用户名: 密码: 验证码:
小波构造理论及其在高光谱遥感图像去噪与压缩中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波以其良好的时频局部化性质和多分辨特性在数学理论研究和图像处理领域得到了广泛的应用。高光谱遥感图像是最近几十年发展起来的新兴遥感技术,它能更为全面、更为详细地描述地物特征。由于高光谱图像在成像及传播中,受到很多复杂因素的影响,会引入大量的噪声,从而对图像分析带来不利影响,因此亟需研究高光谱遥感图像的去噪算法。高光谱图像较高的分辨率是以产生大量数据为代价的,它为高光谱数据的传输和储存提出了巨大挑战。因此高效压缩算法是高光谱图像处理领域研究热点之一。本文在研究小波构造理论和高维小波边界延拓算法的同时,将小波分析与高光谱遥感图像的去噪和压缩技术结合在一起展开研究。
     本文研究工作和创新点主要体现在以下几个方面:
     1.给定理想滤波器的形状,设计出一种逼近该理想滤波器的小波滤波器组的构造方法。首先在最小二乘意义下,对分解滤波器多项式与理想滤波器的误差最小化,求出待定参数。然后利用Bezout定理求解满足完全重构条件的综合滤波器的多项式通解。最后利用最小二乘方法求解出综合滤波器的待定参数。该方法将滤波器长度和消失矩阶数作为参数,可以根据需要自由设计。证明了用该方法构造的滤波器随着滤波器长度的增加,与理想滤波器的误差以指数速度衰减,估计出误差衰减速度的上下界。
     2.基于梅花采样的不可分小波,设计出一种能够实现边界处理的完全重构的边界延拓方法。证明了这种延拓方法能实现边界的完全重构,且不需要附加信息。该延拓方法对图像压缩具有重要的意义。
     3.提出一种基于软阈值函数的小波去噪方法。该方法采用迭代算法来估计软阈值的大小。证明了该算法的收敛性并估计收敛速度,分析了该算法的运算量。数值实验表明该算法估计阈值的准确性和MAD方法相当,同时计算量远远小于MAD方法。
     4.针对高光谱遥感图像噪声级别低,各波段噪声的方差随各波段信号的幅值而变化的特点,提出一种导数域内空间谱间联合的高光谱图像去噪方法。首先采用光谱导数技术消除图像背景对噪声的影响,让细微的噪声更容易被提取。然后在导数域内采用基于小波变换的BayesShrink去噪方法进行空间维去噪,对光谱维采用Savitzky-Golay滤波进行平滑。最后对导数域去噪平滑处理后的图像进行光谱积分,并进行积分修正,消除光谱积分中引入的积累误差。实验结果表明该方法对高光谱图像去噪非常有效。
     5.深入研究高光谱图像压缩算法,提出两种无损压缩算法及一种有损压缩算法。
     (i)考虑到高光谱图像相邻的几个波段间都存在着强烈的谱间相关性,提出一种基于多波段谱间预测的无损压缩算法。通过推导多波段预测系数的求解过程,观察到求解当前波段预测系数的线性方程矩阵中会用到大量前一波段预测系数的线性方程的矩阵元素,由此设计出一种快速算法,大大减少了预测系数求解的时间复杂度。
     (ii)提出一种基于递归双向预测的高光谱图像无损压缩算法。针对不同的波段,谱间相关性系数差别很大的特点,采用不同的模式进行编码。谱间相关性大的波段用递归双向预测,能够取得好的压缩效果。对谱间相关性小的波段,不再进行谱间预测,用bzip2算法直接进行编码。不同的情况分别处理,能够在节省运算时间的同时达到满意的压缩效果。
     (iii)提出一种波段预测去除谱间冗余和码流预分配的高光谱图像有损压缩算法。首先用DPCM预测求出各波段的预测残差图像的标准差,然后根据标准差的大小分配对该波段进行编码所需的码流长度。最后基于均方差最小的线性预测器对图像各波段进行预测,根据事先分配的码流长度对各波段预测残差图像进行SPIHT编码。设计的分配码流长度的算法能够根据各波段信息量大小,以及相邻波段的相关性来分配码流长度,达到理想的压缩效果。
Wavelets achieve good property in both time and frequency resolution, and analyse signals in multiresolution. Therefore, they are widely applied in mathematical theory and image processing. Hyperspectral remote sensing imagery is a newly developed remote sensing technology in recent decades. It can describe ground objects more comprehensively and explicitly. In the process of imaging and transit, hyperspectral remote sensing images are interfered by many complicated factors, which will introduce a lot of noise and affect image analysis. Hence, it is emergent to research denoising algorithms for hyperspectral remote sensing images. The high resolution of hyperspectral remote sensing image achieves by the cost of massive data, which is a great challenge for the transit and storage of hyperspectral data. Hence, compression algorithm with high performance is one of the focuses in the field of hyperspectral image processing. This thesis studies wavelet construction theory and boundary extension algorithm for multi-dimesional wavelet. Wavelet analysis combined with denosing and compression technology for hyperspectral remote sensing image is studied as well.
     The main work and innovation are embodied as follows.
     1. Given the shape of an ideal filter, a wavelet filter construction method to approximate the ideal filter is proposed. Firstly, free parameters are determined in the meaning of least square, by minimizing the error between analysis filter and ideal filter. Then a perfect reconstructed general solution for sythesis filter is calculated by Bezout theorem. Finally, the free parameters for sythesis filter can be determined by least square design. In this method, the length of filter and the degree of vanishing moment are taken as free parameters, which can be designed at ease. We prove that the error between the constructed filter and the ideal filter is convergent at an exponential rate as the degree of filter polynomial goes large, and estimate the upper and lower boundaries of the rate.
     2. Based on a family of quincunx wavelets, a boundary extension method is proposed which can achieve perfect reconstruction at boundaries. That the extension method can achieve perfect reconstruction at boundaries nonexpansionally is proved. This extension method has significant meanings for image compression.
     3. A wavelet denoising method based on soft threshold function is proposed. The value of soft threshold is estimated by an iterative method. The convergence of this method is proved. The convergence rate is estimated and the computational time is analized. Numerical experiment shows that the algorithm is competitive to the MAD method, and the computational time is much less than MAD method.
     4. To tackle the denosing problem that the noise level of hyperspectral remote sensing image is relatively low and the noise variance is varying with the spectral bands, a three-dimensional hybrid denoising algorithm in derivative domain is proposed. At first, hyperspectral image is transformed into spectral derivative domain where the subtle noise level is elevated, and the affect of background is eliminated effectively. And then in derivative domain, a wavelet based threshold denoising method BayesShrink algorithm is performed in the two-dimensional spacial domain, and the spectrum is smoothed by Savitzky-Golay filter. At last, the data smoothed in derivative domain is integrated along the spectral axis and corrected for the accumulated errors brought by spectral integration. Experimental results show that the proposed algorithm can reduce the noise efficiently for hyperspectral remote sensing image.
     5. Hyperspectral image compression algorithms are studied. Two lossless compression algorithms and a lossy compression algorithm are proposed.
     (i) Considering the significant spectral correlation in adjacent bands of hyperspectral images, a hyperspectral image lossless compression algorithm based on multi-band prediction is proposed. In the process to calculate the multi-band prediction coefficients, the matrix of linear system to solve the prediction coefficients in current band has many components which are the same as the previous band. Therefore, a fast algorithm can be designed which saves computational time for solving prediction coefficients.
     (ii) A hyperspectral image lossless compression algorithm based on optimal recursive bidirection prediction is proposed. Since the spectral correlation factors in different bands are quite different, two different coding modes are chosen. For the bands whose spectral correlation is significant, using recursive bidirection prediction can achieve excellent compression performance. For the bands whose spectral correlation is not significant, bzip2 algorithm is used instead of spectral prediction. By coding with different modes, satisfactory compression performance is achieved and computational time is saved.
     (iii) A hyperspectral image compression algorithm based on prediction between bands to remove spectral redundancy and rate pre-allocation is proposed. At first, the standard error of error image of each band is computed by DPCM, and then the rate for SPIHT coding of each band is allocated by the value of the standard error. At last, each band is linear predicted based on minimal square error, and coded via SPIHT algorithm according to the pre-allocated rate. The rate pre-allocation algorithm is reasonable for it makes use of both the information of each band and the correlation between neighboring bands, and achieves ideal compression efficiency.
引文
[1] Gabor D. Theory of communication [J]. Journal of the Institute of Electrical Engineers, 1946, 93: 429~549.
    [2] Grossman A, Morlet J. Decomposition of hardy function into square integrable wavelets of constant shape [J]. SIAM J. Math. Anal., 1984, 15(4): 723~736.
    [3] Gouillaud P, Grossman A, Morlet J. Cycle-octave and related transforms in sesmic signal analysis, Geoexploration, 1984/1985, 23: 85~102.
    [4] Grossman A, Morlet J, Pual T. Transforms associated to aquare integeable representation, I, General Results [J]. J. Math. Phys., 1985, 26: 2473~2479.
    [5] Grossman A, Morlet J, Pual T. Transforms associated to aquare integeable representation, II, Examples [J]. Am. Inst. Henri Poincare, 1986, 45: 293~309.
    [6] Daubechies I. Orthogonal bases of compactly supported wavelets [J]. Comm. Pure. Applied Math., 1988, 41: 909~996.
    [7] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. on Patter Analysis and Machine Intelligence, 1989, 11: 674~693.
    [8]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
    [9] Kovcevic J, Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn [J]. IEEE Trans. Info. Theory, 1992, 38(2): 533~555.
    [10] Cohen A, Daubechies I. Nonseparable bidimensional wavelet bases [J]. Rev. Mat. Iberoamericana, 1993, 9(1): 51~137.
    [11] Belogay E, Wang Y. Arbitrarily smooth orthogonal non-separable wavelets in Rn [J]. SIAM J. Math. Anal., 1999, 30: 678~697.
    [12] Ji H, Riemenschneider S D, Shen Z W. Multivariate compactly supported fundamental refinable functions, duals and biorthogonal wavelets [J]. Studies in Applied Mathematics, 1999, 102: 173~204.
    [13] Jia R Q, Shen Z W. Multiresolution and wavelets [J]. Proc. Edinburgh Math. Soc., 1994, 37: 271~300.
    [14] Jia R Q. Approximation properties of multivariate wavelets [J]. Math. Comp., 1998, 67: 647~665.
    [15] Han B. Analysis and construction of optimal multivariate biorthogonal wavelets with compact support [J]. SIAM Journal on Mathematical Analysis, 2000, 31(2): 274~304.
    [16] Han B, Jia R Q. Quincunx fundamental refinable functions and quincunx biorthoganal wavelets [J]. Math. Comp., 2002, 71(237): 165~196.
    [17] Han B. Symmetry property and construction of wavelets with a general dilation matrix [J]. Linear Algebra Appl., 2002, 353: 207~225.
    [18] Han B. Construction of multivariate biorthogonal wavelets by CBC algorithm. Wavelet analysis and multiresolution methods [J]. Lecture Notes in Pure and Appl. Math, 2002, 212: 105~143.
    [19] Skopina M. On construction of multivariate wavelets with vanishing moments [J]. Appl. Comput. Harmon. Anal. 2006, 20: 375~390.
    [20] Tay D B H, Kingsburg N G. Flexible design of multidimensional perfect reconstruction FIR 2-Band filters using transformations of variables [J]. IEEE Trans. Image Proc., 1993, 2(4): 466~480.
    [21] Tay D B H, Kingsburg N G. Design of nonseparable 3-D filter banks/wavelet bases using transformations of variables [J]. IEE Proc. Vis. Image Signal Process., 1996, 143(1): 51~61.
    [22] Kingsburg N G, Tay D B H. Multidimensional wavelet design using generalized transformations [C]. Applications of Wavelet Transforms in Image Proceedings, IEE Colloquium, 1993: 1~6.
    [23] Tay D B H. Balanced spatial and frequency localized 2-D nonseparable wavelet filters [C]. ISCAS, 2001, II: 489~491.
    [24] Tay D B H. Transforming 1-D even-length filterbanks into 2-D filterbanks [C]. IEEE ISCAS, 2003, III: 710~713.
    [25] Tay D B H. Analytical design of 3-D wavelet filter banks using the multivariate Bernstein polynomial [C]. Proc. ICASSP, 1998, 1789~1791.
    [26] Tay D B H. Parametric Bernstein polynomial for least squares design of 3-D wavelet filter banks [J]. IEEE Trans. on Circuits and Systems, 2002, 49(6): 887~891.
    [27] Meyer Y, Coifman R. Wavelets, Calderon-Zygmund and Multilinear Operators [J]. Hermann, Paris, 1990; and Cambridge Univ. Press, 1997.
    [28] Daubechies I. Ten Lectures on Wavelets [M]. SIAM, Philadelphia, 1992.
    [29] Hernández E, Weiss G. A First Course on Wavelets [M]. CRC Press, Boca Raton, FL, 1996.
    [30] Chui C K, He W. Construction of multivariate tight frames via Kronecker products [J]. Appl. Comput. Harmon. Anal., 2001, 11: 305~312.
    [31] Ron A, Shen Z W. Compactly supported tight affine spline frames in L2(Rd ) [J]. Math. Comp., 1998, 67: 191~207.
    [32] Ron A, Shen Z W. Construction of compactly supported affine frames in L2(Rd ) [C]. Advances in Wavelets, Springer-Verlag, New York, 1998: 27~49.
    [33] Benedetto J, Li S D. The theory of multiresolution analysis frames and applications to filter banks [J]. Appl. Comput. Harmon. Anal., 1998, 5: 389~427.
    [34] Lai M J, St?ckler J. Construction of multivariate compactly supported tight wavelet frames [J]. Appl. Comput. Harmon. Anal., 2006, 21: 324~348.
    [35] Han B. Dual multiwavelet frames with high balancing order and compact fast frame transform [J]. Appl. Comput. Harmon. Anal., 2009, 15: 684~705.
    [36] Charina M,Chui C K, He W J. Tight frames of compactly supported multivariate multi-wavelets [J]. Journal of Computational and Applied Mathematics, 2010, 233: 2044~2061.
    [37]张训峰.两类多元小波的构造及其光滑性分析[D].长沙:国防科学技术大学,2004:6~9.
    [38] Green R O, Eastwood M L, Sarture C M, et al.. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [J]. Remote Sensing of Environment, 1998, 65:227~248.
    [39]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社. 2006.
    [40]童庆禧,张兵,郑兰芬.高光谱遥感--原理、技术与应用[M].北京:高等教育出版社. 2006.
    [41] Green A A, Berman M, Switzer P, et al.. A transformation for ordering multispectral data in terms of image quality with implications for noise removal [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65~74.
    [42] Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 295~304.
    [43] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures [J]. Anal. Chem., 1964, 36: 1627~1639.
    [44] Madden H H. Comments on Savitzky-Golay convolution method for least-squares fit smoothing and differentiation of digital data [J]. Anal. Chem., 1978, 50: 1383~1386.
    [45] Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Trans. on Information Theory, 1992, 38(2): 617~643.
    [46] Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710~732.
    [47] Donoho D, Johnstone I. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81: 425~455.
    [48] Donoho D, Johnstone I. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 12(90): 1200~1224.
    [49] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans. on Image Processing, 2000, 9(9): 1532~1546.
    [50] Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden markov model [J]. IEEE Transactions on Signal Processing, 2001, 49(1): 115~120.
    [51] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting inter-scale dependency [J]. IEEE Trans on Signal Processing, 2002, 50(11): 2744~2756.
    [52] Sendur L, Selesnick I W. Bivariate shrinkage with local variance estimation [J]. IEEE Signal Processing Letters, 2002, 9(12): 438~441.
    [53] Portilla J, Strela V. Image denoising using Gaussian scale mixtures in the wavelet domain [J]. IEEE Trans on Image Processing, 2003, 12(11): 1338~1351.
    [54] Candes E J, Donoho D L. Curvelets - A Surprisingly Effective Non-adaptive Representation for Objects with Edges [C]. Proceedings of the in Curve and Surface Fitting, 1999, 105~120.
    [55] Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising [J]. IEEE Trans on Image Processing, 2002, 11(6): 131~141.
    [56] Candes E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C2 Singularities [J]. Comm. Pure Appl. Math., 2004, 57: 219~266.
    [57] Candes E J, Demanet L, Donoho D, Ying L. Fast Discrete Curvelet Transforms [J]. Multiscale Model. Simul., 2006, 5: 861~899.
    [58] Do M N, Vetterli M. The Curvelets Transform: A Efficient Directional Multiresolution Image Representation [J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091~2106.
    [59] Pizurica A, Philips W, Scheundersy P. Wavelet domain denoising of single-band and multiband images adapted to the probability of the presence of features of interest [C]. SPIE Conf. Wavelets XI, 2005, No. 591411.
    [60] Pizurica A, Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising [J]. IEEE Trans. Image Process., 2006, 2006, 15(3): 654~665.
    [61] Atkinson I, Kamalabadi F, Jones D L. Wavelet-based hyperspectral imageestimation [C]. IEEE International Geoscience and Remote Sensing Symposium. 2003, 2: 743~745.
    [62] Adam C, Zelinski, Vivek K G. Denoising Hyperspectral Imagery and Recovering Junk Bands using Wavelets and Sparse Approximation [C]. IEEE International Geoscience and Remote Sensing Symposium, 2006, 104: 387~390.
    [63] Othman H, Qian S E. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage [J]. IEEE Trans. on Geoscience and remote sensing. 2006, 44(2): 397~408.
    [64] Selvam V. Hyperspectral TV Denoising and Inpainting [R]. UCLA Department of Mathematics, 2007.
    [65]常威威,郭雷,刘坤,付朝阳.基于Contourlet变换和主成分分析的高光谱数据噪声消除方法[J].电子与信息学报, 2009, 31(12): 2892~2896.
    [66]苏令华.高光谱图像压缩技术研究[D].长沙:国防科学技术大学,2007:5~6.
    [67] Menmon N D, Sayood K, Magliveras S S. Lossless compression of multispectral image data [J]. IEEE Trans. on Geoscience and Remote Sensing, 1994, 32(2): 282~289.
    [68] Weinberger M J, Seroussi G, Sapiro G. LOCO-I: a low complexity, context-based, lossless image compression algorithm [C]. Proc. 1996 Data Compression Conf. , Snowbird, UT, Mar. 1996: 140~149.
    [69] Weinberger M J, Seroussi G, Sapiro G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS [J]. IEEE Trans. on Image Processing, 2000, 9(8): 1309~1324.
    [70] Wu X, Memon N. Context-based lossless interband compression -- extending CALIC [J]. IEEE Trans. on Image Processing, 1999, 9(6): 994~1001.
    [71] Mielikainen J, Toivanen P. Clustered DPCM for the lossless compression of hyperspectral images [J]. IEEE Trans. on Geoscience and Remote Sensing, 2003, 41(12): 2943~2946.
    [72] Zhang J, Liu G Z. An efficient reordering prediction-based lossless compression algorithm for hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 283~287.
    [73] Miguel A C, Askew A R, Chang A, et al. Predictive coding of hyperspectral images [C]. Data Compression Conference. IEEE Computer Society, 2004: 469~478.
    [74]张晓玲,沈兰荪,张培强.基于三维自适应预测的高光谱图像压缩算法[J].电子学报, 2004, 32(6): 957~959.
    [75] Rao A K, Bhargava S. Multispectral data compression using bidirectinal interbandprediction [J]. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(2): 385~397.
    [76]陈雨时,张晔,张钧萍.基于线性模型最优预测的高光谱图像压缩[J].南京航空航天大学学报,2007, 39(3): 368~372.
    [77] Zhang Y, Jin M et al.. Hyperspectral image compression based on recursive bidirection prediction/JPEG [J]. Pattern Recognition, 2000, 33: 1851~1861.
    [78] Chen Y S, Zhang Y et al.. Optimal recursive bidirection prediction for hyperspectral image compression [J]. Journal of Physics, 2006, 48: 313~317.
    [79] Kim B J, Xiong Z, Pearlman W A. Low Bit-Rate Scalable Video Coding with 3D Set Partitioning in Hierarchical Trees (3D SPIHT) [J]. IEEE Trans. on Circuits and Systems for Video Technology, 2000, 10: 1374~1387.
    [80] Dragotti P L, Poggi G, Ragozini A R P. Compression of Multispectral Images by Three-Dimensional SPIHT Algorithm [J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(1): 416~428.
    [81] Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees [J]. IEEE Trans. on Circuits Syst. Video Tech., 1996, 6: 243~250.
    [82] Tang X, Pearlman W A. Three-Dimensional Wavelet-Based Compression of Hyperspectral Images, Chapter 10 in Hyperspectral Data Compression [M]. Kluwer Academic Publishers, 2006: 273~308.
    [83] Ryan M J, Arnold J F. The Lossless Compression of AVIRIS Images by Vector Quantization [J]. IEEE Trans. on Geoscience and Remote Sensing. 1997, 35(3): 546~550.
    [84] Canta G R, Poggi G. Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding [J]. IEEE Trans. on Image Processing, 1998, 7(5): 668~678.
    [85] Motta G, Rizzo F, Store J A. Partitioned vector quantization: application to lossless compression of hyperspectral images [C]. IEEE ICME, 2003, I: 553~556.
    [86] Motta G, Rizzo F, Store J A. Compression of hyperspectral imagery [C]. Proceedings of Data Compression Conference, Waltham, MA, USA, 2003: 333~342. .
    [87] Qian S. Hyperspectral Data Compression Using a Fast Vector Quantization Algorithm [J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(8): 1791~1798.
    [88] Tay D B H. EBFB: a new class of wavelet filters. IEEE Signal Processing Letters [J]. 2005, 12(3): 206~209.
    [89] Caglar H, Akansu A N. A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation [J]. IEEE Trans. on Signal Processing, 1993, 41(7): 2314~2321.
    [90] Lorentz G G. Bernstein Polynomials [M]. Toronto: University of Toronto Press, 1953.
    [91] Phoong S M, Kim C W, Vaidyanathan P P, Ansari R. A new class of two-channel biothogonal filter banks and wavelets bases [J]. IEEE Trans. on Signal Processing, 1995, 43(3): 649.
    [92] Micchelli C A. Optimal estimation of linear operators from inaccurate data: A second look [J]. Numerical Algorithms, 1993, 5: 375~390.
    [93] Szego G. Orthogonal Polynomials. Number 23 in Colloquium Publications [M]. American Mathematical Society, 4th edition, 1978.
    [94] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.
    [95] Lorentz G G. Approximation of Functions [M]. Chelsea Publishing Company, New York, NY, 2nd edition, 1986.
    [96]关新平,刘冬,唐英干等.基于局部方差的模糊小波阈值图像去噪[J].系统工程与电子技术, 2006, 28(5): 650~653.
    [97] Nason G. Wavelet shrinkage using cross-validation [J]. Journal of the Royal Statistical Societey, 1996, 58(6): 463~479.
    [98] Weyrich N, Warhola G. Wavelet shrinkage and generalized cross validation for image denoising [J]. IEEE Trans. on Image Processing, 1998, 7(1): 82~90.
    [99] Azzalini A, Farge M, Schneider K. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold [J]. Appl. Comput. Harmon. Anal. 2005, 18: 177~185.
    [100] Donoho D L. De-noising by soft-thresholding [J]. IEEE Trans. on Information Theory, 1995, 41: 613~627.
    [101] Berman S M. Sojourners and extremes of stochastic processes[M] Wadsworth, Reading, MA, 1989.
    [102] Mallat S, A wavelet tour of signal processing [M]. Academic Press, 1999.
    [103] Tsai F, Philpot W. Derivative analysis of hyperspectral data [J]. Remote Sensing Environment. 1998, 66: 41~51.
    [104] Mates D M, Zwick H, Jolly G, Schulten D. System studies of a small satellite hyperspectral mission, data acceptability [R]. Canada: Can. Gov. Contract Rep. 2004.
    [105] Bukingham R, Staenz K, Hollinger A B. Review of Canadian airborne and spaceactivities in hyperspectral remote sensing [J]. Can. Aeronaut. Space J., 2002, 48(1): 115~121.
    [106] Faber N M. Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions [J]. Anal. Chem., 1999, 71(3): 557~565.
    [107]吴铮,何明一.基于小波变换和分段DPCM混合编码的多光谱遥感图像压缩算法[J].电子与信息学报,2003, 25(6): 747~754.
    [108] Seward J.“The bzip2 and libbzip2 official home page.”http://sources.redhat.com/bzip2/.
    [109]“HP Labs LOCO-I/JPEG-LS Home Page”. http://www.hpl.hp.com/loco.
    [110]孙蕾,罗建书.基于三维预测的高光谱图像无损压缩的快速算法[J].电子与信息学报,2007, 29(12): 2876~2879.
    [111]孔繁锵,吴成柯,王柯俨等.基于运动补偿和码率预分配的干涉多光谱图像压缩算法[J].光子学报,2007, 36(6): 1162~1166.
    [112] Zhang Y, Zhang J, Ming J, et al.. Adaptive subspace decomposition and classification for hyperspectral images [J]. Chinese Journal of Electronics, 2000, 9(1): 82~88.
    [113]赵春晖,陈万海,张凌雁.基于提升格式的高光谱遥感图像压缩算法[J].哈尔滨工程大学学报,2006, 27(4): 588~592.
    [114] Shapiro J. Embedded image coding using zerotrees of wavelet coefficients [J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3445~3462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700