用户名: 密码: 验证码:
荆江-洞庭湖耦合系统水动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荆江和洞庭湖地区历来都是长江流域洪涝灾害最频繁的地区。三峡工程的建成运行又给这一地区带来了许多新的变化,直接影响其防洪形势。在新的情况下,如何正确处理人与自然的关系,上游和下游的关系,干流和湖区的关系,从而实现江湖地区的长治久安,有一系列重大问题需要深入研究。
     针对荆江-洞庭湖耦合系统水系复杂的特点,建立了与之相适应的荆江和洞庭湖一、二维耦合非恒定流水动力学模型。模型将荆江和三口河系作为一维河网处理,将洞庭湖区作为二维浅水湖泊处理,通过对不同类型的典型洪水进行验证计算,论证了模型的精确性。论文同时还尝试建立了荆江和洞庭湖整体二维水动力学模型。并通过与一、二维耦合模型的对比,认清了两种模型各自的优点和缺点。
     应用建立的耦合水动力学数学模型计算分析了三峡工程运用后,不同的调度方式对长江中游防洪形势的影响。计算结果表明:三峡工程不同调度方式对同一场洪水的防洪效果和相同调度方案对不同类型洪水所起作用差异很大。实际操作中,应根据洪水的特征灵活采用,使洪水分配更为合理,以最大限度的发挥三峡水库的防洪作用。
     论文也计算了洞庭湖区几项倍受关注的治理方案对长江中游防洪形势的影响,包括三口建闸、松滋河系整治和藕池河系整治等,评价了各方案的可行性。松滋口建闸对几类典型洪水影响的计算表明,松滋口建闸将为江湖流量的重新分配增加一种选择,建闸能有效改善西洞庭湖的防洪形势,同时遇一般类型洪水也不会对荆江造成过大压力,但松滋口闸的调度方案必须与三峡的调度方案统筹协调,才可以做到江湖两利。
     采用带旋流修正的三维紊流模型对影响江湖耦合系统水动力学特性的几个重要因素进行了研究,包括连续弯道水流特点、裁弯对上下游水流形态及防洪形势的影响、分汊河道分流分沙规律等。
Flooding has been a big threaten to the area nearby Jingjiang River and Dongting Lake. The Three Gorges Project (TGP) is expected to improve this situation but it is also expected to bring many other changes to the dynamic properties of Jingjiang River and Dongting Lake as a coupled system. The purpose of this study is investigate the behavior of flood in Jingjiang River and Dongting Lake, as well as its relation with the operation of TGP.
     A numerical model based on the finite difference solution of Saint-Venant equation for river flows and the shallow water equation for flows in the lake is developed to describe the flood in Jingjiang River and Dongting Lake. Its validity is verified by comparing numerical results with measured data of water level at critical stations during flood season. The model is also shown to be advantageous when comparing with a fully two-dimensional model based on finite volume solution of the shallow water equation.
     Various operation schemes of TGP for flood control is critically verified. The numerical results indicate that the efficiency of the different operation scheme of TGP depends to a large extent on the type of the flood. That means, the operation scheme of TGP may have to be some flexibility if realtime information on flood from important tributaries flowing into this area.
     The performance of several important engineering projects planed to improve the flow condition in Dongting Lake, including construction of a floodgate in rivers diversing water from Jingjiang River to Dongting Lake, regulation of Songzi river and Ouchi river, are also evaluated. It is shown that the floodgate of Songzi river can be a measure to redistribute the discharge between the River and the Lake. It will improve the situation of the west Dongting Lake and will not add too more pressure on Jingjiang River under a usual condition. However, the operation of the floodgate must follow the operation of TGP.
     A three-dimensional numerical model, including the realizable eddy viscosity model for the turbulence, is employed to investigate some important phenomena in the river-lake coupled system. The phenomena include the complex flow characters in successive bend river, the effect of river cutoffs, the three-dimensional flow structure and the sediment diversion ratio of a branch river.
引文
安申义. (2005).对城陵矶泄洪能力的商榷.湖南水利水电(6): 27-29
    曹继文. (2004).明渠岸边横向取水的三维水力特性及简易防沙措施试验研究[博士学位论文].北京:中国水利水电科学研究院水力学所.
    长江科学院. (2002).三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二).长江三峡工程泥沙问题研究.第七卷(二).北京:知识产权出版社.
    长江水利水电科学研究院河流研究室. (1978).下荆江裁弯经验总结.人民长江(1): 11-33
    长江水利委员会技术委员会编. (2003).长江流域综合利用规划研究.北京:中国水利水电出版社.
    陈建. (2004).洞庭湖退垸还湖防洪效应研究. [硕士学位论文].武汉:武汉大学.
    单剑武. (1991).荆江四口分流分沙的演变.人民长江, 22 (3): 43-48
    丁君松,丘凤莲. (1981).汊道分流分沙计算.泥沙研究(1): 58-65.
    方春明,鲁文,钟正琴. (2003).可视化河网一维恒定水流泥沙数学模型.泥沙研究(6): 60-64
    方春明,毛继新,鲁文. (2004).长江中游与洞庭湖泥沙问题研究.北京:中国水利水电出版社.
    顾庆福,王建家. (2004).三峡工程对洞庭湖典型洪水的防洪作用分析.人民长江, 35(2): 9-12
    韩其为,何明民,陈显维. (1992).汊道悬移质分沙的模型.泥沙研究(1): 44-54.
    韩其为,杨克诚. (2000).三峡水库建成后下荆江河型变化趋势的研究.泥沙研究(3): 1-11
    韩其为,周松鹤. (1999a).三口分流河道整治原则的探讨.长江科学院院报, 16(6): 9-12
    韩其为. (2003).论长江中游防洪的几个问题.中国三峡建设.院士论坛(3): 4-7
    韩其为. (1999).江湖流量分配变化导致长江中游新的洪水形势.泥沙研究(5): 1-12
    洪庆余,罗钟毓. (1999).长江防洪与’98大洪水.北京:中国水利水电出版社.
    胡功宇,黄火林. (2006).松滋口分流分沙变化分析.人民长江, 37(12): 47-48
    胡四一,施勇,戚晨,等. (1999). 1998年长江中游洪水系统反演及高洪水位形成原因探讨.水科学进展, 10(3): 242-250
    胡四一,施勇,王银堂,等. (2002).长江中下游河湖洪水演进的数值模拟.水科学进展, 13(3): 278-286
    胡四一,王银堂,谭维炎,仲志余,徐承隆,胡维忠. (1996).长江中游洞庭湖防洪系统水流
    模拟.-Ⅱ模型实现和率定检验.水科学进展, 7(4): 346-353
    黄火林,肖虎程. (2007).松滋河分流演变发展趋势.人民长江, 38(6): 43-46.
    黄祥茂. (2002).曹娥江五甲渡裁弯通水后的运行状况.浙江水利水电专科学校学报. 14 (2):32-33
    黄煜龄,等. (1988).三峡工程水库泥沙淤积计算综合分析报告.水利电力部科学技术司.三峡工程泥沙问题研究成果汇编(160~180 m蓄水位方案).
    黄煜龄,卢金友. (2002).三峡水库运行不同时段拦沙泄水对下游河道冲淤与河势影响及对策研究总报告.长江三峡工程泥沙问题研究.第六卷,北京:知识产权出版社.
    黄云仙,郭学峰,黎昔春. (2008).松滋河的演变特点与治理对策研究.水利规划与设计(1): 1-3
    季学武. (1999).长江1998年洪水和水文科技进步.人民长江. 30(2): 1-6
    李义天,邓金运,孙昭华,李荣. (2000).泥沙淤积与洞庭湖调蓄量变化.水利学报(12): 48-52
    李义天,何用,邓金运,孙昭华. (2001).多因素作用下洞庭湖洪水调蓄量的变化.安全与环境学报, 12(6): 26-30
    刘云. (2004).蓄滞洪区洪水调度优化和风险分析. [硕士学位论文].武汉:武汉大学.
    卢承志. (1995).洞庭湖综合治理规划的建议.人民长江(26): 40-46
    卢金友,罗恒凯. (1999).长江与洞庭湖关系变化初步分析.人民长江,30(4): 24-27
    卢金友. (1996).荆江三口分流分沙变化规律研究.泥沙研究(4): 54-61.
    罗福安,梁志勇,张德茹,徐永年. (1994).直角分水口分水宽度的实验研究.泥沙研究(4): 29-38.
    穆锦斌,张小峰,谢作涛. (2008).荆江-洞庭湖洪水演进模型和基本算法.人民长江, 39(18): 6-8
    聂芳容. (1995).洞庭湖区河道必须整治疏浚.人民长江(26): 25-28
    浦承松,温维超,杨树德. (2004).裁弯改直对南垒河孟连口岸段河床演变的影响.泥沙研究(10): 62-67
    钱宁. (1957).灌溉渠首的防沙措施.人民黄河(10):25-31
    钱宁,张仁,周志德. (1987).河床演变学.北京:科学出版社.
    秦文凯,府仁寿,韩其为. (1996).汊道悬移质分沙模型.泥沙研究(3):21-29.
    秦文凯. (1997).三峡建坝前后长江洞庭湖关系研究[博士学位论文].北京:清华大学水利水电工程系.
    渠庚,唐峰,刘小斌. (2007).荆江三口与洞庭湖水沙变化及影响.水资源与水工程学报, 18(3): 94-98
    施勇,栾震宇,胡四一. (2005).长江中下游水沙数值模拟研究.水科学进展, 16(6):840-848
    水利部长江水利委员会. (2003).几个影响江湖关系的专题研究报告.专题一:荆江四口建闸控制规划研究.长江流域防洪规划报告.附件五.
    谭维炎,胡四一等. (1996).长江中游洞庭湖防洪系统水流模拟——I建模思路和基本算法. 水科学进展, 7 (4) : 336-344.
    谭晓明. (2002).洞庭湖水位变化特性.湖南水利水电(2):25-26
    佟二勋. (1962).关于目前分流分沙的研究成果综述.水利水电技术(9): 39-48.
    童朝锋. (2005).分汊口水沙运动特征及三维水流数学模型应用研究[博士学位论文].南京: 河海大学.
    童潜明. (2004).荆江段泥沙淤积搬家与洞庭湖的防洪.资源调查与评价(21): 19-25
    王明甫,段文忠. (2003).三峡建坝前后荆江河势及江湖关系研究综合报告.长江三峡工程泥沙与航运关键技术研究-专题研究报告集(下册).武汉:武汉工业大学出版社.
    王生福,谭启富,吴道喜. (2000). 1999年长江洪水及几点认识.人民长江, 31(3): 43-44
    谢鉴衡. (1987).河床演变及整治.北京:中国水利水电出版社
    谢鉴衡. (1995).洞庭湖演变与长江中游河流纵剖面的调整.谢鉴衡论文集.
    杨帆. (2007).明渠岸边侧向取水的取水角效应研究[硕士学位论文].北京:中国水利水电科学研究院水力学所.
    杨怀仁,唐日长. (1999).长江中游荆江变迁研究.北京:中国水利水电出版社.
    要威. (2004).行蓄洪区开启优化的研究. [硕士学位论文].武汉:武汉大学.
    余文畴. (1987).长江分汊河道口门水流及输沙特性.长江科学院院报(1): 16-22.
    余新明,谈广鸣. (2005).河道冲淤变化对分流分沙比的影响.武汉大学学报(工学版), 38(1): 44-48
    曾群华,郭跃. (2003).洞庭湖洪涝灾害的特征及成因分析.地质灾害与环境保护, 14(3): 55-60
    张大任. (1999).洞庭湖与长江中游洪灾治理策略研究.地理学与国土研究, 15(3): 47-51
    张振全. (2005).洞庭湖区洪水模拟模型应用研究. [硕士学位论文].武汉:武汉大学中国科学院地理研究所,长江水利水电科学研究院,长江航道局规划设计研究所. (1985).长江中游河道特性及其演变.北京:科学出版社.
    中国水科院. (2002).三峡水库下游河道冲淤计算研究.长江三峡工程泥沙问题研究.第七卷(二).北京:知识产权出版社.
    仲志余,徐承隆,胡维忠. (1998).长江中下游洪水演进水文学方法模拟研究.水利水电快报, 19(10): 11-14.
    周北达,刘永华. (2003).三峡运行后对洞庭湖洪水水位的影响.湖南水利水电(1): 27-29
    周建郑,周光奎,李明. (2007).塔里木河干流裁弯工程原形河道观测实施方案研究.测绘通报(6): 14-18
    Abbott M B. (1979). Computational hydraulics: Elements of the theory of free-surface flows. Pitman Publishing, Ltd., London, England.
    Abbot M B, McCowan A D, Warren I R. (1981). Numerical modeling of free-surface flows that are two-dimensional in plan. In Transport models for Inland and Coastal Waters( ed.Fischer H B ).Academic Press: 222-283
    Akanbi A A, Katopodes N D. (1988). Model for flood propagation on initially dry land. Journal of Hydraulic Engineering, ASCE, 114(7): 689-706.
    Alcrudo F, Garcia-Navarro P. (1993). A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Int. J. Numerical Methods in Fluids, (16): 489-505.
    Anastasiou K, Chan C T. (1997). Solution of 2D shallow water equations using the finite volume method on unstructured triangular meshes. International I. Numerical methods in Fluids, (24): 1225-1245
    Balzano A. (1998). Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Eng. 34: 83-107.
    Barkdoll B D. (1997). Sediment control at lateral diversions [D]. University of Iowa. Benque J P, Cunge J A, Feuillet J, Hauguel A, Holly F M Jr. (1982). New method for tidal current computation. J. Wtrwy., Port, Coast., and Oc.Div., ASCE, 108(3): 396-417.
    Casulli V, Cheng R. (1992). Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods Fluids (15): 629–648.
    Chang Y C. (1971). Lateral mixing of meandering flow [D]. Ph.D Dissertation of University of Iowa.
    Chen H, Lian G. (1992). The numerical computation of turbulent flow in tee-junctions. Journal of Hydrodynamics (3): 19-25.
    Cheng R T, Casulli V, Gartner J W. (1993). Tidal, residual, intertidal mudflat (TRIM) model and its application to San Francisco Bay, California. Estuarine, Coastal Shelf Sci. (36): 235-280.
    Chow V T, Ben-Zvi A. (1973). Hydrodynamic modeling of two-dimensional watershed flow. J. Hydr. Div., ASCE, 99(11): 2023-2040.
    Cunge J A, Holly F M, Verwey A. (1980). Practicalaspects of computational river hydraulics. Pitman Publishers, Ltd., London, England.
    Darwish M S, Moukalled F. (2003). TVD schemes for unstructured grids, International journal of Heat and mass transfor, 46(4):599-611
    Engquist B E, Osher S, Somerville R C J. (1985). Large-scale computations in fluid mechanics: Volume 22--Part 1. Lect. in Appl. Mathematics, American Mathematics Society, Providence, R.I., 58-68.
    Falconer R A, Chen Y. (1991). An improved representation of flooding and drying and wind stress effect in a two-dimensional tidal numerical model. Proc. Inst. Civ. Engrs., Part 2 91 (December), 659-678.
    Fennema R T, Chaudhry M H. (1990). Explicit methods for 2D transient free-surface flows. Journal of Hydraulic Engneering., ASCE, 116(8): 1013-1014.
    Fenner R T. (1975). Finite element method for engineers. The MacMillan Press, Ltd., London, England.
    Flather R A, Hubbert K P. (1990). Tide and surge models for shallow-water-Morecambe Bay revisited. In: Davies, A.M. (Ed.), Modeling Marine Systems, vol. I. CRC Press.
    Friedkin J F. (1945). A laboratory study of the meandering of alluvial rivers. US Waterways Experiment Station, Vicksburg.
    Garcia R, Kahawita R A. (1986). Numerical solution of the St. Venant equations with the MacCormack finite difference scheme. Int. J. Numerical Methods in Fluids, 6: 507-527.
    Hanel D, Schwane R. (1989). An implicit flux-vector splittling scheme for the computational of viscous hypersonic flow. AIAA Paper 89-0274.
    Hervouet J M, Van Haren L. (1996). Recent advances in numerical methods for fluid flows. In: Anderson, M.G., Walling, D.E., Bates, P.D. (Eds.), Floodplain Processes. Wiley, Chichester, UK. 183-214.
    Hirsch C. (1988). Numerical computation of internal and external flows, 1, John Wiley & Sons, New York, N.Y.
    Hooke J M. (1995). River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England.Geomorphology(14): 235-253
    Hooke J M. (2004).Cutoffs galore!:occurrence and causes of multiple cutoffs on a meandering river.Geomorphology (61): 225-238
    Issa R, Oliveira P J. (1994). Numerical prediction of phase seperation in two-phase flow through T-junction. Comp. and Fluids, 23 (2): 347-372。
    Jawahar P, Kamath H. (2000). A high-resolution procedure for Euler and Navier-Stokes computation on unstructured grids. Journal of Computational Physics, 164: 165-203
    Ji Z G., Morton M R, Hamrick J M. (2001). Wetting and drying simulation of estuarine processes. Estuarine, Coastal Shelf Sci. 53: 683-700.
    Johnson R H, Paynter J. (1967). The development of a cutoff on the River Irk at Chadderton, Lancashire. Geography(52): 41-119.
    Katopodes N, Strelkoff T. (1978). Computing two-dimensional dambreak flood waves. J. Hydr. Div., ASCE, 104(9): 1269-1288.
    Katopodes N, Strelkoff T. (1979). Two-dimensional shallow water-wave models. J. Engineering Mechanics Division, ASCE, 105(2): 317-334
    Kawahara M. (1985). Finite Element Methods for Fluid Flows. Gihodo Publishing Co,(In Japanese )
    Lai, Chintu. (1986). Numerical modeling of unsteady open-channel flow. Adv. In Hydrosci., Vol. 14, Academic Press: 161-333.
    Lakshmana N S, Sridharan L. (1966). Discussion of dividing flow in an open channel.J Hydraulic Division ASCE, 94: 237-239.
    Langbein W B, Leopold L B. (1966). River meanders-theory of minimum variance. USGS professional Paper 422-H: 15.
    Laura R A, Wang J D. (1984). Two-dimensional flood routing on steep slopes. Journal of Hydraulic Engineering, ASCE, 110(8): 1121-1135.
    Lawson M S, Brien R Winkley. (1996). The response of the lower Mississippi River to river engineering. Engineering Geology, (45): 433-455
    Leendertse J J. (1970). A water-quality simulation model for well-mixed estuaries and coastal seas: principles of computation. Report RM-6230-RC, vol. 1, Rand Corp., Santa Monica, CA, 63
    Liggett J A. (1987). Forty years of computational hydraulics, 1960-2000. National Conference on Hydraulic Engineering, 1124-1133.
    Lynch D R, Gray W G. (1980). Finite-element simulation of flow in deforming regions. J. Comp. Phys. (36): 135-153.
    Liou M-S, Steffen Jr C J. (1993). Journal of Computational Physics, (107): 23-39
    Liou M-S. (2001). Ten years in making-AUSM family. AIAA Paper 2001-2521
    Liu S K, Leendertse J J. (1978). Multidimensional numerical modeling fof estuaries and coastal seas. In advances in Hydroscience, Volume 11(ed. Chow V T ). Academic Press, 95-164
    MacCormack R W, Paullay A J. (1972). Computational efficiency achieved by time splitting of finite difference operators. AIAA Paper 72-154
    Mahmood K, Yevjevich V. (1975). Unsteady flow in Open Channels, VolumesⅠ&Ⅱ. Water Resources Publications.
    McDonald P W. (1971). The computation of transonic flow through two-dimensional gas turbine cascades. ASME Paper 71-GT-89, American Society of Mechanical Engineers, New York, N.Y.
    Minghan C G, Causon D M. (1996). High-resolution finite-volume method for shallow water flow. J.Hydraulic Engineering, ASCE, 124(6): 605-614
    Mosley M P. (1975a). Meander cutoffs on the River Bollin, Cheshire in July 1973. Rev. Geomorphol Dynamics(24): 21-32.
    Neary V S, Odggard A J. (1993). Three dimensional flow structure at open diversions. Journal of Hydraulic Engineering, ASCE, 119(11): 1224-1230.
    Neary V S, Sotiropoulos F. (1999). Three dimensional numerical model of lateral-intake inflow. Journal of Hydraulic Engineering, ASCE, 125(2): 126-140.
    Neary V S, Sotiropouls F. (1996). Numerical investigation of laminar flow through 90-degree diversions of rectangular crosssection. Comp. and Fluids, 25(2): 95-118.
    Oey L-Y, Winnant C, Dever E, et al. (2004). A model of the near-surface circulation of the Santa Barbara Channel: comparison with observations and dynamical interpretations. J. Phys. Oceangr. (34): 23-43.
    Ramamurthy A S, Satish M G. (1988). Division of flow in short open channel branches. Journal of Hydraulic Engineering, ASCE, 114(4): 428-438.
    Roe P L. (1981). Approximate Riemann solvers, parameter vectors, and difference-schemes, Journal of Computational Physics(43): 357-372
    Shettar A S, Murth K. (1996). A numerical study of diversion of flow in open channels. J. Hydr. Res.,34(5): 65-675.
    Shih T H, Liou W W, Shabbir A, et al. (1995). A new k ?εeddy viscosity model for high Reynolds number turbulent flows. Comp. and Fluids, 24(3): 227-238.
    Shukry A. (1950). Flow aroud Bends in an Open Flume, Transactions, ASCE (115): 751-779
    Siden G L D, Lynch D R. (1988). Wave equation hydrodynamics on deforming elements. Int. J. Numer. Methods Fluids (8): 1071-1093.
    Stelling G S, Wiersma A K, Willemse J B T M. (1986). Practical aspects of accurate tidal computations. J. ASCE Hydraul. Eng. (9): 802-817.
    Stelling G S, Duinmeijer S P A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43: 1329-1354.
    Tan W. (1992). Shallow water hydrodynamics.Elsevier. Taylor E H. (1944). Flow characteristics at rectangular open channel junctions. Transactions of the American Society of Civil Engineers(109): 893-912.
    Tímea Kiss, Károly Fiala, Gy?rgy Sipos. (2008). Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology(98): 96-110
    Townson J M. (1974). Aapplication of the method of characteristics to tidal calculations in (x-y-t) space. J. Hydraulic Research, 12(4): 499-523
    Usseglio-Polatera J M, Sauvaget P. (1988). Dry beds and small depths in 2D codes for coastal and river engineering, Vol. 2. Computational Hydraulic, Comp.
    Van Leer B. (1982). Flux-vector splitting for the Euler equations. Proc., 8th Int.Conf. on Numerical Methods in Fluid Dynamics, E. Krause, ed., Springer Verlag,Berlin, Germany, 507-512.
    Wang Z B, Ribberringk J S. (1986). The validity of a depth-integrated model for suspended sediment transport. J. Hydr. Res, 24(1): 53-63.
    Weare T J. (1976). Finite element or finite difference method for the two-dimensional shallow water equations. Comp. Methods in Appl. Mech. and Engrg, 7: 351-357.
    Zhao D H, Shen H W, Tabios G Q, et al. (1994). Finite-volume two-dimensional unsteady-flow model for river basins, Journal of Hydraulic Engineering, ASCE, 120(7): 863-883
    Zienkiewicz O C. (1977). The finite element method in engineering science, 3rd Ed., McGraw-Hill, London, England.
    Zienkiewicz O C, Taylor R L. (1991). The Finite Element Method, VolumeⅠ&Ⅱ. McGrawHill.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700