冯冬青,李玮,费敏锐等,间歇过程模糊预测学习控制器的设计与仿真研究.系统仿真学报,2007,19(13):3018-3021.
    [80]韩明红,李凡,邓家褆.用于多层前馈神经网络学习的快速遗传算法[J].科技成果学术论文,2003,7:31-34.
    [81]李路,袁震东.用于神经网络权系数训练的遗传算法[J].上海工程技术大学学报,2004,18(1):47-49.
    [82]杨国军,崔平远,李琳琳.遗传算法在神经网络控制中的应用与实现[J].系统仿真学报,2001,13(5):567-570.
    [83]陈霁威,乐惠丰,黄道.基于神经网络和遗传算法的在线优化软件设计与实现[J].华东理工大学学报,2002,8(28):419-422.
    [84]Qiang Gao,Keyu Qi.An Improved Genetic Algorithm and Its Application in Artificial Neural Network Training[C].ICICS,2005:357-360.
    [85]Bo Yang,Xiao-Hong Su,Ya-Dong Wang.BP Neural Network Optimization Based on an Improved Genetic Algorithm[C].Proceedings of the First International Conference on Machine Learning and Cybernetics,2002:64-67.
    [86]Chun Lu,Bingxue Shi,Lu Chen.Hybrid BP-GA for Multilayer Feedforward Neural Networks[J].2000:958-960
    [87]Vittirio Maniezzo.Genetic evolution of the topology and weight distribution of neural networks[J].IEEE transactions on neural networks.1994,5:39-53.
    [88]李士勇.模糊控制,神经控制和智能控制论[M].哈尔滨工业大学出版 社,哈尔滨,1998.
    [89]梁少华,邬春学,于林峰.改进的模糊神经网络BP算法应用研究[J].江汉石油学院学报,2003,25:158-160.
    [90]Detlef Nauck,Rudolf Kruse.A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation [J].IEEE Trans,1993,1022-1027.
    [91]乔俊伟,詹永麒,施光林.基于结构的神经网络在系统建模中的应用[J].系统仿真学报,2002,14(5):557-561.
    [92]Wright,R.A.;Kravaris,C.On-line identification and nonlinear control of an industrial PH Process[J].Journal of Process Control,2001,11(4):361-374.
    [93]Zarate,Luis E.;Resende,Peterson;Menezes,Benjamin.A fuzzy logic and variable structure based controller for pH control[C].IECON Proceedings (Industrial Electronics Conference) Sponsored by:IEEE 2001,3:37-42.
    [94]Babuska,R.;Oosterhoff,J.;Oudshoorn,A.;Bruijn,P.M.Fuzzy self-tuning PI control of PH in fermentation[J].Engineering Applications of Artificial Intelligence,2002,15(1):3-15.
    [95]Dongqing Feng(冯冬青),Lingjiao Dong,Minrui Fei,et al.Genetic Algorithm Based Neuro-fuzzy Network Adaptive PID Control and Its Applications.International Conference on Computational and Information Sciences,Shanghai,China.Springer-Verlag Berlin Heidelberg 2004.LNCS(Lecture Notes in Computer Science) 3314:330-335.
    [96]冯冬青,张新征,费敏锐.基于回归神经网络的氧乐果合成过程建模与仿真.系统仿真学报,2005,17(6):1522-1530.
    [97]Biagiola,Silvina I.;Figueroa,Jose L.State estimation in nonlinear processes.Application to pH process control[J].Industrial and Engineering Chemistry Research,2002,41(19):4777-4785.
    [98]Meiying,Zheng;Guocheng,Du;Jian,Chen.pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense[J].Enzyme and Microbial Technology,2002,31(4):477-481.
    [99]Fehrman,Bill.Controlling PH with titration curves[J].Journal/American Water Works Association,2002,94(2):8-10.
    [100]Tadeo,F.;Grimble,M.J.;Alvarez,Teresa.Tuning of predictive controller using performance assessment measures:Application to pH control[C].IEEE Conference on Control Applications-Proceedings of IEEE Control Systems Society Institute of Electrical and Electronics Engineers Inc.2002,1:403-408.
    [101]Fang,Y.J.;Zhang,H.M.Research on monitoring and controlling system of coordinated phosphate-pH treatment for boiler water[J].Wuhan Daxue Xuebao(Gongxue Ban)/Engineering Journal of Wuhan University,2001,34(3):100-106.
    [102]He,X.Q.;Ma,H.Z.;Yu,M.H.;Hu,S.X.New class of nonlinear controllers with PH control[J].Zhejiang Daxue Xuebao(Gongxue Ban)/Journal of Zhejiang University(Engineering Science Edition),2001,35(3):298-300.
    [103]周景振,韩曾晋.具有时滞的PH值中和过程模糊自适应控制[J],控制与决策,1998,13(5):527-531.
    [104]王骥程,祝和云.化工过程控制[M].化学工业出版社,1991.
    [105]冯冬青,马书磊,陈铁军,师黎.一类时变非线性系统的参数反馈模糊控制器分析与设计[J].信息与控制,2002,31(4):310-314.
    [106]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [107]史忠科.神经网络控制理论[M].西安:西北工业大学出版社,1997.
    [108]李东辉.Fuzzy控制规则自调整和Fuzzy控制系统寻优及其仿真研究[J],模糊数学,1986,3:53-61.
    [109]H Ying.Sufficient conditions on uniform approximation of multivariate functions by General Takagi-Sugeno fuzzy systems with linear rule consequent[J].IEEE Transactions on Systems,Man,&Cybernetics,1998,28A:515-520.
    [110]Tanaka K,Sugeno M,Stability analysis and design of fuzzy control systems[J].Fuzzy Sets and Systems,1992,45(2):135-156.
    [111]董玲娇.基于遗传算法的智能控制器设计方法研究[D].郑州大学硕士学位论文,2004.
    [112]Kuc T Y,Lee J S,Nam K.An iterative learning control theory for a class of nonlinear dynamic system[J].Automatica,1992,28(6):1215-1221
    [113]Jang T J,Choi C H,Ahn H S.Iterative learning control in feedback systems [J].Automatic,1995,31(2):243-248
    [114]燕奎臣,李一平.浮动信号的自动跟踪与监测[J].自动化仪表,2000,21(8):45-46.
    [115]骆晨钟.软仪表技术及其工业应用[J].仪表技术与传感器,1999,(1):35-38.
    [116]王留群.虚拟仪器及其应用[J].世界仪表与自动化,1999,3(4):54-57.
    [117]劭预森.过程控制及仪表[M].上海交通大学出版社,上海,1995.
    [118]王永红.过程检测仪表[M].北京:化学工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700