用户名: 密码: 验证码:
模拟增温和氮沉降对松嫩草原土壤养分状况的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东北松嫩草原受全球气候变暖和大气氮沉降增加的影响日益显著,但是草原生态系统土壤重要养分之间的关系对气候变暖和氮沉降双重作用的响应机制还不清楚。本研究从2007年到2010年在野外原位条件下利用红外线加热仪和添加硝酸铵的方法模拟大气升温和氮沉降,探讨温度升高和氮沉降对松嫩草原土壤氮素磷素等重要养分、养分之间的耦合关系以及微生物生物量的影响。四年的实验结果表明:
     (1)氮素添加后显著提高了土壤全氮、速效氮、有机碳含量和土壤氮素的净矿化速率,使土壤全磷和速效磷的含量显著降低。而增温处理对土壤全氮、速效氮、全磷、速效磷以及铵态氮含量的影响没有达到显著水平,说明增温处理对松嫩草原土壤重要养分的影响并不显著。
     (2)由于施氮处理时土壤氮/磷比率显著升高,氮素含量的升高以及磷素含量的降低使氮素和磷素向两个不同的方向发展,因此减弱了土壤氮素和磷素的耦合作用。与对照相比施氮处理土壤全氮和速效磷以及土壤速效氮和速效磷的正相关性减弱也可以很好的印证这一点。随着中国工业化的深入发展,大气氮沉降量还将持续增加,在盐碱化土壤广泛分布的中国东北松嫩草地上,土壤磷素的限制现象将更为突出。因此对草地土壤养分进行合理调控和管理有助于提高草地生产力以及草地生态系统的可持续利用。
     (3)添加的氮素使土壤微生物生物量氮显著增加,而使土壤微生物生物量磷的含量显著降低。增温和施氮处理的交互作用显著增加了土壤微生物生物量碳的含量,而增温处理对其影响不显著。施氮处理使土壤微生物生物量C/P显著增加,这也暗示松嫩草原羊草草甸土壤中微生物生物量磷的含量有所缺乏,土壤养分向着磷限制的方向转变。土壤微生物生物量与土壤养分之间存在很好的相关性,尤其是在施氮处理时这种相关性更显著,因此土壤微生物生物量可以作为评价长期施氮过程中土壤质量变化情况的生物学指标。
     综上所述,本研究的开展不仅能为预测全球变化对松嫩草原土壤养分动态的影响提供一定的理论依据;同时,对全球变化背景下草原生态系统的恢复以及生态环境保护都具有重要意义。
Songnen Meadow Steppe, which is in northeast China, is increasingly affectedby global warming and incremental increases in atmospheric nitrogen deposition.However, the responses of nitrogen (N) and phosphorus (P) in steppe soil, and of thecoupling mechanism between them, to the dual effects of global warming and Ndeposition are still unknown. In this study, the effects of simulated atmosphericwarming and N deposition on N and P in Songnen steppe soil, on the couplingbetween N and P, as well as on the soil microbial biomass were examined under insitu conditions from2007to2010. Infrared heaters were used to elevate soiltemperature by approximately1.7°C since2006. N additions were treated once a yearwith aqueous ammonium nitrate at a rate of10g m–2a–1. During the four-year study:
     (1) Addition of N increased the amount of total N, and available N, as well as therate of N mineralization in the soil. Moreover, the amounts of total P and available Pin the soil were considerably reduced. Soil total N, available N, total P, available Pand NH4+-N content were not significantly affected by warming, which means thatwarming did not significantly impact soil important nutrient in Songnen MeadowSteppe.
     (2) The N: P ratio increases with N addition, and the increase in the amount of N,as well as the decrease in the amount of P, have different effects on N and P. Therefore,the coupling mechanism between soil N and P is reduced, as reflected by thesignificant reduction in the liner relationship between total N and available P as wellas between available N and available P in N addition compare with control. With thegrowth of China’s industrialization, N deposition continues to increase. The studyarea of Songnen Meadow Steppe, and northeast China in general, are characterized bywidespread distribution of saline alkali soil. Therefore, the finding of increased Plimitation in the soil of Songnen Meadow Steppe has major implications forecosystems in northeast China. Reasonable regulation and management of meadowsoil nutrients will be of great importance in increasing soil productivity and promotingsustainable use of grassland ecosystems.
     (3) Soil microbial biomass N was significantly increased by N addition, whichmade the soil microbial biomass P content significantly decreased. Interaction ofwarming and N addition significantly increased the content of soil microbial biomassC, however, warming did not significantly influence it. N addition significantlyincreased soil microbial biomass C: P ratio, which was also suggested that the contentof soil microbial biomass P was lacking in Songnen meadow steppe, soil nutrientwere turning into P limitation. There were better correlated between soil microbialbiomass and soil important nutrient, especially the correlation is more significantwhen N addition. Therefore the soil microbial biomass can be used as biologicalindicators, which could evaluate the long-term changes in soil quality.
     Overall, this research provides a theoretical basis for understanding the influenceof ongoing trends related to global changes on soil nutrients in Songnen MeadowSteppe, and it is relevant to determining methods to facilitate the recovery ofgrassland ecosystems and protect the environment as global changes occur.
引文
[1]马柱国.全球变化与区域干旱化[J].大气科学,2008,32(4):751-756.
    [2]张乃丽,郭继勋,王晓宇,等.土壤微生物对气候变暖和大气N沉降的响应[J].植物生态学报,2007,31(2):252-261.
    [3] IPCC. IPCC WGI Fourth Assessment Report. Climatic change2007: the physical sciencebasis. Geneva: Intergovernmental Panel on C1imate Change.2007.
    [4] Aber JD. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems [J]. Trendsin Ecology and Evolution,1992,7:220-223.
    [5] Kaiser J. The other global pollutant: nitrogen proves tough to curb [J]. Science,2001,294:1268-1269.
    [6] Vitousek PM, Aber JD, Howarth RW et al. Human alteration of the global nitrogen cycle:Sources and consequences [J]. Ecological Applications,1997,7(3):737-750.
    [7] Galloway JN, Townsend AR, Erisman JW et al. Transformation of the nitrogen cycle: recenttrends, questions, and potential solutions [J]. Science,2008,320(5878):889-892.
    [8] Galloway JN, Cowling EB. Relative nitrogen and the world:200years of change [J]. Ambio,2002,31:64-71.
    [9] Galloway JN, Levy IIH, Kasibhatla PS. Year2020: consequences of population growth anddevelopment on deposition of oxidized nitrogen [J]. Ambio,1994,23(2):120-123.
    [10] Melillo JM, Cowling EB. Reactive nitrogen and public policies for environmental protection[J]. Ambio Teach,2002,31(2):150-158.
    [11]廖国藩,贾幼陵.中国草地资源[M].北京:中国科学技术出版社,1996.5-7.
    [12]王宗明,宋开山,张柏,等.松嫩平原过去40年农业气候变化特征分析[J].中国农学通报,2006,22(12):241-246.
    [13] Bai YF, Wu JG, Clark CM, et al. Tradeoffs and thresholds in the effects of nitrogen additionon biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands [J].Global Change Biology,2010,16:358-372.
    [14] Su DC. Study on new methods promoting availability of soil phosphorus and phosphatefertilizer on the basis of soil phosphorus distribution characteristics [J]. Phosphate&Compound Fertilizer,1995,3:74-77.
    [15]王淑平.土壤有机碳和氮的分布及其对气候变化的响应[D].中国科学院植物所博士后研究工作报告,2003,1.
    [16]方精云.全球生态学[M].北京:高等教育出版社,2000,35-40.
    [17]张福锁,龚元石,李小林.土壤与植物营养新动态[M].中国农业出版社,1995.
    [18]赵义海.全球气候变化与草地生态系统[J].草业科学,2000,17(5):49-54.
    [19]陈小红,段争虎.土壤碳素固定及其稳定性对土壤生产力和气候变化的影响研究[J].土壤通报,2007,38(4):765-772.
    [20]李仁杰,朱世东,袁凌云,等.温室内地温变化规律及与气温的相关性[J].中国农学通报,2010,24:209-212.
    [21] Moncrieff J B, Fang C. The dependence of soil CO2efflux on temperature [J]. Soil Biology&Biochemistry,2001,33:155-165.
    [22] Peng SS, Piao SL, Wang T, et al. Temperature sensitivity of soil respiration in differentecosystems in China [J]. Soil Biology&Biochemistry,2009,41:1008-1014.
    [23] Agren GI, Mcmurtrie RF, Parton WJ, et a1. State-of-art of models of productiondecomposition1inkages in conifer and grassland ecosystems [J]. Ecological Applications,1991,1:118-138.
    [24]王其兵,李凌浩,白永飞.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报,2000,24(6):687-692.
    [25] Coughenour MB, Chen DX. Assessment of grassland ecosystem response to atmosphericchange using1inked plant-soi1process models [J]. Ecological Applications,1997,7:802-827.
    [26] Robinson CH, Saunders PW, Madan NJ, et al. Does nitrogen deposition affect soilmicrofungal diversity and soil N and P dynamics in a high Arctic ecosystem [J]. GlobalChange Biology,2004,10:1065-1079.
    [27] Ineson P, Benham DG, Poskitt J, et al. Effects of climate change on nitrogen dynamics inupland soils [J]. Global Change Biology,1998,4(1):153-161.
    [28] Freeman C, Lock MA, Reynolds B. Climatic change and the release of immobilized nutrientsfrom Welsh riparian wetland soils [J]. Ecological Engineering,1993,2:367-373.
    [29] Zak DR, Holmes WE, MacDonald NW, et al. Soil temperature, metric potential, and thekinetics of microbial respiration and nitrogen mineralization [J]. Soil Science Society ofAmerican Journal,1999,63:575-584.
    [30] Maestre FT, Bradford MA, Reynold JF. Soil nutrient heterogeneity interacts with elevatedCO2and nutrient availability to determine species and assemblage responses in a modelgrassland community [J]. New Phytologist,2005,168(3):637-650.
    [31] Rinnan R, Michelsen A, Baath E, et al. Mineralization and carbon turnover in subarctic heathsoil as affected by warming and additional litter [J]. Soil Biology&Biochemistry,2007,39:3014-3023.
    [32] Menge DNL, Field CB. Simulated global changes alter phosphorus demand annual grassland[J]. Global Change Biology,2007,13:2582-2591.
    [33] Sundquist ET. The global carbon dioxide budget [J]. Science,1993,259:934-941.
    [34] McKane RB, Rastetter EB, Shaver GR, et al. Climatic effects on tundra carbon storageinferred from experimental data and a model [J]. Ecology,1997,78:1170-1187.
    [35] Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, andthe effect of global warming on soil organic C storage [J]. Soil Biology&Biochemistry,1995,27:753-760.
    [36]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    [37] Bartnicki J, Alcamo J. Calculating nitrogen deposition in Europe [J]. Water, Air, and SoilPollution,1989,47:101-123.
    [38]李玉中,祝廷成,姜世成.羊草草地生态系统干湿沉降氮输入量的动态变化[J].中国草地,2000,(2):24-27.
    [39]孙本华,吕家珑,胡正义.大气氮沉降对中国亚热带不同立地森林红壤酸化及其机理的研究[D].2005,3-15.
    [40]薛璟花,莫江明,李炯,等.氮沉降增加对土壤微生物的影响[J].生态环境,2005,14(5):747-752.
    [41] Brimblecombe P, Stedman DH. Historical evidence for a dramatic increase in the nitratecomponent of acid rain [J]. Nature,1982,298:460-462.
    [42] Rodhe H, Rood MJ. Temporal evolution of nitrogen compounds in Swedish precipitationsince1955[J]. Nature,1986,321:762-764.
    [43] Adams M, Ineson P, Binkley D, et al. Soil functional responses to excess nitrogen inputs atglobal scale [J]. Ambio,2004,33(8):530-536.
    [44] Xia JY, Niu SL, Wan SQ. Response of ecosystem carbon exchange to warming and nitrogenaddition during two hydrologically contrasting growing seasons in a temperate steppe [J].Global Change Biology,2009,15:1544-1556.
    [45] Liu XJ, Duan L, Mo JM, et al. Nitrogen deposition and its ecological impact in China: Anoverview [J]. Environmental Pollution,2011,159:2251-2264.
    [46] Aerts R, van Logtestijn RS, Karlsson PS. Nitrogen supply differentially affects litterdecomposition rates and nitrogen dynamics of sub-arctic bog species [J]. Oecologia,2006,146:652–658.
    [47] Vourlitis GL, Zorba G, Pasquini SC, et al. Chronic nitrogen deposition enhances nitrogenmineralization potential of semiarid shrubland soils [J]. Soil Science Society of AmericaJournal,2007,71:836–842.
    [48] Sirulnik AG, Allen EB, Meixner T, et al. Changes in N cycling and microbial N withelevated N in exotic annual grasslands of southern California [J]. Applied Soil Ecology,2007,36:1–9.
    [49] Throop HL, Holland EA, Parton WJ, et al. Effects of nitrogen deposition and insectherbivory on patterns of ecosystem level carbon and nitrogen dynamics: results from thecentury model [J]. Global Change Biology,2004,10:1092-1105.
    [50]方运霆,莫江明,周国逸,等.南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应[J].生态学报,2004,24(11):2353-2359.
    [51] Bradley K, Drijber RA, Knops J. Increased N availability in grassland soils modifies theirmicrobial communities and decreases the abundance of arbuscular mycorrhizal fungi [J]. SoilBiology&Biochemistry,2006,38:1583-1595.
    [52]王强.模拟大气氮沉降对闽北森林土壤理化性质及森林碳动态的影响[J].福建农林大学,福建农林大学硕士学位论文.
    [53]孙本华,胡正义,吕家珑,等.大气氮沉降对阔叶林红壤淋溶水化学模拟研究[J].生态学报,2006,26(6):1872-1881.
    [54] Deforest JL, Zak DR, Pregitzerc KS, et al. Atmospheric nitrate deposition and the microbialdegradation of cellobiose and vanillin in a northern hardwood forest [J]. Soil Biology&Biochemistry,2004,36:965-971.
    [55] Boxman AW, Blanck K, Brandrud TE, et al. Vegetation and soil biota response toexperimentally changed nitrogen inputs in coniferous forest ecosystems of the nitrex project[J]. Forest Ecology and Management,1998,101:65-79.
    [56] Nkana VJC, Tack FMG, Verloo MG. Dynamics of nutrients in tropical acid soils amendedwith paper pulp sludge [J]. Waste Management and Research,1999,17:198-204.
    [57] Prieto P, Penuelas J, Lloret F, et al. Experimental drought and warming decrease diversityand slow down post-fire succession in a Mediterranean shrubland [J]. Ecography,2009,32:623–636.
    [58]许中旗,闵庆文,王英舜,等.人为干扰对典型草原生态系统土壤养分状况的影响[J].水土保持学报,2006,20(5):38-42.
    [59] Schipper LA, Percival HJ, Sparling GP. An approach for estimating when soils will reachmaximum nitrogen storage [J]. Soil Use and Management,2004,20(3):281-286.
    [60]陈敏鹏和陈吉宁.中国区域土壤表观氮磷平衡清单及政策建议[J].环境科学,2007,(6):1305-1310.
    [61]梁新强,顾欣欣,李华,等.土壤氮磷平衡在评价区域氮磷损失中的应用[J].环境科学与技术,2007,(3):50-51.
    [62] Güsewell S. N: P ratios in terrestrial Plants: variation and functional significance [J]. NewPhytologist,2004,164:243-266.
    [63] Koerselman W, Meuleman AFM. The vegetation N: P ratio: a new tool to detect the nature ofnutrient limitation [J]. The Journal of Applied Ecology,1996,33:1441-1450.
    [64] Braakhekke WG, Hooftman DAP. The resource balance hypothesis of plant species diversityin grassland [J]. Journal of Vegetation Science,1999,10:187-200.
    [65] Zhang LX, Bai YF, Han XG. Differential responses of N: P stoichiometry of Leymuschinensis and Carex korshinskyi to N addition in a steppe ecosystem in Nei Mongol [J]. ActaBotanica Sinica,2004,46(3):259-270.
    [66] Bouwman A F, Van Drecht G, Van der HOEK. Global and regional surface nitrogen balancesin intersive agricultural production systems for the period1970-2003[J]. Pedosphere,2005,15(2):137-155.
    [67] Limpens J, Berendse F, Klees H. How phosphorus availability affects the impact of nitrogendeposition on Sphagnum and Vascular Plants in Bogs [J]. Ecosystems,2004,7(8):793-804.
    [68] Berendse F, Van Breemen N, Rydin H, et al. Raised atmospheric CO2levels and increased Ndeposition cause shifts in plant species composition and production in Sphagnum bog [J].Global Change Biology,2001,7:591-598.
    [69] Bennett LT and Adams MA. Response of a perennial grassland to nitrogen and phosphorusadditions in sub-tropical, semi-arid Australia [J]. Journal of Arid Environ,2001,48,289-308.
    [70] Harris GP. Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers andestuaries: effects of land use and flow regulation and comparisons with global patterns[J].Marine and Freshwater Research,2001,52:139-149.
    [71] Wedin D, Tilman D. Competition among grasses along a nitrogen gradient: initial conditionsand mechanisms of competition [J]. Ecological Monographs,1993,63:199-229.
    [72]张海燕,肖延华,李旭东,等.土壤微生物生物量作为肥力指标的探讨[J].土壤通报,2006,37(3):422-425.
    [73]黄辉,陈光水,谢锦升,等.土壤微生物生物量碳及其影响因子的研究进展[J].湖北林业科技,2008,152(4):34-41.
    [74] Jenkinson DS, Ladd JN. Microbial biomass in soil: measurement and turnover in Paul [J].Soil Biochemistry,1981,5:415-471.
    [75]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].气象出版社,2006,63-75.
    [76] Wander MM, Traina SJ, Stinner BR, et al. The effects of organic and conventionalmanagement on biologically active soil organic matter fraction [J]. Soil Science Society ofAmerica Journal,1994,58:1130-1139.
    [77] Biederbeck VO, Janzen HH, Campbell CA, et al. Labile soil organic matter as influenced bycropping practices in an arid environment [J]. Soil Biology&Biochemistry,1994,26:1647-1656.
    [78] Brookes PC, Powlson DS, Jenkinson DS. Phosphorus in soil microbial biomass [J]. SoilBiology&Biochemistry,1984,16:169-175.
    [79]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [80]张乃莉,郭继勋.松嫩草甸寸草苔群落土壤微生物量磷的初步研究[J].草业学报,2006,5(15):19-24.
    [81]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [82]乔本梅,李卫国.土壤中无机磷的形态及施用磷肥的有效性[J].科技情报开发与经济,1995,5(3):23-25.
    [83] Verburg PSJ, Van Dam D, Hefting MM, et al. Microbial transformations of C and N in aboreal forest floor as affected by temperature [J]. Plant and Soil,1999,208:187-197.
    [84] Domisch T, Finer L, Lehto T, et al. Effect of soil temperature on nutrient allocation andmycorrhizas in Scots pine seedlings [J]. Plant and Soil,2002,239:173-185.
    [85] Frey SD, Drijber R, Smith H, et al. Microbial biomass, functional, capacity, and communitystructure after12years of soil warming [J]. Soil Biology&Biochemistry,2008,20:1-4.
    [86] Frey SD, Knoor M, Parrent JL, et al. Chronic nitrogen enrichment affects the structure andfunction of the soil microbial community in temperate hardwood pine forests [J]. ForestEcology and Management,2004,196:159-171.
    [87] Joergensen RG, Brookes PC, Jenkinson DS. Survival of microbial biomass at elevatedtemperatures [J]. Soil Biology&Biochemistry,1990,22:1129-1136.
    [88] Bottner P. Response of microbial biomass to alternate moist and dry conditions in a soilincubated with14C and15N-labeled plant material [J]. Soil Biology&Biochemistry,1985,17:329-337.
    [89] Van Gestel M., Ladd JN, Amato M. Carbon and nitrogen mineralization from two soils ofcontrasting texture and microaggregate stability: Influence of sequential fumigation, dry andstorage [J]. Soil Biology&Biochemistry,1991,23:313-322.
    [90] John D, Amy RT, Dennis MG, et al. Impacts of atmospheric deposition on New Jersey pinebarrens forest soils and communities of ectomycorrhizae [J]. Forest Ecology andManagement,2004,201:131-144.
    [91] Allen AS, Schlesinger WH. Nutrient limitations to soil microbial biomass, activity in loblollypine forests [J]. Soil Biology&Biochemistry,2004,36:581-589.
    [92]王晖,莫江明,鲁显楷,等.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,2008,28(2):470-478.
    [93] Compton JE, Watruda LS, Porteousa LA, et al. Response of soil microbial biomass andcommunity composition to chronic nitrogen additions at Harvard forest [J]. Forest Ecologyand Management,2004,196:143-158.
    [94] Bowden RD, Davidon E, Savage, et al. Chronic nitrogen additions reduce total soilrespiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. ForestEcology and Management,2004,196:43-56.
    [95] Deforest JL, Zaka DR, Pregitzerc KS, et al. Atmospheric nitrate deposition and the microbialdegradation of cellobiose and vanillinin a northern hardwood forest [J]. Soil Biology&Biochemistry,2004,36:965-971.
    [96] Johnson D, Leake JR, Lee JA, et al. Change in soil microbial biomass and microbialactivities in response to7years simulated pollutant nitrogen deposition on a heathland andtwo grasslands [J]. Environmental Pollution,1998,103:239-250.
    [97]魏功峰.土壤中的微生物[J].生物学通报,1995,30(2):5.
    [98]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995(5):29-33.
    [99]李勇.试论土壤酶活性与土壤肥力[J].土壤通报,1989,20(4):190-193.
    [100]陈光升,钟章成,齐代华.缙云山常绿阔叶林土壤酶活性与土壤肥力的关系[J].四川师范学院学报(自然科学版),2002,23(1):19-23.
    [101]黄韶华,王正荣,朱永绮.土壤微生物与土壤肥力的关系研究初报[J].新疆农垦科技,1995,3:6-7.
    [102]宋漳,朱锦,杨玉盛.闽北常绿阔叶林土壤微生物学特性的研究[J].福建林学院学报,2000,20(4):317-320.
    [103]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物土壤酶和土壤养分含量的研究[J].山东林业科技,2000,127(2):1-6.
    [104]胡海波,张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系[J].林业科学研究,2001,15(1):88-95.
    [105]张成媛,陈小丽.植被破坏前后土壤微生物分布与肥力的关系[J].土壤侵蚀与水土保持学报,1996,2(4):77-83.
    [106]潘维旺,李景英,周启水,等.土壤微生物与森林环境因子关系初探[J].南昌水专学报,1998,17(4):38-41.
    [107]廖仰南,张桂枝,赵吉.草原羊草和大针茅凋落物分解及其微生物学效应[J].植物生态学与地植物学学报,1989,4:359-366.
    [108]韩永伟,韩建国,王堃,等.利用年限对农牧交错带退耕还草地土壤化学性质的影响[J].草业科学,2005,22(3):50-53.
    [109] Kandeler E, Tscherko D, Spiegel H. Long-term monitoring of a microbiology biomass, Nmineralisation and enzyme activities of a Chernozem under different tillage management [J].Biology and Fertility of Soils,1999,28:343-351.
    [110] Matson P, Lohse K, Hall S. The globalization of nitrogen: Consequences for terrestrialecosystems [J]. Ambio Teach,2002,31:113-119.
    [111] Zhu TC. Yang-cao biological ecology (Eds.)[M]. Jilin Science and Technology Press,2004.
    [112] Vance ED, Brookes PC, Jenkinson DC. An extraction method for measuring soil microbialbiomass C [J]. Soil Biology&Biochemistry,1987,19:703-707.
    [113]黄懿海,安韶山,薛虹.黄土丘陵区草地土壤微生物C/N及呼吸熵对植被恢复的响应[J].生态学报,2009,29(6):2811-2818.
    [114] Zhou JB, Li SX. Choosing of a proper oxidizer for alkaline persulfate oxidation todetermining total nitrogen in solution [J]. Plant Nutrition and Fertilizer Science,1998,4(3):209-304.
    [115] Jenkinson DS, Powlson DS. The effects of biocidal treatments on metabolism in soils-Amethod for measuring soil biomass [J]. Soil Biology&Biochemistry,1976,8:167-177.
    [116] Yu ZS, Northup RR and Dahlgren RA. Determination of total nitrogen and total phosphorusin water using peroxodisulfate oxidation [J]. Water Research,1983,17:1721-1726.
    [117] Murphy J, Riley JP. A modified single solution method for the determination of phosphatein natural waters [J]. Analytica Chimica Acta,1962,27(4):31-36.
    [118] McLaughlin MJ, Alston AM, Martin JK. Measurement of phosphorus in the soil microbialbiomass: a modified procedure for field soils [J]. Soil Biology&Biochemistry,1986,18(4):437-443.
    [119] Hedley MJ, Stewart JW. Method to measure microbial phosphate in soils [J]. Soil Biology&Biochemistry,1982,14:377-385.
    [120] Puri G, Ashman MR. Relationship between soil microbial biomass and gross Nmineralization [J]. Soil Biology&Biochemistry,1998,30(20):251-256.
    [121] Shaw MR, Harte J. Response of nitrogen cycling to simulated climate change: differentialresponses along a subalpine ecotone [J]. Global Change Biology,2001,7:193-210.
    [122] Loiseau P, Soussana JF. Effects of elevated CO2, temperature and N fertilization on fluxes ina grassland ecosystem [J]. Global Change Biology,2000,6:953-965.
    [123] Li X, Meixner T, Sickman JO, Miller AE, et al. Decadal-scale dynamics of water, carbonand nitrogen in a California chaparral ecosystem: DAYCENT modeling results [J].Biogeochemistry,2006,77:217-245.
    [124] Vourlitis GL, Zorba G. Nitrogen and carbon mineralization of semi-arid shrubland soilexposed to long-term atmospheric nitrogen deposition [J]. Biology and Fertility of Soils,2007,43(5):611-615.
    [125] Tietema A, Emmett BA, Gundersen P, et al. The fate of15N–labeled nitrogen deposition inconiferous forest ecosystem [J]. Forest Ecology and Management,1998,101:19-27.
    [126] Aber JD, McDowell W, Nadelhoffer KJ, et al. Nitrogen saturation in temperate forestecosystems [J]. Bioscience,1998,48:921-934.
    [127] Throop HL, Holland EA, Parton WJ, et al. Effects of nitrogen deposition and insectherbivory on patterns of ecosystem level carbon and nitrogen dynamics: results from thecentury model [J]. Global Change Biology,2004,10:1092-1105.
    [128] Lovell RD, Hatch DJ. Stimulation of microbial activity following spring applications ofnitrogen [J]. Biology and Fertility of Soils,1998,26:28-30.
    [129] Piatek KB, Allen HL. Nitrogen mineralization in a pine plantation fifteen years afterharvesting and site preparation [J]. Soil Science,1999,63:990-998.
    [130] Cookson WR, Cornforth IS, Rowarth JS. Winter soil temperature (2-5℃) effects on nitrogentransformations in clover green manure amended or unamended soils: a laboratory and fieldstudy [J]. Soil Biology&Biochemistry,2002,34:1401-1415.
    [131] Rustad LE, Campbell JL, Marion GM, et al. A meta-analysis of the response of soilrespiration, net nitrogen mineralization, and aboveground plant growth to experimentalecosystem warming [J]. Oecologia,2001,126:543-562.
    [132] Shaw MR, Harte J. Control of litter decomposition in a subalpine meadow-sagebrush steppeecotone under climate change [J]. Ecological Applications,2001,11(4):1206-1223.
    [133] Nemani RR, Keeling CD, Hashimoto H, et al. Climate-driven increases in global terrestrialnet primary production from1982to1999[J]. Science,2003,300:1560–1563.
    [134] Ma BL, Lianne MD, Edward GG. Soil nitrogen amendment effects on seasonal nitrogenmineralization and nitrogen cycling in maize production [J]. Agronomy Journal,1999,91:1003-1009.
    [135] Scherer LM, Palmborg C, Prinz A, et a1. The role of plant diversity and composition fornitrate leaching in grasslands [J]. Ecology,2003,84:1539-1552.
    [136] Turpault MP, Ut C, Boudot JP, et al. Influence of mature Douglas fir roots on the solid soilphase of the rhizosphere and its solution chemistry [J]. Plant and Soil,2005,275:327-336.
    [137] Gao YZ, Wang SP, Han XG, et al. Soil nitrogen regime and the relationship betweenaboveground green phytobiomass and soil nitrogen fractions at different stocking rates inthe Xilin River, Inner Mongolia [J]. Acta Phytoecologica Sinica,2004,28(3):285-293.
    [138] Rückauf U, Augustin J, Russow R, et al. Nitrate removal from drained and reflooded fensoils affected by soil N transformation processes and plant uptake [J]. Soil Biology&Biochemistry,2004,36:77-90.
    [139] Galbally I, Kirstine WV, Meyer CP, et al. Soil-atmosphere trace gas exchange in semiaridand arid zones [J]. Journal of Environmental Quality,2008,37:599-607.
    [140] Xiao CL, Zhang LC, Zheng J. Variation of geohydrological condition by prediction ofnumerical simulation for underground water in south area of Songnen plain [J]. Jilin WaterResources,2005,10:1-6.
    [141] Curtin DC, Campbell A, Jail A. Effects of acidity on mineralization: pH-dependence oforganic matter mineralization in weakly acidicsoils [J]. Soil Biology&Biochemistry,1998,30:57-64.
    [142] Zhang R, Brian JW. The effect of soil moisture on mineral nitrogen, soil electricalconductivity and pH [J]. Nutrient Cycling in Agroecosystems,2002,63(1):251-254.
    [143] Pascual I, Antolín MC, García C, et al. Effect of water deficit on microbial characteristics insoil amended with sewage sludge or inorganic fertilizer under laboratory conditions [J].Bioresource Technology,2007,98(l):29-37.
    [144] Goodale CL, Aber JD, McDowell WH. The long-term effects of disturbance on organic andinorganic nitrogen export in the White Mountains, New Hampshire [J]. Ecosystems,2000,3:433-450.
    [145] Lilleskov EA, Fahey TJ, Horton TR, et al. Belowground ectomycorrhizal fungal communitychange over a nitrogen deposition gradient in Alaska [J]. Ecology,2002,83:104-115.
    [146] Zhang NY, Guo R, Song P, et al. Effects of warming and nitrogen deposition on thecoupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe,Northeastern China [J]. Soil Biology&Biochemistry,2013,65:96-104.
    [147] Chen CR, Condron LM, Davis MR, et al. Effects of plant species on microbial biomassphosphorus and phosphatase activity in a range of grassland soils [J]. Biology and Fertilityof Soils,2004,40:313-322.
    [148] Qin SJ, Liu JS, Wang GP. Mechanism of phosphorus availability changing in soil [J].Chinese journal of soil science,2006,37(5):1012-1016.
    [149] Kouno K, Wu J, Brookes PC. Turnover of biomass C and P in soil following incorporationof glucose or ryegrass [J]. Soil Biology&Biochemistry,2002,34:617-622.
    [150] Dick WA, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustmentindicators [J]. Soil Biology&Biochemistry,2000,32(13): l915-1919.
    [151] Chen CR, Condron LM, Davis MR, et al. Seasonal changes in soil phosphorus andassociated microbial properties under adjacent grassland and forest in New Zealand [J].Forest Ecology and Management,2003,177:539-557.
    [152] Belay A, Claassens AS, Wehner FC. Effect of direct nitrogen and potassium and residualphosphorus fertilizers on soil chemical properties, microbial components and maize yieldunder long-term crop rotation [J]. Biology and Fertility of Soils,2002,35(6):420-427.
    [153] Goladi JT, Agbenin JO. The cation exchange properties and microbial carbon, nitrogen andphosphorus in savanna alfisol under continuous cultivation [J]. Science of Food andAgriculture,1997,75(4):412-418.
    [154] Oberson A, Fardeau JC, Bessob JM, et al. Soil phosphorus dynamics cropping systemsmanaged according to conventional and biological agricultural methods [J]. Biology andFertility of Soils,1993,16:111-117.
    [155] Fan HB, Liu WF, Li YY, et al. Tree growth and soil nutrients in response to nitrogendeposition in a subtropical Chinese fir plantation [J]. Acta Ecologica Sinica,2007,27(11):4630-4642.
    [156] Gundersen P, Rssmussen L. Nitrification in forest soil: effects from nitrogen deposition onsoil acidification and aluminium release [J]. Reviews of Environmental Contamination andToxicology,1990,113:1-45.
    [157] Schnure J, Rosswall T. Mineralization of nitrogen from15N labeled fungi, soil microbialbiomass and roots and its uptake by barely plant [J]. Plant and Soil,1987,102:71-78.
    [158] Welter JR, Fisher SG, Grimm NB. Nitrogen transport and retention in an arid landwatershed: Influence of storm characteristics on terrestrial aquatic linkages [J].Biogeochemistry,2005,76(3):421-440.
    [159] Marilley L, Hartwig UA, Aragno M. Influence of an elevated atmospheric CO2content onsoil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repensunder field conditions [J]. Microbial Ecology,1999,38(1):39-49.
    [160]林启美.土壤可溶性无机磷对微生物生物量磷测定的干扰[J].生态学报,2001,21(6):993-996.
    [161] Wu J, Brookes PC, Jenkinson DS. Formation and destruction of microbial biomass duringthe decomposition of glucose and ryegrass in soil [J]. Soil Biology,1993,25(10):1435-1441.
    [162]陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J].农业环境科学学报,2005,24(6):1094-1099.
    [163]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    [164] Zhang WJ, Xu Q, Wang XK, et al. Impacts of experimental atmospheric warming on soilmicrobial community structure in a tallgrass prairie [J]. Acta Ecologia Sinica,2004,24(8):1746-1751.
    [165] Cleveland CC, Townsend AR, Schmidt SK. Phosphorus limitation of microbial processes inmoist tropical forests: evidence from short-term laboratory incubations and fieldexperiments [J]. Ecosystems,2002,5(7):680-691.
    [166] He ZL, Wu J, OcDonnelA G, et al. Seasonal responses in microbial biomass carbon,phosphorus and sulphur in soils under pasture [J]. Biology and Fertility of Soil,1997,24(4):421-428.
    [167] Cleveland CC, Townsend AR. Nutrient additions to a tropical rain forest drive substantialsoil carbon dioxide losses to the atmosphere [J]. The National Academy of Sciences of theUSA,2006,103(27):10316-10321.
    [168] Bunemann EK, Bossio DA, Smithson PC, et al. Microbial community composition andsubstrate use in a highly weathered soil as affected by crop rotation and P fertilization [J].Soil Biology&Biochemistry,2004,36(6):889-901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700