用户名: 密码: 验证码:
高氧吸入并机械通气致支气管肺发育不良的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     随着通气策略的改变、产前糖皮质激素及生后肺表面活性物质的应用,越来越多的早产儿和极低出生体重儿得以存活,但支气管肺发育不良(Bronchopulmonary dysplasis,BPD)仍然存在,BPD是一种慢性肺疾病(Chroniclung disease,CLD),通常发生在患透明膜病、接受氧疗、机械通气治疗的早产儿。目前多数人主张采用BPD命名,认为此命名可清楚的区分多种原因导致的CLD。早产儿BPD定义为生后28天或纠正胎龄(胎龄+日龄)36周仍需吸氧者,此定义更能准确地预测肺的预后。BPD临床表现主要为患儿依赖吸氧,在原发病基本改善后仍需要机械通气和吸氧,反复发生不易控制的肺部感染,呼吸困难明显,易发生CO_2蓄积和低氧血症,肺功能指标明显下降,部分患儿并发肺动脉高压和心力衰竭。重者多于生后一年内死于呼吸衰竭。存活儿也因肺功能障碍需长期(数月~数年)依赖氧气或呼吸机治疗,严重影响早产儿的生存质量,因其发病机制复杂,目前仍无有效的干预措施,因此探讨高氧机械通气致BPD的发病机制已成为当今新生儿领域研究热点之一。
     根据病理学特点BPD大体上可分为两种病变,一是炎性病变为主要表现的“传统BPD”,表现为肺组织内白细胞浸润、肺气肿、肺不张以及肺纤维化改变;二是肺发育阻滞为主要表现的“新型BPD”,表现为肺泡隔形成减少、微血管发育障碍、肺泡上皮增殖受抑制等。研究表明,氧自由基衍生物、炎症反应、机械通气能够损伤肺上皮细胞、毛细血管内皮细胞、抑制表面活性物质功能,抑制出生后肺泡、小呼吸道和小血管的发育,从而影响肺的成熟。炎症和氧自由基产物均可以诱导细胞凋亡,而呼吸机所致肺损伤(ventilator induced lung injury,VILI)是机械通气过程中的一个严重并发症,由气压伤、容积伤、不张伤及生物伤诱发肺损伤,随后发生BPD。
     肺发育由刺激和抑制因素之间的平衡引起,二个关键的调节器是糖皮质激素和转化生长因子-β。近年来随着转化生长因子-β_1(Transforming growthfactor-β_1,TGF-β_1)的深入研究,它在肺泡损伤、肺微血管发育受阻中的作用倍受关注。TGF-β_1是调节肺发育、细胞分裂、细胞外基质重建、呼吸道重建和调控炎症的主要调控器,这些作用共同促进BPD的发生,它参与肺损伤和修复相反两方面的机制,即它诱导了凋亡、感染、纤维化和肺泡重塑。它和其他细胞因子相互影响,对肺的发生、发展起着重要的调控作用。
     随着人们对细胞凋亡在肺损伤机制中作用的关注,线粒体凋亡途径成为目前研究的热点,凋亡及其他形式的细胞死亡途径中,线粒体通路是一个关键性步骤,在多种死亡模型中细胞色素C(Ccytochrome C,Cytc)从线粒体释放至胞质是引发凋亡的关键步奏。研究证实,肺组织细胞凋亡与急性肺损伤发生,发展密切相关,因此,探索早产儿BPD发生、发展中肺组织细胞的线粒体凋亡途径规律及调控机制,不仅可以完善肺泡发育障碍的发生机制,并可寻求新的干预措施。
     本实验利用新生兔BPD模型,观察支气管肺泡灌洗液(bronchial alveolarlavage fluid,BALF)白细胞计数、肺泡、肺微血管改变及肺泡Ⅱ型上皮细胞凋亡的演变过程,同时,应用免疫组织化学染色、逆转录聚合酶链反应(Reversetranscription-polymerase chain raction,RT-PCR)及脱氧核糖核酸转移酶介导的X-dUTP缺口末端标记(Terminaldeoxynucleotide transferase- mediated X-dUTPnick end labeling,TUNEL)方法检测肺组织TGF-β_1、Cyt c的蛋白及mRNA的动态表达及细胞凋亡指数,以探讨①高氧吸入并机械通气致BPD新生兔肺损伤的影响;②转化生长因子β_1在肺损伤机制中的双重作用;③线粒体/细胞色素C凋亡途径在肺组织细胞凋亡的作用。
     实验材料及方法
     1动物模型
     日龄3~5天的新生新西兰兔96只,体质量为58.4±9.9 g。随机取24只为为正常对照组,给予空气吸入,未上呼吸机。余72只在西门子900C呼吸机上进行机械通气(Mechanical ventilation.,MV)(定压模式),吸氧浓度为900 ml/L,随机分配在高吸气峰压(HPIP=2.45 kPa)、中吸气峰压(MPIP=1.77 kPa)、低吸气峰压(LPIP=0.98 kPa)三组,每组24只,呼吸末正压(Positive end expiratorypressure,PEEP)均为0.294kPa、呼吸频率均为50次/min、吸气时间均为0.33s。
     2标本采集和实验方法
     每组动物分别于通气开始后的1、3、6小时(h)三个时间点,每个时间点8只,切断颈总动脉放血处死动物,正常对照组也在相同时间点同样处死,行左肺支气管肺泡灌洗,用BALF作白细胞计数,中性分叶核细胞计数。取右肺中叶组织,RT—PCR检测肺组织TGF-β_1、Cyt C mRNA的表达。右肺下叶用来行免疫组织化学法检测肺组织TGF-β_1、CytC蛋白的表达,同时光镜、电镜下观察肺组织结构改变及TUNEL法检测肺组织细胞凋亡。
     结果
     1.高氧并机械通气对新生兔一般状态的影响
     正常新生兔精神好,活动好,反应灵敏,呼吸平稳,无发绀,肤色红润。通气新生兔撤机后精神差,反应差,肢体活动少,出现不同程度呼吸困难和发绀,以低压6h组明显,其次是高压6h组,中压1h组症状最轻。
     2.各组新生兔肺BALF白细胞计数、中性分叶核细胞计数的变化
     随着通气的进行,HPIP时肺组织反应较强,BALF中白细胞计数呈增加趋势,6h最为明显,均数最大,其次为LPIP,MPIP 3h到6h呈下降趋势,HPIP中性分叶核细胞计数3h最高,LPIP 6h明显增高,结合病理切片肺微血管变化和肺纤维增生观察结果,考虑高氧机械通气致炎症反应可能是肺微血管损伤的一个始动环节,由此导致的毛细血管闭塞是肺微血管减少的一个重要原因,成纤维细胞的异常增生也始于炎症反应最显著阶段。
     3.病理结果
     光镜观察:正常新生兔肺泡形态较规则,大小较一致,肺泡间隔无增厚。通气新生兔早期微血管发生炎性反应,随时间延长,微血管炎性反应加重,血管腔被中性粒细胞浸润和坏死的内皮细胞堵塞,间质出现毛细血管扩张、充血,其周围的成纤维细胞呈增生改变,最后产生大量胶原纤维、毛细血管闭塞,致使气血屏障增厚,3h时肺泡腔稍扩大,肺泡和毛细血管数目减少,6h时减少更明显,肺泡腔变狭长,甚至出现肺泡分隔增宽,肺间质细胞增多,毛细血管闭塞,以高压力组明显,低压组次之,低压力组以肺泡大小不均和萎陷、肺叶内局部肺不张、透明膜形成较明显。
     电镜观察:正常新生兔肺微血管较丰富,血管内皮结构完整,基底膜连续,血气屏障结构清晰,可见细胞连接。Ⅰ、Ⅱ型肺泡上皮细胞结构完整。通气组1h血管扩张,肺泡腔内有红细胞和中性粒细胞,肺间质内可见多形核白细胞浸润。6h时毛细血管明显减少,血管基底膜增厚,部分血管腔被炎细胞堵塞,肺间质内炎细胞浸润增多,胶原纤维增生,肺泡腔变窄长,Ⅱ型肺泡上皮细胞线粒体肿胀、板层小体破坏,Ⅱ型肺泡上皮细胞向Ⅰ型转化及坏死。上述改变以高压组及低压组明显,中压组变化稍小,且低压组肺泡腔受压,变窄长,毛细血管闭塞较明显。线粒体形态的动态变化与细胞凋亡同一时相。
     4.肺组织TGF-β_1蛋白含量及mRNA表达的动态变化
     通气肺组织中TGF-β_1 mRNA 1h增加,3h达高峰,高吸气峰压组水平最高,与其它组比较有意义,P<0.05。TGF-β_1蛋白表达3h增加,6h达高峰,高吸气峰压组最显著,四组间比较有显著性差异,P<0.01。蛋白表达高峰稍迟于基因表达,TGF-β_1蛋白表达灰度值(该值越低,表达越强)与WBC呈负相关,r=-0.612,P=0.000,说明TGF-β_1蛋白表达与WBC呈正相关关系。
     5.肺组织Cyt C蛋白含量及mRNA表达的动态变化
     随通气时间延长,肺组织Cytc mRNA表达增加及释放增加,以高吸气峰压细胞牵张伤所致表达最显著,随时间延长低吸气峰压不张伤致CytcmRNA表达增高及Cytc释放增加最明显。Cytc蛋白表达与凋亡指数呈正相关,r=0.747,P=0.000。与WBC呈正相关,r=0.628,P=0.000。
     结论
     1.未成熟肺高氧机械通气后出现肺泡分隔及数目减少、肺泡化程度减低、毛细血管减少到闭塞、肺纤维化的特点,且高吸气峰压细胞牵张伤所致损伤较重。
     2.未成熟肺机械通气后高吸气峰压细胞牵张伤致炎症反应强烈,随时间延长,低吸气峰压不张伤致肺组织出现较重的炎症性损伤。
     3.高氧机械通气氧化应激致TGF-β_1表达增高,以高吸气峰压最明显,初期促进肺泡及血管发育,进而抑制。
     4.未成熟肺高氧机械通气后肺组织Cytc表达增高,以高吸气峰压牵张伤最显著,随时间延长低吸气峰压不张伤表达增高最明显。Cytc表达与AEC-Ⅱ凋亡时线粒体形态的动态变化相关。
     5机械通气致线粒体合成、释放大量Cytc到胞质,致氧化应激反应,同时诱发caspase活化级联,导致细胞凋亡。
Along with ventilation strategy changed, glucocorticosteroid used perinatal and lung surfactant applicated postnatal, more and more premature and extremely low birth weight infants can survive, but Bronchopulmonary dysplasis( BPD) still exists, BPD is one kind of chronic lung disease ( CLD). It is usually occured in the premature of hyaline membrane disease accepting oxygen and machinery ventilation treatment. At present most people have advocated to adopt BPD naming, thinking it can clearly discriminate many kinds of CLD in postnatal days. BPD is defined that premature infant, postnatal day 28 or week 36 (gestation week +postnatal week) need oxygen, this definition can accurately forecast prognosis of lung injury. BPD clinical manifestations are that infants depend on oxygen and still need machinery ventilation after primary affection basicly improved; have repeatedly lung infections which are not easy to controlled, have obvious dyspnea, easy to have CO_2 accumulated with hypoxia, their lung functional parameters obviously descend and some babies complicate pulmonary artery hypertension and cardia faiture. Some are serious to die of respiratory failure in postnatal 1 year. The survivals need to rely on oxygen or machine treatment for long-term (several months - several years) because of lung functional disturbance. It influences the survival quality of premature. Because BPD pathogenesis is complicated. At present no therapeutic strategy has been proven clinically effective. Therefore discussing the mechanisms of BPD induced by hyperoxia and mechanical ventilator has become a topic which will be resolved in infant domain.
     BPD may be divided into two kinds of pathological changes according to pathology characteristic. First, "traditional BPD", that inflammation is the main performance, displays leukocytic infiltrate, emphysema, pulmonary atelectasis and pulmonary fibrosis in lung organization. Second, "new BPD", that lung developmental arrest is the main performance, displays interalveolar septum to reduce, capillaries growth to disord, alveolar epithelium multiplication to be inhibited and so on. The research indicated that oxyradical derivate, inflammation reaction and machinery ventilation can damage lung epithelial cells, blood capillary endothelial cells, inhibit surface-active material function. It inhibits the development of pulmonary alveoli, small respiratory tract and small vessels, thus affects maturity of lung. The production of inflammation and oxyradical derivate may induce apoptosis. Ventilator induced lung injury (VILI) is a serious complication in mechnical ventilation process. Excessively high air pressure and large tidal volume can induce and aggravate lung injury. The mechanism of lung injury is : barotrauma; volutrauma; atelectrauma ;Biotrauma.
     Lung development results from the balance between stimulatory and inhibitory influences, and that two of the key regulators are glucocorticoids and TGF-β. In recent years along with transformation growth factor -β_1 (TGF-β_1) deeply studied, its role has been paid close attention in the pulmonary alveolus damage and impaired development of lung capillaries. TGF-β_1 is the major regulation that adjusts lung growth, cell division, extracellular matrix reconstruction, the respiratory tract reconstruction and inflammation. These commonly promote BPD occurring. TGF-β_1 participates in opposite two aspect mechanisms of lung damage and reparation, namely it induces apoptosis, infection, fibrosis and pulmonary alveolus remodeling. The interaction of TGF-β_1 and other cytokines regulates considerately the development of lung.
     Along with attention to apoptosis in the mechanisms of lung damage, plastiosome apoptosis way has become the hot point. It is a key point in apoptosis and other formal cell death. The releasing of cytochrome C ( Cytc) from plastiosome to ketoplasm is key point that induce apoptosis. It is confirmed that lung tissue apoptosis is correlated colsely with acute lung injury. Therefore, exploring the regular and control mechanism of plastiosome apoptosis of lung tissue in BPD not only for us to develop the mechanism of alveoli stunted, but also to find new therapeutic strategy.
     . We made a rabbit model of BPD, and viewed leucocyte count, the changes of lung alveoli and capillaries, the apoptosis course of alveolar endothelial cellⅡ.At the same time, the lung were collected for immunohistochemistry and PCR. The purpose of this study was to investigate the effects of hyperoxia and mechanism ventilator on lung damage after BPD; dual effects of TGF-β_1 in mechanism of lung damage; the effects of apoptosis way of plastiosome /cytochrome C in the lung tissue cell apoptosis.
     Materials and Methods
     96 rabbits on postnatal day 3~5 were arranged randomly into four groups: three groups were subjected to hyperoxia (90 ml/L O_2) plus mechanical ventilation(MV), first received high peak inspiratory pressure(HPIP), second received moderate peak inspiratory pressure(MPIP), third received low peak inspiratory pressure(LPIP) and the last group with no mechanical ventilation and room air. All rabbits were sacrificed at 1h, 3h, 6h after trail respectively. White blood cell (WBC)counts and segmented neutrccyte counts in BALF were measured. The change of lung histopathology and radical alveolar counts (RAC) were assessed by hematoxylin-eosin (HE) staining and observed under light microscope, the change of lung ultrastructure by electron microscope at 6h. The lungs were collected for immunohistochemistry and PCR to explore the expressions of transforming growth factor-β_1 (TGF-β_1) and cytochromeC(Cytc) mRNA and the distribution of TGF-β_1 and Cytc. The apoptosis index of lung cell was identified by TUNEL.
     Results
     1 .The conditions of newborn rabbits: The rabbits were well and breathe regularly in control group, were bad and dyspneic in groups with MV. The most obvious expression was in LPIP group at 6h, second was in HPIP group at 6h, third was in MPIP group at 1h.
     2 .WBC counts and segmented neutrccyte counts in BALF
     WBC counts increased in groups with MV, the tendency was most significant in HPIP group at 6h, second was in LPIP, there was a descend tendency in MPIP group at 6h. Segmented neutrccyte counts increased to the highest tip in HPIP group at 3h, the same in LPIP group at 6h. Combinating thechanges of lung capillaries and fiber in pathological section, the beginning of lung capillaries injury was infections induced by inhaled hyperoxia and MV. Capillaries occlusion was a important cause of the decreasinging lung capillaries. The paraplasm of fibroblast began with the striking stage of inflammatory reaction.
     3.pathology consequence
     light microscope: the shape of lung alveoli were regular, alveolar septum were not thick in controls. Inflammatory reactions of lung capillaries aggravated at 1h in groups with MV. Angiotelectasis and congestion appeared in interstitial substance, the hyperplasy of fibroblast produced more collagen fibers. Capillaries occlusion brought about QI-blood barrie thicking. The alveolar space enlarged, lung alveoli and lung capillaries decreased at 3h, dramatically at 6h. Lung alveoli were long and narrow, alveolar septum was widen, Capillaries occlusion appeard and interstitial cells displayed an increase. These expressions were significant in HPIP group, then LPIP group. The Lung alveoli collapse and pulmonary closure and asphyxial membrance were obviously in LPIP group.
     electron microscope: the plentiful lung capillaries and integrity blood vessel endothelium and ACE-Ⅰ、Ⅱand basal membrane were found in control group. The lung capillaries expanded , RBC and neutrophilic leukocytes appeard in alveolar space at 1h with MV, At 6h the lung capillaries reduced and Lung alveoli were long and narrow, interstitial cells increased, the plastiosome of ACE-Ⅰ、Ⅱswelled , lamelar body were destroyed and ACE-Ⅱconverted to ACE-1. The expressions at 6h were obviously in HPIP and LPIP groups, The Lung alveoli collapse and pulmonary closure were obviously in LPIP group. The changes of structure of plastiosome was correlated with cell apoptosis.
     4. TGF-β_1 protein and mRNA level expression
     In groups with MV, TGF-β_1 mRNA level rised at 1h and at peak at 3h ,difference was seen between HPIP group and others, p <0.05. TGF-β_1 protein level rised at 3h and at peak at 6h, the expression was significant in HPIP group, signficant difference was seen among four groups, p<0.01. The peak of TGF-β_1 protein level slightly delayed after the peak of TGF-β_1 mRNA level. TGF-β_1 protein level was positive-related to WBC, and negative to RAC.
     5. Cytc protein and mRNA level expression
     In groups with MV, Cytc mRNA level rised, most obviously in HPIP group,then in LPIP group. The peak was at 3h, The expression of Cytc protein level rised from 1h to 3h, at 3h signficant difference was seen between each group with MV to controls, p< 0.01, the level was less reducing from 3h to 6h. Cytc protein level rised most obviously in LPIP group at 6h.
     Conclusions;
     1. After hyperoxia and machinery ventilation, immature lung presents the alveolar septum and number diminuting, the pulmonary alveolus degree decreases, the blood capillary to reduce unenlightenedly, the lung fibrosis characteristic. The expression of cell stretch damage induced from high peak inspiratory Pressure is most serious.
     2. With machinery ventilation, The inflammation of cell stretch damage induced from High Peak Inspiratory Pressure reacts strongestly in immature lung, along with the time expand, the inflammation induced from atelectrauma of LPIP presents more serious.
     3. The oxidative stress result from hyperoxia and machinery ventilation causes TGF-β_1 to express highly, most obvious from HPIP. It promotes pulmonary alveolus and blood vessel to growth in initial period , then inhibites them.
     4. After hyperoxia and machinery ventilation, Cytc expression increases, most obvious from HPIP. Along with the time expand, the expression of atelectrauma of LPIP is remarkable, Cytc expression was related to the changes of structure mitochondria when ACE-Ⅱapoptosing.
     5. Mitochondria composes and releases more Cytc to cytosolic with machinery ventilation, causing oxidative stress and Cytc results caspase activation cascade, at last apoptosis.
引文
[1]Jobe AH,Bancalari E.Bronchopulmonary dysplasia[J].Am J Respir Crit Care Med 2001,163(7);1723-1729
    [2]Manktelow BN,Draper ES,Annamalai S,Field D,et al.Factors affecting the incidence of chronic lung disease of prematurity in 1987,1992,and 1997[J].Arch Dis Child Fetal Neonatal Ed,2001,85(1):F33-F35
    [3]Hargital B,Szabo V,Hajdu J,et al.Apoptosis in various organs of preterm infants histopathologic study of lung,kidney,liver,and brain of ventilated infants[J].Pediatr Res,2001,50(1):110-114
    [4]Yamamoto H,Teramoto H,Vetani K,et al.Cyclic stretch up regulates interleukin-8 and transforming growth factor-betal production through a protein kinase C -de pent pathway in alveolar epithelial cells[J].Respirology,2002,7(2):103-109
    [5]Berger TM,Bachmannll,A damsM,et al.Impact of improved survival of very low birth weight infants on incidence and serverity of bronchopulmonary dysplasia[J].Biol Neonate,2004,86(2):124-130
    [6]富建华,薛辛东.高浓度氧诱导早产儿肺损伤的研究现状[J].中国当代儿科杂志,2003,5(1):78-80
    [7]陈红兵,常立文,刘汉楚,等.血小板源性生长因子对新生大鼠高氧肺损伤的影响[J].实用儿科临床杂志,2005,20(2):113-115
    [8]Kallapur SG,Jobe AH.Contribution of inflammation to lung injury and development[J].Arch Dis Child Fetal Neonatal Ed,2006,91(2):132-135
    [9]常立文,李文斌,新生儿急性肺损伤/急性呼吸窘迫综合征[J].实用儿科临床杂志,2007,22(2):84-85
    [10]王安茹,细胞凋亡与高氧性肺损伤[J].中国新生儿科杂志,2006,21(5):314-315
    [11]冯琪,支气管肺发育不良[J].中国新生儿科杂志,2006,21(1):59-61
    [12]农绍汉,钟劲,蒋秋平,等.新生儿慢性肺疾病的机械通气策略研究[J].中国新生儿科杂志,2007,22(4):197-200
    [13]Coalson JJ.Experimental models of Bronchopulmonary dyspasia[J],Biol Neonate,1997,710):35-38
    [14]Jobe AH,Bancalari E.Bronchopulmonary dysplasia[J].Am J Respir Crit Care Med,2001,163(4):1723-1729
    [15]Coalson JJ,Winter VT,Siler-Khoder,et al.Neonatal chronic lung disease in extremly immature baboons[J].Am J Respir Crit Care Med,1999,160(12): 1333-1346
    [16] Curley AE, Sweet DC, Thornton CM, et al. Chorioamniontis and increased neonatal lung lavage fluid matrix metalloprotienase-9 levels: Implcations for antenatal origins of chronic lung disease 〔J〕 Am J Obstet Gynecol,2003,188(4):871-875
    [17] Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decrenses alveolarization in the developing rat lung 〔J〕 . Am J Physiol Lung Cell Mol Physiol. 2000,279(3):600-607
    [18] Mcgrath-Morrow SA, Cho C, et al.Vascular endothelial growth factor receptor 2 blockade disrupts posinatal lung development 〔J〕. Am J Respir Cell Mol Biol.2005 32(5):420-427
    [19] Thibeault DW, Mabry SM, Norberg M, et al. Lung microvascular adaptation in infants with chronic lung disease 〔J〕 . Biol Neonate 2004,85(4):273-283
    [20] Li LF, Liao SK, Ko YS, et al.Hyperoxia increases ventiator-induced lung injury via mitogen-activated protein kinases.a prospective, controlled animal experiment 〔J〕 . Crit Care. 2007;11(1);25
    [21] Gualandris A, Presta M. Transcriptional and posttranccriptional regulation of urokinase-type plasminogen activator expression in endothelial cells by basic fibroblast growth factor 〔J〕 . J Cell Physiol,1995,162(6):400-409
    [22] CherukupalliK, Larson JE, Rotschild A, et al. Biochemical, clinical, and morphologic studies on lungs of infants with bronchopulmonary dysplasia 〔J〕 .Pediatr Pulmonol,1996,22(8):215-229
    [23] Li C, Zhang J, Jiang Y, et al. Urokinase type plasminogen activtor upregulates its own expression by endothelial cells and monocytes via the u-PAR pathway 〔J〕 .Thromb Res,2001,103(1):221-232
    [24] Ko SC, Zhang H, Haitsma JJ,et al. Effects of PEEP levels following repeated recruitment maneuvers on ventilator-induced lung injury 〔J〕 . Acta Anasthesiol Scand. 2008 52(4):514-521.
    [25] Meade MO, Cook DJ,Guyatt GH, et al. Ventilation strategy using tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial〔J〕 .JAMA. 2008,299(6);637-645.
    [26] Naik AS , Kallapur SG, Bachurski CJ , et al. Effects of ventilationwith different positive end-expiratory pressures on cytokine expression in the preterm lamb lung 〔J〕 .Am J RespirCrit Care Med,2001,164(3):494-498.
    [27] Auten RL JR, Mason SN, Tanaka DT, et al. Anti-neutrophile chemokine preserves alveolar development in new born rats 〔J〕 . Am J Physiol Lung Cell MolPhysiol 2001,281(2):336-334
    [28] Kosford GE, Olson DM.Effects of hyperoxia on VEGF, its receptors and HIF-2a in the newborn rat lung 〔J〕 . Am J Physiol Lung Cell Mol Physiol 2003,285(1): 161-168
    [29] LE Cras TD, Spitzmiller RE, et al. VEGF causes pulmonary emorrhage,hemosiderosis and air space enlargement in meonatal mice 〔J〕 . Am J Physiol Lung Cell Mol Physiol 2004,287(1):134-142
    [1]Martin MM,Buckenberger JA,Jiang J,TGF-betal stimulates human AT1receptor expression in lung fibroblasts by cross talk between the Smad,p38MAPK,JNK,and PI3K signaling pathways[J].Am J Physiol Lung Cell Mol Physiol.2007,293(3):790-799.
    [2]Belperio JA,Keane MP,Lynch JP 3rd,et al.The role of cytokines during the pathogenesis of ventilator-associated and ventilator induced lung injury[J].Semin Respir Crit Care Med.2006,27(4):350-364
    [3]Berger TM,Bachmannll,A damsM,et al.Impact of improved survival of very low birth weight infants on incidence and serverity of bronchopulmonary dysplasia[J]Biol Neonate,2004,86(2):124-130
    [4]富建华,薛辛东.高浓度氧诱导早产儿肺损伤的研究现状[J].中国当代儿科杂志,2003,5(1):78-80
    [5]陈红兵,常立文,刘汉楚,等.血小板源性生长因子对新生大鼠高氧肺损伤的影[J].实用儿科临床杂志,2005,20(2):113-115
    [6]Kallapur SG,Jobe AH.Contribution of inflammation to lung injury and developm[J].Arch Dis Child Fetal Neonatal Ed,2006,91(2):132-135
    [7]常立文,李文斌,新生儿急性肺损伤/急性呼吸窘迫综合征[J].实用儿科临床杂志,2007,22(2):84-85
    [8]王安茹,细胞凋亡与高氧性肺损伤[J].中国新生儿科杂志,2006,21(5):314-315
    [9]冯琪,支气管肺发育不良[J].中国新生儿科杂志,2006,21(1):59-61
    [10]农绍汉,钟劲,蒋秋平,等.新生儿慢性肺疾病的机械通气策略研究[J].中国新生儿科杂志,2007,22(4):197-200
    [11]Stick S.Pediatric origins of adult lung disease.In the contribution of airway development to paceiatric and adultlung desease.Thorax,2000,55(7):587-594.
    [12]Hastings,R olph H,John T Berg,et al.Parathyroid hormone-related protein reduces alveolar epithelial cell proliferation during ungi njury in rats[J].Am J Physiol Lung Cell Mol Physiol,2000,279(1):194-200.
    [13]B handari V,Johnson L,Smith-Kirwin A,et al.Hyperoxia and nitricoxide reduce surfactant components(DSPC and urfactant Proteins) and increase apoptosis in adult and fetal rat type pneumocytes[J].Lung,2002,180(6):301-317.
    [14]Perkowski S,Sun J,Singha 1S,et al.Gene expression profiling of the early pulmonary response to hyperoxia in mice[J].Am J R espir Cell Mol Biol,2003,28(6):682-696.
    [15]Ahmed M N,Suliman H B,Folz RJ,et al.Extracellular superoxided ismutase protects lungdevelopment in hyperoxia-exposed newborn mice[J].Am J Respir Crit Care Med,2003,167(3):400-405.
    [16]Guthmann F,Kollecd,Schachtrup C,et al.VitaminE deficiency reduces surfactant lipidbio symthesis in alveolar type cells [J]. Free Radic Viol Med,2003,3 4(6):663-673.
    
    [17] Ning W, Song R, Li C, et al. TGF-betal stimulatesHO-1viap38 mitogen-activated proteinkinase in A549 pulmonary epithelial cell [J]. Am J Physiol Lung Cell Mol Physiol, 2002,283(5):1094-1102.
    [18] Chetty A, Nielsen H C. Regulation of cell proliferation by insulin-like growth factor1 in hyperoxia-exposed neonatal rat lung [J]. Mol Genet Metab, 2002,75:265-275.
    [19] Jackson J C, Standaert TA, et al. Changes in lung volume and deflation stability in hyaline membrane disease. Jappl Physiol 1985, 59:1783-1789
    [20] Kunzmann S, Speer CP, Jobe AH, et al. Antenatal inflammation induced TGF-betal but suppressed CTGF in preterm lungs 〔J〕. Am J Physiol Lung Cell Mol Physiol, 2007,292(1): 223-231
    [21] Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth f actor B is present at sites of extracellular matri gene expressionin human pulmonary fibrosis. Proc Natl Acad Sci, 1991,88(2):6642-6646
    [22] Westergren E, Thorssor GA. Altered expression of small proteoglycans,collagen and TGF-B in developing bleomycin-induced pulmonary fibrosi in rats. J Clin Invest, 1993, 92(2):630-637
    [23] Jack Gauldie, Tom Galt, et al. Transfer of the active form of transforming growth facter-beta1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia[J]. Am J Patbol,Vol. 2003,163(6): 2575
    [24] Vicencio AG, Lee CG, Cho SJ, et al. Conditional overexpression of bioavtive transforming growth factor betal in in neonatal mouse lung: a new model for brochopulmonary dysplasia? [J]. Am J Respir, 2004,31(6):650-656
    [25] Lecart C, Cayabyab R, Buckley S, et al. Bioactive transforming growth factor beta in the lungs of extremely low birth weight neonates predicts the need for home oxygen supplementation. 〔J〕 Biology Neonate, 2000, 77(4);217-223
    [1]Frezza C,Cipolat S,deBrito O et al.OPAl controls apoptotic cristae remodeling independently from mitoehondrial fusion.Cell[J]2006,126(1):177-189
    [2]Wang X.The expending role of mitochondria in apoptosis[J].Genes Dev,2001,15(22):2922-2933
    [3]Jobe AH.Lung development and lung injury -the new BPD[J].中国当代儿科杂志,2001,3(4):433-437
    [4]富建华,薛辛东 转化生长因子β与早产儿慢性肺疾病[J].中华儿科杂志2003.41(4):313-315
    [5]Uhal.Apoptosis in lung fibrosis and repair[J].chest 2002.122(6);1935
    [6]RichardL.Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposednewbomrats[J].Am J Physiol Lung Cell Mol Physiol,2001,251(2):L336-344.
    [7]王安茹,细胞凋亡与高氧性肺损伤[J].中国新生儿科杂志,2006,21(5):314-315
    [8]Miner L J,Marx J.Apoptosis[J].Science,1998,281:1301-1304
    [9]Kang PM,Izumo S.Apoptosis and heart faiture:a critical review of the literature.[J].Circ Res,2000,86(11):1107-1113
    [10]邹循锋 线粒体/细胞色素C介导的凋亡通路的研究进展[J].医学综述2007.13(1):16-19
    [11]Wang X.The expanding role of mitochondria in apoptosis[J].Genes Dev,2001,15(22):2922-2933
    [12]Sivakolundu SG,M abrouk PA.Structure-function relationship of reduced cytochrome c probed by complete solution structured etermination in 30%acetonitrile/water solution[J].J Biol Inorg Chem,2003,8(5):527-539.
    [13]Mootha V K,Wei M C,Buttle K F,et al.A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c[J].EM BO J,2001,20(4):661-671.
    [14]Zhivotovsky B,Orrenius S,Brustugun OT,et al.Injected cytochrome c induces apoptosis[J].Nature,1998,391(6):449-450.
    [15]Douglas R.Apoptosis Pathways:Ten minutes to dead[J].Cell,2005,121(5):671-674
    [16]Olichon A,Baricault L,Gas N,et al.Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity,leading to cytochrome c release and apoptosis[J].J Biol Chem,2003,278(10):7743-7746.
    [17]Youle R J,Karbowski M.Mitochondrial fission in apoptosis[J].Nat Rev Mol Cell Biol,2005,6(8):657-663
    [18]Lim ML,Chen B,Beart PM,et al.Relative timing of redistri-bution of cytochrome c and Smac/DIABL O from mitochondria during apoptosis assessed by double immunocytochemistry on mammalian cells[J].Exp Cell Res,2006,312(7):1174-1184.
    [19]刘伟,常立文,李文斌.早产大鼠高氧暴露下肺组织TNF-a、Caspase-3表达时相研究[J].中国当代儿科杂志,2005,7:451-454.
    [20]Chandra D,Liu J W,Tang DG.Early mitochondrial activation and cytochrome C up-regulation during apoptosis[J].Biol Chem,2002,277(52):50842-50854.
    [21]Northington FJ,Graham EM,Martin LJ.Apoptosis in perinatal hypoxic ischemic brain injury:How important is it and should it be inhibited[J]?Brain Research Review,2005,50(2);244-257.
    [1]Thibeault DW,Mabry SM,Norberg M,et al.Lung microvascular adaptation in infants with chronic lung disease.Biol Neonate 2004,85(4):273-283
    [2]Li LF,Liao SK,Ko YS,et al.Hyperoxia increases ventiator-induced lung injury via mitogen-activated protein kinases:a prospective,controlled animal experiment.Crit Care.2007;11(1);25
    [3]Mcgrath-Morrow SA,Cho C,et al.Vascular endothelial growth factor receptor 2 blockade disrupts posinatal lung development.Am J Respir Cell Mol Biol.2005 32(5):420-427
    [4]Thibeault DW,Mabry SM,Norberg M,et al.Lung microvascular adaptation in infants with chronic lung disease.Biol Neonate 2004,85(4):273-253
    [5]Anten RL,Vozzellim,clark RH.Voluruma,What is it,and how do we avoid it ?Clin perinatol 2001,28(3):505-515.
    [6]Jobe AH,Ikegami M,prevention of bronchopulmonary dysplasia.Curr opin Pediatr.2001;13(2):124-129
    [7]Panda AK,Nag K,Harbottle RR,et al.Effect of acute lung injuy on structure and function of pul monary surfactant films.Am J Respir Cell Mol Biol,2004,30(5):641-650.
    [8]Veldhuizen RA,Welk B,Harbottle R,et al.Mechanical ventilation of isolated rat lungs changes the structure and biophysical properties of surfactant.J Appl Physiol,2002,92(3):1169-1175.
    [9]Halter JM,Steinberg JM,Gatto LA,et al.Effect of positive end expiratory press-ure and volume on lung injury induced by alveola-instability.Crit Care,2007,11(1):R20.
    [10] .Kerr CL, Veldhuizen RA, Lewis JF. Effects of high-frequency oscillation on endo genous surfactant in an acute lung injury mode[J].Am J Respir Crit Care Med,2001,164(2):237-242.
    [11] Hua YM, Lien SH, Liu TY, et al. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury. Pediatr Pulmonol,2008,43(4);371-380.
    [12] Remblay L N, Slutsky A S. Ventilator induced injury : from barotraum atbiotraum-a, ProcAsso Am Physicians, 1998,110(6):482-488.
    [13] Naik AS, Kallapur SG,et al. Effects of ventilation with different positive end-expiatory pressures on cytokine expression in the pret-erm lamb lung. Am J Respir Crit Care Med 2001,164(3):494-498.
    [14] Chetty A, Cao GJ, Manzo N, et al. The role of IL-6 and IL-11 in hyperoxic injury in developing lung. Pediatr Pulmonol. 2008 Mar;43(3):297-304.
    [15] IanB.copland, Francisco Martinez, Brian P. High Tidal volume ventilation causes different inflammatory Responses in Newborn versus Adult lung, Am J Respir Crit Care Med. 2004, 169(6):739-748.
    [16] Kramer BW, Jobe AH, Ikegami M. Monocyte function in preterm, term, and adult sheep. Pediatr Res. 2003;54(1):52-57.
    [17] Lentsch AB, Czermak B J, Bless N M, et al. Essentialroleof alveolar macrophagesin macrophagesin intrapulmonary activation of NF-kapa B.Am J Respir Cell Mol lBiol,1999,20(4):692-698.
    [1]王颖.支气管肺发育不良(新生儿慢性肺疾病)的诊断与治疗.实用医学杂志,2005,21(17):1859-1860.
    [2]Saugstad OD.Bronchopulmonary dysplasia and oxidative stress:are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr 1997,86(12):1277-1282
    [3]Korhonen P,Tammela O,Koivisto AM,et al.Frequency and risk factors inbronchopulmonary dysplasia in a cohort of very low birth weight infants.Early Hum Dev,1999,54(3):245-258.
    [4]Veness KA,Bottone FG Jr,Stiles AD.Effects of retinoic acid on air space development and lung collagen in hyperoxia-exposed new born rats.Pediatr Res,2000,48(4):434-444.
    [5]Gaddipati JP,Mani H,Banaudha KK,et al.Picroliv modulates the expressionof insulin-like growth factor(IGF)-Ⅰ,IGF-Ⅱ and IGF-Ⅰ Receptor during hyperoxia rats Cell Mot Life Sci,1999,56(3-4) 348-355.
    [6]Westergren E,Thorssor GA.Altered expression of small proteoglycans,collagen and TGF-β_1 in developing bleomycin induced pulmonary fib- rosis in rats.JClinInvest,1993,92:630-637
    [7]Bienkowski RS,Gotkin MG.Control of collagen depositionin mammalian lung.ProcSocExpBiolMed,1995,209:1182140.
    [8]Broekelmann TJ,Limper AH,Colby TV,et al.Transforming growth factor Bispresentat sites of extracellular matrixgene expression in human pulmonary fibrosis.ProcNatlAcad ci,1991,88:6642-6646.
    [9]万秋红.TGF-β超家族信号传递机制研究进展.国外医学分子生物学分册,2000,22(3):137-142.
    [10]Richard L.Anti-neutrophil chemokine preserves alveolar develpomen t in hyperoxia-exposed newborn rats.Am J Physiol Lung Cell Mol Physiol,2001,281:L336-344.
    [11]Bhandari R,Hamilton G,et al.Alveolar type Ⅱ cell fibroblast interactions,synthesis and secretion of surfactant and type Ⅰ collagen.J Cell Sci,1993,105(pt2):423-432.
    [12]Noguchi A,Nelson T.IGF-I stimulates tropoclastin synthesis in neonatal rat pulmonary fibroblasts.Pediatr Res,1991,30:248-251.
    [13]Cazals V,M uhieddinc B,Maitre B,et al.Insulin-like growth factor,their binding proteins,and transforming growth factor bctal in oxidant-arrested lung alveolar epithelial cells J Biol Chem,1994,269:14111-14117.
    [14]Buckley S,Barsky L,Driscoll B,et al.Apoptosis and DNA damage in type 2alveolar epithelial cells cultured from hyperoxic rats.Am J Physiol,1998,274(SPt1):L714-L720.
    [15]Jonsson R Li YH,Noack G,et al.Down regulatory cytokines in tracheobronchial aspirate fluid from infant with chronic lung disease of prematurity.Acta Pediatr 2000 89(10):1375-1380
    [16]富建华,薛辛东.转化生长因子β与早产儿慢性肺疾病(J).中华儿科杂志.2003.41(4):313-315
    [17]O'Reilly MA Staversky RI Flanders KC et al Temporal changes in expression of TGF-β1 isoforms in mouse lung exposed to oxygen(J).Am J Physiol 1997,272(1):L60-67
    [18]LeCart C,Cayabyab R,Buckley S,et al.Bioactive transformin g growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation.Biol Neonate 2000,77:217-223
    [19]jian-Hua Fu,Xin-Dong XUE.Dynamic expression and efect of TGF-βlon extracellular matrix in premature mrs with CLD[J].中国当代儿科杂志,2004,6(3):166-170.
    [20] Buckley S, Buik C, Hussainl. Dynamics of TGF—β_1 peptide activity during rat alveolar epithelial cell prolifarative recovery from acute hyperoxia [J]. Am J Physiol, 1996, 271(1): 154—160
    [1]Jobe AH.Lung development and lung injury-the new BPD.中国当代儿科杂志,2001,3(4):433-437
    [2]富建华,薛辛东 转化生长因子β与早产儿慢性肺疾病.中华儿科杂志.2003.41(4):313-315
    [3]Uhal.Apoptosis in lung fibrosis and repair.chest 2002.122(6);1938
    [4]Auten RL,Mason SN,Tanaka DT,et al.Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposed new born rats.Am J Physiol Lung Cell Mol Physiol,2001,281(2):L336-344.
    [5]Kerr J F.History of the events leading to the formulation of the apoptosis concept.Toxicology.2002,181-182:471-474.
    [6]Bedner E,Li X,Gorczyca W,et al.Analysis of apoptosis by laser scanning Cytom -etry,1999,35(3):181-195.
    [7]刘韧 肖南 田昆仑等,中性粒细胞凋亡延迟在脂多糖所致大鼠急性肺损伤发病机制中的作用 中华医学杂志.2001,81(10):617-621
    [8]张谦慎,常立文.肺泡Ⅱ型上皮细胞与肺发育关系的研究进展.中国实用儿科杂志.2004,19:58-61
    [9]Greene K E,Caldwell E,Wright Jr,et al.Serial changes in surfactantassociated proteins in lung and serum before and after onset of ARDS.Am J Respire Crit Med,1999,160(6):1843-1850
    [10]张赛 陈如坤 林敏等 大鼠肺缺血再灌注损伤中肺泡细胞凋亡的动态观察中华医学杂志2004,19(84):1597-1600.
    [11]Tesfaigzi J,Wlld MB.Johnson NF,et al.Apoptosis is a pathway responsible for the resolution of endotoxin-induced alveolar type Ⅱ cell hyperplasia in the rat.Love Respir Res Ins,1998;79(5):303-311。
    [12]Gruener,Dieter C,Walter E,et al.Culture and transformation of human airway epithelia cells.Am J Physiol.1995;268(lung cell.Mol.Physiol.):347-360.
    [13]Barbas filho JV,Ferreira MA,Sesso A.et,al.Evidence of type Ⅱ pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis(IFP)/usual interstitial pneumonia(UIP).J Clin Pathol.2001,54(2):132-138
    [14]Sun M,Yang L,Feldman RT,et al.Activation of phosphatid dylinositol-3 kinasc-Akt pathway by and androgen through interaction of p85 and receptor,and Sre.JBiol Chem,2003,278(44):42992-43000.
    [15]Jones R G,Parsons M.Protein kinase B regulates T lymphocyte survival,nuclear- factor~k B activation,and Bcl-xl levels in vivo.J ExpMed 2000,191(10):1721-1734.
    [16]黄文林,朱孝峰.信号转导[M].第1版.北京:人民卫生出版社,2005.350-351
    [17]Peiro G,Diebold J,Baretton GB,et al.Cellular apoptosis susceptibility gene expression in endometrial carcinoma:correlation with bcl-2,Bax,and caspase-3expression and outcome.Int J Gynecol Pathol.2001,20(4):359-367.
    [18]Budinger GR,Tso M,McClintock DS,Dean DA,et al.Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulation by Bcl-2 proteins.J Biol Chem,2002,277:15654-15660
    [19]O'Reilly MA,Staversky RJ,Huyck HL,et al.Bcl-2 family gene expression durings evere hyperoxia induced lung injury.Lab Invest.2000,80(12):1845-1854.
    [20]Cain K,Bratton SB,Langlais C,et al.Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-Mda apoptosome complexes.J Biol Chem.2000,275(9):6067-6070
    [21]朱晓东,林庚金。凋亡通路及其调空研究进展.国外医学.生理.病理科学及临床分册.2002,22:248-250
    [22]Li N,Karin M.Is NF-kappaB the sensor of oxidative stress? Faseb Journal.1999,13(10):1137-1143
    [23]Auten RL,Ekekezie Ⅱ.Blocking leukocyte influx and function to prevent chronic lung disease of prematurity.Pediatr Pulmonol.2003,35(5):335-341
    [24]Adams JM,Cory S.Life or death decisions by the Bcl-2 protein family.Trends Bio Chem Sic,2001,26(1):6126-6234
    [25]Antonsson B.Bax ando ther proapoptotie Bel-2 family/killer proteins and the irvictim themtochondrion.Cell Tissue Res,2001,306(2) 341-361.
    [26]Kuwana T,Bouchier,HayesL,et al.BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrical membrane permeabil-ization both directly and indirectly. Mol Cell, 2005 17(4):525-535
    [27] Douglas R. Apoptotic Pathways: Ten Minutes to Dead. Cell, 2005, 121(5):671-674.
    [28] Bouillet P, Purton JF, Godfrey DI, et al. BH3-only Bcl-2 family member Bim is require for apoptosis of auto reactive thymocyles. Nature. 2002, 21,415(6874):922-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700