用户名: 密码: 验证码:
Mike11在盘锦双台子河口感潮段的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平原河网地区是城市发达、人口众多的地区,同时水系错综复杂,水流运动复杂多变。感潮河段是河流与海洋的过渡段,在该河段上,一方面有来自上游径流的影响,另一方面又受到下游潮汐的作用,是受径流和潮流共同作用的河段,水情多变,流态不稳,流向多变。由于自身条件的复杂性,大多数情况下只能采用数值方法进行模拟,其核心问题是河网数学模型的建立及求解,而建立水动力学模型是建立其它模型的基础。
     本文以科技部国家水体污染控制与治理科技重大专项辽河项目(2008ZX07208-009)为依托,在综合分析双台子河口感潮河网水动力条件的基础上,利用收集到的河道水文、气象、河道断面等资料,结合现场实测数据,基于丹麦DHI Mike11模型系统,建立感潮河段水动力-水质耦合模型。利用实测水位、盐度数据率定河道糙率系数(n)和河流纵向离散系数(Ex),并验证所建模型的合理性。取得的研究成果如下:
     (1)计算水位与实测值吻合较好,平均误差小于15%。同时对影响张明甲监测点水位的河道糙率参数进行了局部灵敏度分析,表明监测点处水位对双台子河中游糙率改变最为敏感,下游次之,上游最低;对绕阳河上游的糙率不灵敏,绕阳河下游河道糙率比上游对张明甲站的计算水位影响大。模拟发现,糙率对潮水传播周期及潮差受糙率影响较大。苇田三次灌溉期内绕阳河纳潮量在丰水年分别为1.09×10~7、1.17×10~7、1.61×10~7 m~3;平水年为1.35×10~7、1.3×10~7、2.54×10~7 m~3;枯水年为0.98×10~7、1.24×10~7、1.999×10~7m~3。
     (2)以苇田夏灌期为例,利用所建模型分析了在双台子河上游有汇流和无汇流两种水文条件下橡胶坝对支流绕阳河纳潮的影响。研究表明,在两种水文情景下,建橡胶坝后纳潮量分别增加18.3%和16.9%,最大流量分别增加了32.7%和31.2%。另外,双台子河下游修建拦河橡胶坝对绕阳河纳潮盐度变化影响不大,可满足灌溉苇田对盐度的要求。
     (3)考虑上游10年一遇、20年一遇、50年一遇等不同频率洪水位、下游10年一遇高潮位及区间强降雨遭遇的多种不同水文条件组合,以建立好的水动力模型为基础,分析双台子河干流及支流绕阳河的最高防洪水位。同时,以建闸以来最大洪水为例,模拟了现状河道在此不利条件下的洪水位。分析表明双台子河和绕阳河的现状河道的防洪能力较低,不能抵御高位洪水。计算结果可作为双台子河及绕阳河河堤洪水位的设计标准,并为河道整治、河堤修整提供科学依据。
The plain river network region is developed place and has a large population. In river network, water system is very complex, and the water flow is intricate. The tidal river is transition section of river and ocean. In this section, water is not only influenced by upstream runoff, but also influenced by downstream estuary tide. The water regime is changeable, flow regime is unstable, and flow direction is changing at any time. Due to complexity of self-conditions, we could simulate water flow only using numerical method in most situations. The core problem is the establishment and solution of numeric model for river network. Meanwhile, establishing hydrodynamic model is the base of establishing other models.
     This paper is supported by National Science and Technology Major Project for Water Pollution Control and Treatment (NO. 2008ZX07208-009). On the basis of analyzing hydrodynamic conditions of Shuangtaizi Estuary, tidal river hydrodynamic and water quality model is established based on DHI Mike11 model system using collected river water regime, weather data and measured river salinity data. The river channel roughness n and longitudinal dispersion coefficient Ex are calibrated through measured water level and salinity data respectively. And then the rationality of model is validated. The major contents and research results are as follows:
     (1) The computation results show that the modeled level and measured level coincide well, the mean error is less than 15%. The local sensitivity analysis for channel roughness reveal that the water level of zhangmingjia monitoring station has the highest sensitivity while changing midstream channel roughness, downstream channel roughness takes the second place; the channel roughness of upstream has the lowest sensitivity. Downstream roughness of Raoyang River is larger than upstream. The upstream channel roughness sensitivity of Raoyang River could neglect compared with other reaches. Meanwhile, the roughness affects tidewater transmission period and tidal range. The volume of tidal prism of Raoyang River during three irrigation periods in wet year is respectively The proportion of upstream tidewater in the total demand water of reed field in three irrigation periods for wet year is respectively 1.09×10~7、1.17×10~7、1.61×10~7m~3. It's 1.35×10~7、1.3×10~7、2.54×10~7 m~3 for normal year;and 0.98×10~7、1.24×10~7、1.999×10~7m~3 for dry year.
     (2) Effects of rubber dam in the downstream of Shuangtaizi River on the tidal prism of Raoyang River were studied using the hydrodynamic and water quality model. The results show that the construction of rubber dam could increase the tidal prism significantly. Under the two hydrological scenarios, the tidal prisms of tributary increased by 18.3% and 16.9%, respectively. And the maximum tidal quantity in the Wanjintan gate increase by 32.7% and 31.2%, respectively. The construction of rubber dam has little effect on the salinity of tidal prism which is below the salinity limitation (<5‰) for irrigating. Therefore, water in Raoyang River can be used to irrigate reed field in summer.
     (3) The flood control level of Shuangtaizi River and its tributary-Raoyang River, are simulated under 5 disadvantageous combinations of upstream water level, downstream tide level and the regional drainage due to local heavy rainfall. Meanwhile, the flood control level for two sides of river reaches is simulated under the maximum flood level after constructing Panshan gate, the maximum measured tide level at estuary, and strong rainfall. But, the results of simulating reveal that flood control standard of Shuangtaizi and Raoyang River is generally low. The current situation of river levee can’t resist high level flood. The computation results can provide scientific basis for river channel regulation and levee reinforcement of Shuangtaizi River and Raoyang River.
引文
[1]曹升乐,员汝安,于翠松,等.感潮河段水位预报方法研究.山东工业大学学报. 1994, 24(4): 301-305.
    [2]徐祖信,尹海龙.平原感潮河网地区一维、二维水动力耦合模型研究.水动力学研究与进展. 2004, 19(6): 744-752.
    [3]杨松彬.嘉兴市区河网汇流数值模拟[硕士学位论文].杭州:浙江工业大学, 2007.
    [4]卢士强,徐祖信.平原河网水动力模型及求解方法探讨.水资源保护. 2003, 19(3): 5-9.
    [5]欧剑,张行南,左一鸣,等.一维河网非恒定流数学模型的并行计算.江苏大学学报:自然科学版. 2009, 30(5): 518-522.
    [6]李岳生,杨世孝,肖子良.网河不恒定流隐式方程组的稀疏矩阵解法.中山大学学报(自然科学版). 1977(3): 27-37.
    [7]王琦.河流水沙数值模拟可视化研究应用[硕士学位论文].南京:河海大学, 2007.
    [8]陆静依.美国"HEC-RAS河流分析系统"简介.上海水利. 1999(4): 17.
    [9]曹金保,刘云珠.水质模型的研究与发展.江西化工. 2006(01): 51-54.
    [10]褚君达,徐惠慈.河网水质模型及其数值模拟.河海大学学报:自然科学版. 1992, 20(1): 16-22.
    [11]喻胜春,袁锦虎,邹允福. Info Works RS软件在平原河网计算中的应用研究.中国农村水利水电. 2009(10): 44-46.
    [12]程海云,黄艳.丹麦水力研究所河流数学模拟系统.水利水电快报. 1996, 17(19): 24-27.
    [13]徐贵泉,宋德蕃,黄士力,等.感潮河网水量水质模型及其数值模拟.应用基础与工程科学学报. 1996(1).
    [14]朱效娟,叶洪峰.闸控感潮河网水环境容量计算研究.江苏环境科技. 2006, 19(supp.2): 62-64.
    [15]包为民,卞毓明.感潮河段水位演算模型研究.水利学报. 1997(11): 34-38.
    [16]茅泽育,马吉明,余云童,等.感潮河段潮流数值计算.海洋工程. 2003, 21(4): 86-90.
    [17]徐祖信,卢士强.潮汐河网水环境容量的计算分析.上海环境科学. 2003, 22(4): 254-257.
    [18]杨凯,袁雯,赵军,等.感潮河网地区水系结构特征及城市化响应.地理学报. 2004, 59(4): 557-564.
    [19]苏飞,王士武,陈雪,等.平原河网一维水流计算模型在洪水期和枯水期的应用.中国农村水利水电. 2008(1): 34-36.
    [20]施勇,胡四一.感潮河网区水沙运动的数值模拟.水科学进展. 2001, 12(4): 431-438.
    [21]耿艳芬.河网水沙的数值模拟[硕士学位论文].大连:大连理工大学, 2003.
    [22]李显军.河流水沙及河岸稳定性数值模拟[硕士学位论文].太原:太原理工大学, 2007.
    [23]顾正华,刘贵平,唐洪武,等.感潮河网调水过程的数值模拟研究.水力发电学报. 2007, 26(4): 76-81.
    [24]周惠成,李伟,张弛,等.碧流河水库下游河道的现状防洪能力.辽宁工程技术大学学报. 2006, 25(增刊): 109-111.
    [25]周海阳,黄娟,程炜.常熟河网区水污染物总量控制研究.污染防治技术. 2006, 19(5): 15-17.
    [26]梁书秀.潮汐水域中污染物输移扩散的数值模拟研究[博士学位论文].大连:大连理工大学, 2000.
    [27] Vuksanovic V, de Smedt F, van Meerbeeck S. Transport of polychlorinated biphenyls (PCB) in the Scheldt Estuary simulated with the water quality model WASP. Journal of Hydrology. 1996, 174: 1-18.
    [28] Schroeder F. Water quality in the Elbe estuary: Significance of different processes for the oxygen deficit at Hamburg. Environmental Modeling and Assessment. 1997(2): 73-82.
    [29] Simons M, Podger G, Cooke R. IQQM--A hydrologic modelling tool for water resource and salinity management. Environmental Software. 1996, 11(1-3): 185-192.
    [30] Yassuda E A, Davie S R, Mendelsohn D L, et al. Development of a Waste Load Allocation Model for the Charleston Harbor Estuary, Phase II: Water Quality. Estuarine, Coastal and Shelf Science. 2000, 50(1): 99-107.
    [31] García A, Revilla J A, Medina R, et al. A model for predicting the temporal evolution of dissolved oxygen concentration in shallow estuaries. Hydrobiologia. 2002, 475-476(1): 205-211.
    [32]陈锁忠,陶芸,陆海英.基于WebGIS的一维水质模型研究.水文. 2003, 23(2): 11-14.
    [33]丁贤荣,姚琪,等. GIS与数模集成的水污染突发事故时空模拟.河海大学学报:自然科学版. 2003, 31(2): 203-206.
    [34]耿庆斋,张行南,郭亨波,等.地理信息系统与一维水质模型的集成开发.环境科学与技术. 2003(S2): 35-36.
    [35] Sui D Z, Maggio R C. Integrating GIS with hydrological modeling: practices, problems, and prospects. Computers, Environment and Urban Systems. 1999, 23(1): 33-51.
    [36]朱龙海.双台子河口潮流沉积体系研究[硕士学位论文].青岛:中国海洋大学, 2004.
    [37]张蕊.双台子河口湿地生态水文模拟与调控[硕士学位论文].青岛:中国海洋大学, 2010.
    [38]苏常连.苇田灌溉.芦苇科技通讯. 1983(5): 56-64.
    [39]张建生,蒋洪乙,颜亭明,等.万亩苇田灌溉试验总结.芦苇科技通讯. 1990(14): 61-63.
    [40]苏常连,李有竹.关于盘锦苇田生产意见.芦苇科技通讯. 1981(2): 1-5.
    [41]盘锦市水利局. 2008年盘锦市水资源公报., 2009.
    [42]芦晓峰,王铁良,李波.盘锦双台河口湿地生态环境需水量与水资源优化配置研究.水土保持研究. 2008, 15(05): 93-96.
    [43]张爽,郭成久,苏芳莉,等.不同盐度水灌溉对芦苇生长的影响.沈阳农业大学学报. 2008, 39(1): 65-68.
    [44]王立强.辽河口水沙运动及演变规律研究[工程硕士学位论文].南京:河海大学, 2005.
    [45]潘桂娥.辽河口演变分析.泥沙研究. 2005(1): 57-62.
    [46]汤金顶,潘桂娥,王立强.辽河下游(柳河口至盘山闸段)河床演变初探.泥沙研究. 2003(5): 59-63.
    [47]宋云香,战秀文.辽东湾北部河口区现代沉积特征.海洋学报. 1997, 19(5): 145-149.
    [48]王玉广,鲍永恩.辽河口海区悬浮体运移扩散动力特征.黄渤海海洋. 1996, 14(1): 33-40.
    [49]伍成成,郑西来,林国庆.双台子河口感潮段纳潮量研究.水资源与水工程学报. 2010, 21(4): 105-110.
    [50]刘爱江,吴建政,姜胜辉,等.双台子河口区悬沙分布和运移特征.海洋地质动态. 2009, 25(8): 12-16.
    [51]熊敬东.辽河中下游河道冲淤分析及整治规划研究[硕士学位论文].南京:河海大学, 2005.
    [52] DHI. MIKEII: A Modeling System for Rivers and Channels Reference Manual. DHI, 2007.
    [53]徐海波,苏飞,王士武.余姚市河网平枯水期水质模拟研究.浙江水利科技. 2008(1): 27-29.
    [54]田守波.大沽河干流渗漏对河道洪水演进的影响研究[硕士学位论文].青岛:中国海洋大学, 2009.
    [55]陈栋.三峡水库非汛期水动力及水质模拟研究[硕士学位论文].济南:山东大学, 2008.
    [56]徐祖信,刘代玲.苏州河6支流截污工程的优化调整.上海环境科学. 2003, 22(4): 234-237.
    [57]谭炳卿,张国平.淮河流域水质管理模型.水资源保护. 2001(3): 15-18.
    [58]李军,井艳文. MIKE11模型结构及其在南沙河流域规划中的应用.北京水利. 1998(5): 5-10.
    [59]蒋宏伟,董立岩. MIKE11模型在水资源管理中的应用.东北水利水电. 2009, 27(9): 42-43.
    [60]卢士强,徐祖信,林卫青.综合调水对苏州河周边水系水质影响的数值模拟.环境污染与防治. 2005, 27(6): 473-475.
    [61]曾剑,楼越平,程杭平.温瑞塘河河网水质模型研究.浙江水利科技. 2006(1): 41-43.
    [62]顾珏蓉,徐祖信,林卫青.苏州河水系水动力模型建立及应用.上海环境科学. 2002, 21(10): 606-609.
    [63]王领元.丹麦MIKE11水动力模块在河网模拟计算中的应用研究.中国水运. 2007, 7(2): 106-107.
    [64]孙映宏,姬战生,周蔚.基于MIKE11 HD和NAM耦合模型在河流施工围堰对防洪安全影响分析中的应用与研究.浙江水利科技. 2009(2): 30-34.
    [65]梁彬锐. MIKE11模型在沙井河片区防洪排涝工程中的应用.中国农村水利水电. 2008(7): 81-83.
    [66] Singh R, Refsgaard J C, Yde L, et al. Hydraulic-hydrological simulations of canal-command for irrigation water management . Irrigation and Drainage Systems. 1997, 11(3): 185-213.
    [67] Sakalauskiene G, Hansen F, Raulinaitis M. Assessment of Hydro Power Plants Effect on River Water Quality . Environmental research, engineering and management. 2004, 3(29): 14-20.
    [68] Thompson J, Gavin H, Refsgaard A, et al. Modelling the hydrological impacts of climate change on UK lowland wet grassland . Wetlands Ecology and Management. 2009, 17(5): 503-523.
    [69] Pramanik N, Panda R, Sen D. One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections . Water Resources Management. 2010, 24(5): 835-852.
    [70]严文武,邹长国.水动力模型在平原感潮河网地区的研究与应用.浙江水利科技. 2007, 4(152): 8-10.
    [71]武桂芝.大沽河河道渗漏及其对洪水演进影响研究[博士学位论文].青岛:中国海洋大学, 2010.
    [72]卢士强.平原感潮河网水环境数学模型研究与应用[博士学位论文].上海:同济大学,2003.
    [73]张华锋.浙北引水工程对嘉兴平原河网水环境影响的评价研究[硕士学位论文].杭州:浙江大学, 2008.
    [74] DHI. MIKE11: A Modeling System for Rivers and Channels User-Guide Mannual. Danish Hydraulic Institute, 2005.
    [75]张政.浦东新区水资源环境管理控制系统研究[博士学位论文].上海:同济大学, 2007.
    [76]王领元.应用MIKE对河流一、二维的数值模拟[硕士学位论文].大连:大连理工大学, 2007.
    [77]徐祖信,卢士强.平原感潮河网水质模型研究.水动力学研究与进展:A辑. 2003, 18(2): 182-188.
    [78]韩龙喜,陆冬.平原河网水流水质数值模拟研究展望.河海大学学报:自然科学版. 2004, 32(2): 127-130.
    [79]薄会娟,董晓华,邓霞.新安江模型参数的局部灵敏度分析.人民长江. 2010, 41(1): 25-28.
    [80]刘玉珍,程世迎.灵敏度分析法确定水文地质参数的基本模型及其应用.水利学报. 2006, 37(7): 846-850.
    [81]王广才,陶澍.水—岩化学平衡模拟中误差传递及灵敏度分析.水文地质工程地质. 1999, 26(6): 31-34.
    [82]徐爱兰,姚琪,王鹏,等.基于太湖数字流域系统的水质模型参数灵敏度分析.水利科技与经济. 2007, 13(1): 17-19.
    [83]徐崇刚,胡远满,常禹,等.生态模型的灵敏度分析.应用生态学报. 2004, 15(6): 1056-1062.
    [84]张稳,黄耀,郑循华,等.稻田甲烷排放模型研究——模型灵敏度分析.生态学报. 2006, 26(5): 1359-1366.
    [85] Zádor J, Zsélya I G, Turányi T. Local and global uncertainty analysis of complex chemical kinetic systems . Reliability Engineering and System Safety. 2006, 91(10-11): 1232-1240.
    [86]郝芳华,任希岩,张雪松,等.洛河流域非点源污染负荷不确定性的影响因素.中国环境科学. 2004, 24(3): 270-274.
    [87]张利茹,管仪庆,叶彬,等.新安江模型参数敏感性分析的实证研究.水电能源科学. 2008, 26(5): 16-17.
    [88] Lenhart T, Eckhardt K, Fohrer N, et al. Comparison of two different approaches of sensitivityanalysis. Physics and Chemistry of the Earth, Parts A/B/C. 2002, 27(9-10): 645-654.
    [89]陈太聪,韩大建,苏成.参数灵敏度分析的神经网络方法及其工程应用.计算力学学报. 2004, 21(6): 752-756.
    [90]黄溪水,王国生.芦苇耐盐实验报告.芦苇科技通讯. 1981(2): 12-17.
    [91] Toprak Z F, Savci M E. Longitudinal Dispersion Coefficient Modeling in Natural Channels using Fuzzy Logic. CLEAN - Soil, Air, Water. 2007, 35(6): 626-637.
    [92] Seo I W, Cheong T S. Predicting Longitudinal Dispersion Coefficient in Natural Streams. Journal of Hydraulic Engineering. 1998, 124(1): 25-32.
    [93]顾莉,华祖林.天然河流纵向离散系数确定方法的研究进展.水利水电科技进展. 2007, 27(2): 85-89.
    [94]王兵,张晓红,何宝珠.辽河流域水文特性浅析.东北水利水电. 2002, 20(2): 22-24.
    [95]盘锦市防汛抗旱指挥部.盘锦市城市防洪预案.盘锦, 2003.
    [96]王长海.辽河流域“05.8”暴雨洪水分析.水利规划与设计. 2006(5): 22-26.
    [97]谢功生,崔希禄.从“95.7”辽河洪水看水利工程的防洪作用.东北水利水电. 1996(10): 33-34.
    [98]肖笃宁,韩慕康,李晓文,等.环渤海海平面上升与三角洲湿地保护.第四纪研究. 2003, 23(3): 237-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700