用户名: 密码: 验证码:
簇毛麦病毒诱导基因沉默体系的建立及其在基因功能研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二倍体簇毛麦(Haynaldia villosa Schur.,syn.Dasypyrum Villosum Candargy, 2n=2X=14.VV)是小麦抗病育种的重要基因源。簇毛麦6V染色体短臂上携带有高抗白粉病的主效基因Pm21,该基因抗谱广,抗性强。
     为了研究Pmm21基因对白粉病的抗性机理并筛选簇毛麦抗白粉病相关基因,Cao等利用接种白粉菌后的抗、感簇毛麦和未接种的抗病簇毛麦为材料,将其cRNA与大麦基因芯片杂交,筛选出抗病簇毛麦经白粉菌诱导表达的基因,以及白粉菌诱导后抗、感簇毛麦的差异表达基因。本研究根据基因芯片上调表达的10条探针设计引物,在抗病簇毛麦cDNA中扩增,获得6个抗病相关基因的cDNA片段。其中,根据探针Contig3687设计引物,扩增获得的cDNA片段与水稻(Oryza sativa, Japonica Group)乙烯反应元件结合蛋白转录因子序列具有84%的一致性;根据探针Contig5017设计引物,扩增获得的cDNA片段与水稻(Oryza sativa,Japonica cultivar group)蛋白激酶互作子1基因具有90%一致性。利用cDNA片段扩增引物通过PCR反应筛选白粉菌诱导后抗病簇毛麦的cDNA文库,获得了包含全长乙烯反应元件结合蛋白(Ethylene responsive element binding protein,Hv-EREBP)(GenBank accession FJ711058)基因及蛋白激酶互作子1(Protein kinase interactor,Hv-PKI)(GenBank accession FJ711059)基因的cDNA文库单克隆。
     测序结果表明,包含Hv-EREBP全长基因的cDNA文库单克隆插入片段长1429bp,其中包含一个完整的Hv-EREBP基因的开放阅读框,长1185bp。其推导的蛋白质序列编码394个氨基酸,具有一个完整的AP2保守结构域,与水稻转录因子EREBP (GenBank accession BAD19536)具有66%一致性。构建Hv-EREBP全长基因、该基因起始密码子与AP2保守结构域之间的序列分别与GFP基因重组的质粒,利用基因枪瞬间表达融合蛋白,检测融合蛋白在洋葱表皮细胞中的亚细胞定位。结果表明,EREBP蛋白为核蛋白,该蛋白在洋葱表皮细胞内的准确定位主要由起始密码子与AP2保守结构域之间的氨基酸序列决定利用pET原核表达系统,构建全长Hv-EREBP基因与pET32a载体重组的质粒,将该质粒转化大肠杆菌BL21(DE3)感受态细胞中。利用IPTG诱导Hv-EREBP基因与His标签重组的融合蛋白表达。结果表明,与对照相比,IPTG浓度依次为0.2mM、0.6mM、1.0mM、1.5mM和2.0mM时,转化了重组质粒的大肠杆菌均表达出一条特异的蛋白条带,分子量约为66.8KD,与Hv-EREBP融合蛋白的理论分子量相符。实时荧光定量RT-PCR分析表明,Hv-EREBP基因在白粉菌诱导下强烈上调表达。外源激素乙烯可以显著诱导Hv-EREBP基因的表达,水杨酸可以抑制Hv-EREBP基因的表达,而外源茉莉酸处理后该激素的表达量逐渐下降。推测Hv-EREBP基因可能与簇毛麦抗白粉病相关途径及乙烯防卫反应途径有关。
     测序结果表明,包含Hv-PKI全长基因的cDNA文库单克隆插入片段长1519bp,其中包含一个完整的Hv-PKI基因的开放阅读框,长1089bp。其推导的蛋白质序列编码362个氨基酸,具有一个完整的蛋白激酶结构域,与水稻蛋白激酶互作子基因(GenBank accession AAS98413)具有93%一致性。构建Hv-PKI全长基因、该基因起始密码子与保守结构域之间的序列分别与GFP基因重组的质粒,利用基因枪瞬间表达融合蛋白,检测融合蛋白在洋葱表皮细胞中的亚细胞定位。结果表明,PKI蛋白为细胞质内和细胞膜上表达的蛋白,该蛋白在洋葱表皮细胞内的准确定位主要由起始密码子与保守结构域之间的氨基酸序列决定。利用pET原核表达系统,构建全长Hv-PKI基因与pET32a载体重组的质粒,将该质粒转化大肠杆菌BL21(DE3)感受态细胞中。利用IPTG诱导Hv-PKI基因与His标签重组的融合蛋白表达。结果表明,与对照相比,IPTG浓度依次为0.2mM、0.6mM、1.0mM、1.5mM和2.0mM时,转化了重组质粒的大肠杆菌均表达出一条特异的蛋白条带,分子量约为63.5KD,与Hv-PKI融合蛋白的理论分子量相符。实时荧光定量RT-PCR分析表明,白粉菌诱导及施加外源激素水杨酸可以显著诱导Hv-PK1基因在簇毛麦叶片中的表达,乙烯与茉莉酸对该基因的表达没有明显的作用。推测该基因可能与簇毛麦抗白粉病反应途径及水杨酸防卫反应途径有关。
     Chen等以携带有Pm21的小麦近等基因系及其轮回亲本扬麦5号为材料,利用抑制性消减杂交技术,得到一个在抗病材料中特异表达的抗病基因类似物Ta-LRR2 (GeneBank accession ABQ53156.1),受白粉菌诱导后上调表达。染色体定位分析表明它位于麦类作物第六部分同源群染色体短臂的中部,根据该基因开发的分子标记CINAU16(NAU/XiBao16)与Pm21基因共分离(Chen等,2006)。本研究采用同源克隆方法,在簇毛麦中获得了一个编码226个氨基酸的抗病基因类似物Hv-LRR (GenBank accession FJ711057),定位在簇毛麦6VS染色体上。实时荧光定量RT-PCR分析表明,白粉菌诱导后Hv-LRR强烈上调表达,推测该基因可能在簇毛麦叶片中参与抗白粉病相关反应途径。
     簇毛麦转化体系尚不成熟。为了促进簇毛麦基因功能研究,利用大麦条花叶病毒(Barley stripe mosaic virus,BSMV)载体在簇毛麦中成功构建了稳定有效的基因沉默体系。接种BSMV:GFP重组病毒后,绿色荧光蛋白(Green fluorescent protein,GFP)基因表达观察的结果表明,BSMV传递过程在簇毛麦生长早期即可发生;接种BSMV:PDS重组病毒,沉默簇毛麦八氢番茄红素脱饱和酶(Phytoene desaturase,PDS)基因后,簇毛麦植株表型观察与Real-time RT-PCR检测结果表明,携带PDS基因片段的BSMV重组病毒可以在簇毛麦中进行系统侵染,6天后即可引起PDS基因表达明显下调。PDS基因沉默造成的叶片白化表型主要发生在植株上部新生叶片,沉默效果可以稳定维持于整个生育期。该体系的构建,为利用病毒诱导基因沉默(Virus induced gene silencing,VIGS)技术进行簇毛麦基因功能研究提供了工具。
     利用所构建的基因沉默体系对本研究克隆的Hv-EREBP基因及本实验室克隆的丝氨酸/苏氨酸蛋白激酶(Serine/threonine protein kinase,Hv-S/TPK)基因进行了功能研究,Real-time RT-PCR检测结果表明,携带目标基因片段的BSMV重组病毒可以有效沉默相应的基因,发生了基因沉默的簇毛麦叶片上白粉菌侵染率增加,簇毛麦抗性有所减弱。表明这两个基因在簇毛麦抗白粉病相关途径中发挥了作用。
Haynaldia villosa Schur (2n=14, VV), whose synonymous name is Dasypyrum villosum Candargy, is a diploid relative of wheat. It is an important genetic resource for wheat disease resistance breeding. Especially, on its short arm of 6V chromosome, a major gene Pm21 with high powdery mildew resistance has been transferred to wheat in breeding programs successfully.
     To clone genes involved in resistance to powdery mildew and investigate resistance mechanism in H.villosa, cDNA from the resistant H.villosa and susceptible mutant both inoculated with Blumeria gramimis f.sp. tritici Marchal (ab. Bgf), a fungus who can cause powdery mildew, and cDNA from the uninoculated resistant H. villosa were hybridized to the Barley 1 microarrays respectively in our laboratory. And those genes that were significantly up-regulated expressed in inoculated resistant H.villosa or differently expressed between inoculated resistant and susceptible plant were identified. Based on information of these differential expressed genes, ten disease relative gene sequences corresponding to ten up-regulated probes were selected as templates for PCR primer pairs designation, and PCR amplification were performed in cDNA of H. villosa inoculated with Bgt. Six cDNA fragments were obtained out of ten. Among these cDNA fragments, the one amplified with primers designated from probe Contig3687 showed 84% identity with O.sativa (Japonica Group) EREBP transcription factor, and the one amplified with primers designated for Contig 5017 showed 90% identity with O.sativa(japonica cultivar group) pto kinase interactor 1. Then the two primer pairs were screened independently in cDNA library made from resistant H.villosa inoculated with Bgt, and clones containing inserts representing a full length Hv-EREBP (Ethylene responsive element binding protein, EREBP) (GenBank accession FJ711058) gene and a full length Hv-PKI (Protein kinase interactor, PKI) (GenBank accession FJ711059) gene were obtained respectively.
     Tne clone containing a full length Hv-EREBP gene has a 1429bp insert, in which an Hv-EREBP gene with a 1185bp complete ORF was identified. Composed of 394 amino acids, the deduced protein of this Hv-EREBP gene encoded a complete AP2 domain. This protein has a 66% identity with O.sativa transcription factor EREBP1 (GenBank accession BAD 19536). Subcellular localization analysis showed that EREBP-GFP fusion proteins expressed intensively in the cell nucleus of onin epidermal cells, and the CDS fragment from the start code to the AP2 coserved domain encoded the amino adid sequence required for accurate positioning of this protein. Expression of the fusion protein Hv-EREBP was carried out with the pET expression system successfully, a powerful system developed for the cloning and expression of recombinant proteins in protease deficienct bacterial strains, i.e. E. coli. BL21(DE3). Recombinant plasmid was constructed by insertion of the full length Hv-EREBP gene into the pET32a vector, and transformed into the competent host cell BL21(DE3). After induction with the addition of IPTG to the bacterial culture, compared with the controls, the host stains contained the recombinant plasmid has yielded a specific band whose molecular weight was equal to the deduced theoretical molecular weight of the fusion protein Hv-EREBP, i.e. about 66.8KD. Real-time RT-PCR analysis showed that transcription of the Hv-EREBP gene was up-regulated significantly in H.villosa after inoculation with Bgt or application with exogenous ethylene, the gene transcription was suppressed in H.villosa treated with exogenous salicylic acid, and transcripts of this gene decreased gradually in H. villosa sprayed with exogenous jasmonic acid. Deduced from above observation, the Hv-EREBP gene must play a role in powdery mildew resistant pathway or ethylene defense pathway in H.villosa.
     Tne clone containing a full length Hv-PKI gene has a 1519bp insert, in which a 1089bp complete ORF representing a full length Hv-PKI gene was identified. The Hv-PKI gene encoded a deduced protein composed with 362 amino acids, in which a complete protein kinase domain was identified. This deduced protein has 93% identity with O.sativa protein kinase interactor (GenBank accession AAS98413). Subcellular localization analysis showed that PKI-GFP fusion proteins expressed intensively in the cytoplasm and on the membrane of onin epidermal cells, the CDS fragment from the start code to the coserved domain encoded the amino adid sequence required for accurate positioning of this protein. Expression of the fusion protein Hv-PKI was carried out with the pET expression system successfully. Recombinant plasmid was constructed by insertion of the full length Hv-PKI gene into the pET32a vector, and transformed into the competent host cell BL21(DE3). After induction by IPTG, compared with the controls, the host stains carrying the recombinant plasmid has produced a unique band whose molecular weight was equal to the deduced molecular weight of Hv-PKI protein, i.e.63.3KD. Analyzed by Real-time RT-PCR, expression of this gene was induced remarkably by exogenous hormone salicylic acid or Bgt. On the contrary, no sharp expression increase or decrease was detected in leaves of H.villosa after application with exogenous ethylene or jasmonic acid. Deduced from above observation, this gene must involve in powdery mildew reisitance and salicylic acid defense pathway in H.villosa.
     To clone candidate gene for Pm21, suppression subtractive hybridization was conducted between an isogenic resistant line carrying Pm21 and its recurrent parent Yangmai 5 by Chen et al., and a resistance gene analog (RGA) Ta-LRR2 (GeneBank accession ABQ53156.1) co-segregating with Pm21 was obtained. Afterwards, a resistance gene analog polymorphic molecular marker CINAU16 (NAU/XiBao 16) linked to Pm21 was developed from Ta-LRR2 sequence. Ta-LRR2 had an increased expression level in the resistant wheat T6VS/6AL after inoculation with Bgt. In this work, a homologous RGA sequence Hv-LRR encoding 226 amino acids (GenBank accession FJ711057) was cloned, assigned on the short arm of 6V chromosome in H. villosa. Expression of the Hv-LRR was dramatically induced in leaves of H.villosa challenged by Bgt, but not induced by exogenous hormones, i.e. ethylene, salicylic acid, jasmonic acid. This gene was deduced taking part in the powdery mildew resistant pathway in H. villosa.
     From our experience, tissue culture system for H.villosa was still quite difficult to be established at present time. To fast evaluate gene function, an effective and persistent virus-induced gene silencing (VIGS) system was established with barley stripe mosaic virus (BSMV) for H.villosa. Fluorescence observation of GFP gene expression showed that BSMV:GFP can deliver systemically from leaf to leaf in the early growing stage of the plant after inoculation. Characterization of phytoene desaturase (PDS) gene silencing process and Real-time RT-PCR detection showed that BSMV:PDS carrying reverse inserted fragment of PDS gene can infect H.villosa systemically, and suppress PDS transcripts as early as six days after inoculation. The photobleaching phenotype occurred mainly on the newly upper leaves, and PDS gene silencing process carried thorough the whole growing period in H.villosa. This was the first report that BSMV was used successfully for VIGS in a wild relative species of wheat. The established VIGS system will surely be a powerful reverse genetics tool for gene function study in H.villosa.
     With the established VIGS system, function analysis of two genes, i.e. the Hv-EREBP gene and a serine/threonine protein kinase(Hv-S/TPK) gene, were carried out. Cloned by Cao et al. in our laboratory previously, the Hv-S/TPK gene was a candidate gene for Pm21, and located on the short arm of 6 V chromosome in H. villosa. Expression of the Hv-EREBP gene or the Hv-S/TPK gene was dramatically down-regulated in plants inoculated with BSMV:Hv-EREBP or BSMV:Hv-S/TPK. Infection percentages by Bgt increased on leaves of H. villosa in which Hv-EREBP or Hv-S/TPK were silenced, and resistance to powdery mildew decreased. All these results showed that Hv-EREBP and Hv-S/TPK definitely played a role in powdery mildew resistant pathway in H.villosa.
引文
1. 盛宝钦,段霞瑜,向齐君,周益林.(1995)我国北方11省(区)、直辖市小麦白粉病菌寄主范围研究.中国农业科学6:52-57.
    2. 宋伟杰,王峥,王利琳.(2007)利用病毒诱导的基因沉默技术研究一个豌豆PI同源基因的功能.科学通报52(14)1644-1648.
    3. 王彰明,陈厚德,毕华松,方正.(2003)不同抗病性小麦品种上白粉病菌吸器的发育及寄主乳突形成的研究.扬州大学学报(农业与生命科学版)24(2):24-27.
    4. 蔡群芳,唐清杰,沈文涛,周鹏.(2005)植物病毒诱导的基因沉默在基因功能研究中的应用9(4):50-55.
    5. 蔡新忠,徐幼平,郑重.(2000)植物病原物无毒基因及其功能.生物工程学报18:5-9.
    6. 曹爱忠.(2005)利用大麦基因芯片筛选及克隆簇毛麦抗白粉病相关基因(博士学位论文).
    7. 曹爱忠,李巧,陈雅平,邹晓文,王秀娥,陈佩度.(2006)利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究.作物学报32(10):1444-1452.
    8.陈雅平.(2005)簇毛麦cDNA文库构建及小麦抗病相关基因克隆与功能分析(博士学位论文)
    9. 陈红霖,王义琴,储成才,李平.(2008)植物非寄主抗性研究进展.遗传8:977-982.
    10.陈孝,施爱农,尚立民.(1997)簇毛麦对不同白粉病菌菌系的抗性反应及其在小麦遗传背景下的表达.植物病理学报27(1):17-22.
    11.郭立海,姜颖,贺福初.(2005)快速发展的亚细胞蛋白质组学.中国生物化学与分子生物学报.21(2):143-150.
    12.郭振飞,赵雅清.(2007)黄花苜蓿EREBP基因的克隆、表达及功能鉴定.2007年全国植物生长物质研讨会论文集.
    13.韩德俊,曹莉,陈耀锋,李振岐.(2005)植物抗病基因与病原菌无毒基因互作的分子基础.遗传学报32(12):1319-1326.
    14.齐莉莉,盛宝钦.(1995)小麦白粉病新抗原-基因Pm21.作物学报21(3):257-262.
    15.王宏芝,李瑞芬,王国英,马荣才,魏建华.(2005)病毒诱导的基因沉默及其在植物功能基因组学研究中的应用.自然科学研究进展15(1):8-14.
    16.武明花,李桂源.(2006)蛋白质识别基序—富亮氨酸重复序列的结构与功能.国际病理科学与临床杂志.26(1):35-40.
    17.徐幼平,徐秋芳,宋晓毅,张志新,蔡新忠.(2008)病毒诱导的基因沉默.浙江大学学 报(农业与生命科学版)34(2):119-131.
    1. Ahn S, Tanksley S D. (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA.90(17):7980-7984.
    2. Aist JR, Bushnell WR. (1991) Invasion of plant by powdery mildew fungi, and cellar mechanism of resistance. In Cole GT and Hoch HC et al. The fungal spore and disease initiation in plants and animals. New York:Plenum Press.321-345.
    3. Ananiev EV, Phillips RL, Rines HW. (1998) Complex structure of knob DNA on maize chromosome 9:Retrotransposon invasion into heterochromatin. Genetics.149(4):2025-2037.
    4. Arumuganathan K, Earle ED. (1991) Nuclear DNA content of some important plant species. Plant Mol Biol.9(3):208-219.
    5. Baulcombe DC. (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol.2(2):109-113.
    6. Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R. (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var.dicoccoides in durum wheat. TheorAppl Genet.117(1):135-142.
    7. Benedito VA, Visser PB, Angenent GC, Krens FA. (2004) The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genet Mol Res. 3(3):323-341.
    8. Bennetzen JL. (2000) Comparative Sequence Analysis of Plant Nuclear Genomes: Microcolinearity and Its Many Exceptions. Plant Cell.12(7):1021-1030.
    9. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J. Feuillet C, Salse J. (2009) The 'inner circle' of the cereal genomes. Curr Opin Plant Biol.12(2):119-125.
    10. Bouhida M, Lockhart BEL, Olszewski NE (1993) An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. J Gen Virol.74(Pt 1):15-22.
    11. Briddon RW, Lunness P, Chamberlin LCL, Pinner MS, Brundish H, Markham PG (1992) The nucleotide sequence of an infectious insect transmissible clone of the geminivirus Panicum streak virus. J Gen Virol.73(Pt 5):1041-1047.
    12. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17(22):6739-6746.
    13. Brugidou C, Holt C, Ngon A, Yassi M, Zhang S, Beachy R, Fauquet C. (1995) Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coa(?) protein. Virology.206(1):108-115.
    14. Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M. (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact.20(11):1323-1331.
    15. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP. (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J.39 (5):734-746.
    16. Burgyan J, Nagy PD, Russo M. (1990) Synthesis of infectious RNA from full-length cloned cDNA to RNA of cymbidium ringspot tombus virus. J Gen Virol.71:1857-1860.
    17. Chen J, Watanabe Y, Sako N, Ohshima K, Okada Y. (1996) Complete nucleotide sequence and synthesis of infectious in vitro transcripts from a full-length cDNA clone of a rakkyo strain of tobacco mosaic virus. Arch Virol.141(5):885-900.
    18. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J.46(5):794-804.
    19. Chen Y, Wang H, Cao A, Wang C and Chen P. (2006) Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. J Integr Plant Biol. 48(6):715-721.
    20. Choi IR, French R, Hein GL, Stenger DC. (1999) Fully biologically active in vitro transcripts of the eriophyid mite-transmitted wheat streak mosaic tritimovirus. Phytopathology.89 (12): 1182-1185.
    21. Chsholm S T, Dahlbeck D, Nandini K, Day B, Sjolander K, Staskawicz B J. (2005) Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci U S A.102 (6):2087-2092.
    22. Chu Z, Yuan M, Yao J, Ge XJ, Yuan B, Xu CG, Li XH, Fu BY, Li ZK, Bennetzen JL, Zhang QF, Wang SP. (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev.20 (10):1250-1255.
    23. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics:22K Barley GeneChip comes of age. Plant Physiol.134(3):960-968.
    24. Cresse AD, Hulbert SH, Brown WE, Lucas JR, Bennetzen JL. (1995) Mul-related transposable elements of maize preferentially insert into low copy number DNA. Genetics. 140(1):315-324.
    25. Dangl JL, Dietrich RA, Richberg MH. (1996) Death don't have no mercy:cell death programs in plant-microbe interactions. Plant Cell.8(10):1793-1807.
    26. Dasgupta I, Hull R, Eastop S, Poggi-Pollini C, Blakebrough M, Boulton MI, Davies JW. (1991) Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J Gen Virol.72(Pt 6):1215-1221.
    27. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A.99(4):2404-2409.
    28. Devos KM, Gale MD. (1997) Comparative genetics in the grasses. Plant Mol Biol.35 (1-2): 3-15.
    29. Ding XS, Schneider WL, Chaluvadi SR, Mian MA, Nelson RS. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact.19(11):1229-1239.
    30. Dong X. SA, JA, ethylene, and disease resistance in plants. (1998) Curr Opin Plant Biol.l(4):316-323.
    31. Eamens A, Wang MB, Smith NA, Waterhouse PM. (2008) RNA silencing in plants:yesterday, today, and tomorrow. Plant Physiol.147(2):456-468.
    32. Edards HH. (2002) Development of primary germ tubes by conidia of Blumeria graminis f.sp.hordei on leaf epidermal cells of hordeum vulgare.80(10):1121-1125.
    33. Fitzmaurice WP, Holzberg S, Lindbo JA, Padgett HS, Palmer KE, Wolfe GM, Pogue GP. (2002) Epigenetic modification of plants with systemic RNA viruses. OMICS.6(2):137-151.
    34. Ellis J, Dodds P, Pryor T. (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol.3(4):278-284.
    35. Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. TheorAppl Genet.98(2):281-284.
    36. Flor HH. (2004) Inheritance of pathogenicity in Melampsora lini. Phytopathology. 1942(32):653-669.
    37. Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM. (2004) A geminivirus-incuced gene silencing system for gene function validation in cassava. Plant Mol.Biol.56(4):613-624.
    38. Foote T, Roberts M, Kurata N, Sasaki T, Moore G. (1997)Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 Locus in Wheat. Genetics.147 (2):801-807.
    39. Fujiwara Y, Asogawa M. (2001) Prediction of subcellular localization using amino acid composition and order. Genome Inform.12:103-112.
    40. Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS. (2004)Virus-induced gene silencing as a tool for functional genomics in a legume species.Plant J.40(4):622-631.
    41. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD. (2004)Virus-induced gene silencing in Solanum species. Plant J.39(2):264-272.
    42. Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, Meinke DW, Ray A. (2002) SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130(2):808-822.
    43. Gossele VV, Fache II, Meulewaeter F, Cornelissen M, Metzlaff M. (2002) SVISS-a novel transient gene silencing system for gene function discovery and validation in tobacco. Plant J. 32(5)859-866.
    44. Grimsley N, Hohn T, Davies JW, Hohn B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature.325(6100):177-179.
    45. Groves MR, Barford D.(1999)Topological characteristics of helical repeat proteins. Curr Opin Struct Biol.9(3):383-389.
    46. Hammond-Kosack KE, Jones JDG. (1996) Inducible plant defence mechanisms and resistance gene function. Plant Cell.8(10):1773-1791.
    47. Hayes RJ, Macdonald H, Coutts RHA, Buck KW. (1988) Agroinfection of Triticum aestivum with cloned DNA of wheat dwarf virus. J Gen Virol.69(11):891-896.
    48. Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol.138(4):2155-2164.
    49. Herrmann MM, Pinto S, Kluth J, Wienand U, Lorbiecke R. (2006) The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol.6:22.
    50. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A.93(15):7783-7788.
    51. Holzberg S, Brosio P, Gross C, Pogue GP. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J.30 (3):315-327.
    52. Hsam SLK, Huang XQ, Zeller FJ. (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat(Triticum aestivum L em thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet.102(1):127-133.
    53. Huang XQ, Wang LX, Xu MX, Roder MS. (2003) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet. 106(5):858-865.
    54. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS.(2003)Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics.164 (2):655-664.
    55. Huang XQ, Roder MS. (2004) Molecular mapping of powdery mildew resistance genes in wheat:A review. Euphytica.137(2):203-223.
    56. Hu P, Meng Y, Wise RP. (2009) Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions.Mol Plant Microbe Interact.22(3):311-320.
    57. Ji X, Xie C,Ni Z,Yang T,Nevo E,Fahima T, Liu Z, Sun Q. (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer(Triticum dicoccoides) accession IW72 from Israel. Euphytica.159(3):385-390.
    58. Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. (2006) Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgammal.Mol Genet Genomics.275(4): 354-366.
    59. Kellogg EA, Bennetzen JL. (2004) The evolution of nuclear genome structure in seed plants. Am J Bot.91(10):1709-1725.
    60. Kim E Hammond-Kosack, Kostya Kanyuka. (2007)Resistance Genes (R Genes) in Plants. In: Encyclopedia of Life Sciences. http://www.els.net/[DOI:10.1002/9780470015902.a0020119]
    61. Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K. (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet.88(6-7):722-726.
    62. Kjemtrup S, Sampson KS, Peele CG, Nguyen LV. Conkling MA, Thompson WF, Robertson D. (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J.14(1):91-100.
    63. Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A. 92(5):1679-1683.
    64. Lacomme C, Hrubikova K, Hein I. (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J.34(4):543-553.
    65. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P. (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci U S A.95(1):370-375.
    66. Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bj(?)rnstad A. (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet.116(8):1155-1166.
    67. Linde-Laursen, I., Heslop-Harrison, J. S., Shepherd K. W., Taketa, S. (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas.126(1):1-16.
    68. Liu Y, Schiff M, Dinesh-Kumar SP.(2002a) Virus-induced gene silencing in tomato. Plant J. 31(6):777-786.
    69. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP. (2002b)Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30(4):415-429.
    70. Liu J, Liu X, Dai L, Wang G. (2007) Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. Journal of Genetics and Genomics (Formerly Acta Genetica Sinica).34(9):765-776.
    71. Livak KJ, Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.25(4):402-408.
    72. Lu HC, Chen HH, Tsai WC, ChenWH, Su HJ, Chang DCN, Yeh HH. (2007) Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol.143(2): 558-569.
    73. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J.22(21):5690-5699.
    74. Medberry SL, Lockhart BEL, Olszewski NE. (1990) Properties of Commelina yellow mottle virus's complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Res.18(18):5505-5513.
    75. Meyer M, Dessens JT. (1997) 35S promoter-driven cDNAs of barley mild mosaic virus RNA1 and RNA2 are infectious on barley plants. J Gen Virol.78(Ptl2):3147-3151.
    76. Moon JS, McCoppin NK, Domier LL. (2001) Role of intergenic and 31-proximal noncoding regions in coat protein expression and replication of Barley yellow dwarf virus PAV. Plant Pathol J.17(1):22-28.
    77. Michelmore RW, Meyers BC. (1988) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process.Genome Res.8(11):1113-1130.
    78. Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S. (2007a) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet.114(8):1451-1456.
    79. Miranda LM, Murphy JP, Marshall D, Leath S. (2006) Pm34:a new powdery mildew reisistance gene transferred from Aegilops tauschii Cross. to common wheat (Triticum aestivum L.). Theor Appl Genet.113(8):1497-1504.
    80. Miranda LM, Perugini L, Srnic G, Brown-Guedira G, Marshall D, Leath S, Murphy JP. (2007b) Genetic mapping of a Triticum monococcum-derived powdery mildew resistance gene in common wheat. Crop Science.47(6):2323-2329.
    81. Nagamura Y, Inoue T, Antonio B, Shimano T, Kajiya H, Shomura A, Lin S, Kuboki Y, Harushima Y, Kurata N, et al. (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci.45(3):373-376.
    82. Naylor M, Reeves J, Cooper JI, Edwards ML, Wang H. (2005) Construction and properties of a gene-silencing vector based on Poplar mosaic virus (genus Carlavirus). J Virol Methods. 124(1-2):27-36.
    83. Mohler V, Zeller FJ, Wenzel G, Hsam SLK. (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat(Triticum aestivum L. em Thell.). Euphytica 142(1-2):161-167.
    84. Oikawa A, Rahman A, Yamashita T, Taira H, Kidou S. (2007) Virus induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. J Exp Bot.58(10):2617-2625.
    85. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Liu SC, Stansel JW, Irvine JE. (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci.Science.269(5231):1714-1718.
    86. Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D. (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J.27(4)357-366.
    87. Perugini LD, Murphy JP, Marshall D, Brown-Guedira G. (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet. 116(3):417-425.
    88. Ratcliff F, Martin-Hernandez AM, Baulcombe DC. (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J.25(2):237-245.
    89. Robertson NL, French R, Morris TJ. (2000) The open reading frame 5 A of foxtail mosaic virus is expressed in vivo and is dispensable for systemic infection. Arch Virol.145(8):1685-1698.
    90. Qiu YC, Zhou RH, Kong XY, Zhang SS, Jia JZ. (2005) Microsatellite mapping of a Triticum urartu Turn. derived powdery mildew resistance gene transferred to common wheat(Triticum aestivum L.). Theor Appl Genet.111(8):1524-1531.
    91. Rong JK, Millet E, Manisterski J, Feldman M. (2000) A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica. 115(2):121-126.
    92. Ruiz MT, Voinnet O, Baulcombe DC. (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell.10(6):937-946.
    93. Ryu CM, Anand A, Kang L, Mysore KS. (2004) Agrodrench:A novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J.40(2):322-331.
    94. Saedler R, Baldwin IT. (2004) Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J Exp Bot. 55(395):151-157.
    95. Sarma R N, Gill B S, Sasaki T, Galiba G, Sutka J, Laurie D A, Snape J W. (1998) Comparative mapping of the wheat chromosome 5 A Vm-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet.97 (1-2):103-109.
    96. Scheets K, Khosravi-Far R, Nutter RC. (1993) Transcripts of a maize chlorotic mottle virus cDNA clone replicate in maize protoplasts and infect maize plants. Virology. 193(2):1006-1009.
    97. Scheets K, Redinbaugh MG. (2006) Infectious cDNA transcripts of Maize necrotic streak virus: infectivity and translational characteristics. Virology.350(1):171-183.
    98. Schneider DM, Heun M, Fischbeck G. (1991) Inheritance of the powdery mildew resistance gene Pm9 in relation to Pml and Pm2 of wheat. Plant Breeding.107(2):161-164.
    99. Scofield SR, Huang L, Brandt AS, Gill BS. (2005) Development of a virus induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol.138(4):2165-2173.
    100.Scofield SR, Nelson RS. (2009) Resources for virus-induced gene silencing in the grasses.Plant Physiol.149(1):152-157.
    101.Shirasu K, Lacomme C. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol. 138(4):2155-2164.
    102.Singrun Ch, Hsam SL, Zeller FJ, Wenzel G, Mohler V. (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet.109(1):210-214.
    103.Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R. Lagudah ES. (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18:a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet.116(4):481-490.
    104.Srnic G, Murphy JP, Lyerly JH, Leath S, Marshall DS. (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci.45(4):1578-1586.
    105.Staswick P. (2000) Two expressed soybean genes with high sequence identity to tomato Pti1 kinase lack autophosphorylation activity. Arch Biochem Biophys.15:383(2):233-237.
    106.Stephan D, Moeller I, Skoracka A, Ehrig F, Maiss E. (2008) Eriophyid mite transmission and host range of a Brome streak mosaic virus isolate derived from a full-length cDNA clone. Arch Virol.153(1):181-185.
    107.Sun XL, Liu D, Zhang HQ, Huo NX, Zhou RH, Jia JZ. (2006) Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) schrnal. J Integer Plant Biol.48(10):1204-1209.
    108.Tai YS, Bragg JN, Edwards MC. (2005) Virus vector for gene silencing in wheat. Biotechniques.39(3):310-314.
    109.Takahashi A, Agrawal GK, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. (2007) Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell.19(9):2940-2951.
    110.Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z. (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A.96(3):7409-7414.
    111.Travella S, Keller B. (2009) Down-regulation of gene expression by RNA-induced gene silencing.Methods Mol Biol.478:185-199.
    112.Turina M, Maruoka M, Monis J, Jackson AO, Scholthof KBG. (1998) Nucleotide sequence and infectivity of a full-length cDNA clone of Panicum mosaic virus. Virology.241(1):141-155.
    113.Turnage MA, Muangsan N, Peele CG, Robertson D. (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J.30(1):107-117.
    114.Benedito VA, Visser PB, Angenent GC, Krens FA.(2004) The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genet Mol Res. 3(3):323-341.
    115. Watson JM, Fusaro AF, Wang M, Waterhouse PM. (2005) RNA silencing platforms in plants. FEBS Lett.579(26):5982-7598.
    116.Voinnet O, Pinto YM, Baulcombe DC. (1999) Suppression of gene silencing:a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A. 96(24):14147-14152.
    117.Wei F, Wing RA, Wise RP. (2002) Genome dynamics and evolution of the Mla (Powdery Mildew) resistance locus in barley.Plant Cell.14(8):1903-1917.
    118.Woolston CJ, Barker R, Gunn H, Boulton MI, Mullineaux PM. (1988) Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol.11(1):35-43.
    119.Yamamiya A, Shirako Y. (2000) Construction of full-length cDNA clones to Soil-Borne Wheat Mosaic Virus RNA1 and RNA2, from which infectious RNAs are transcribed in vitro:virion formation and systemic infection without expression of the N-terminal and C-terminal extensions to the capsid protein. Virology.277(1):66-75.
    120. Yang Y, Shah J, Klessig DF. (1997) Signal perception and transduction in plant defense responses. Genes Dev.11(13):1621-1639.
    121.Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME. (2007) Genetic mapping of two powdery mildew resistance genes in einkorm (Triticum monococcum L.) accessions. Theor Appl Genet.114(2):351-358.
    122.Young MJ, Kelly L, Larkin PJ, Waterhouse PM, Gerlach WL. (1991) Infectious in-vitro transcripts from a cloned cDNA of Barley yellow dwarf virus. Virology.180(1):372-379.
    123.Yu HH, Wong SM. (1998) A DNA clone encoding the full-length infectious genome of odontoglossum ringspot tobamovirus and mutagenesis of its coat protein gene. Arch Virol. 143(1):163-171.
    124.Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D, Zhang X. (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J.52(3):420-434.
    125.Zhou J, Loh YT, Bressan RA, Martin GB. (1995) The tomato gene Ptil encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell.83(6):925-935.
    126.Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ. (2005) Microsatellite markers linked to two genes conferring resistance to powdery mildew in common wheat introgressed from Triticum carthlicum accession. PS5. Genome.48(4):585-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700