用户名: 密码: 验证码:
密码子优化对豆血红蛋白基因在莱茵衣藻叶绿体中表达和产氢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱茵衣藻(Chlamydomonas reinhardtii)结构简单,遗传学背景清晰,易于进行分子操作,培养容易且成本较低,尤其是氢化酶的活性高,能够利用太阳能和水产生氢气,被认为是目前最有开发潜力的生物制氢的模式物种。
     莱茵衣藻的氢化酶活性高但是对氧气特别敏感,而氧气又是光合作用的产物,所以在产氢的过程中,氢化酶很容易受氧气抑制而失活,这是衣藻产氢的最大障碍。要想提高产氢效率达到工业化生产的目的,就要降低衣藻细胞内的氧气含量,保证氢化酶的活性。目前最常用的办法是去除培养基中的硫元素或加入某些抑制剂来抑制光系统Ⅱ的活性,以减少光合作用产生的氧气量,但是同时这样也会降低光解水产生的电子量,使光合产氢的电子来源减少,导致产氢量降低。如何降低细胞内的氧气含量又不影响电子的供应是提高莱茵衣藻产氢的关键问题。
     豆血红蛋白(leghemoglaobin,Lb)与氧气具有很高的亲和力和快速的氧周转率,能帮助降低根瘤细胞内的氧气浓度和保证氧敏感的固氮酶的活性,没有豆血红蛋白的根瘤没有固氮作用。
     本实验室前期工作已经尝试分别将大豆血红蛋白的球蛋白基因lba和血红素-球蛋白基因hemH-lba分别转化到莱茵衣藻的叶绿体中表达,以帮助降低细胞内氧气含量和提高产氢量。由于衣藻叶绿体中蛋白表达具有密码子AT偏向性,本实验尝试将hemH-lba基因进行密码子优化并转入莱茵衣藻的叶绿体中表达,以提高外源蛋白表达量和更好地发挥豆血红蛋白的作用,提高衣藻产氢量。
     本论文的主要内容及结果如下:
     1.将密码子优化后的豆血红蛋白基因送公司合成,并成功构建表达载体cg401-1-hemHc-lbac。该表达载体中的hemH基因和lbac基因设计为多顺反子表达形式。
     2.利用基因枪法将载体cg401-1-hemHc-lbac转化到衣藻藻株cc849(以下简称对照藻849)的叶绿体中,用抗生素——壮观霉素筛选出转基因藻。
     3.通过PCR和RT-PCR对转基因衣藻hemHc-lbac进行DNA和RNA水平的检测,PCR结果表明hemHc和lbac基因片段已异质化整合到转基因衣藻叶绿体基因组中,RT-PCR结果表明hemHc和lbac基因在在叶绿体中成功转录。
     4.通过Western blotting的方法对转基因衣藻hemHc-lbac进行蛋白水平的检测,结果表明正常培养条件和产氢培养条件下hemHc基因和lbac基因的蛋白在衣藻叶绿体中都得到了表达,且都在第五天达到了最大值,表达量都是未优化密码子转基因藻hemH-lba的6.8倍。在非变性胶上的Western blotting杂交结果表明两个多顺反子表达的亚基电泳分离后在同一位置。
     5.用定量Real-time PCR的方法对氢化酶的表达量进行检测表明,产氢条件下转基因藻hemH-lba和hemHc-lbac的氢化酶转录水平比对照藻849都有所提高。
     6.对对照藻849和转基因藻hemH-lba、hemHc-lbac的生长情况进行检测表明:对照藻849饱和时的最大OD750值是3.2左右,转基因衣藻hemH-lba饱和时的最大OD750值是3.5,转基因衣藻hemHc-lbac饱和时的最大OD750值是3.3。达到饱和期时转基因衣藻hemHc-lbac、hemH-lba的最大叶绿素含量均为41mg/L左右,而对照藻849的最大叶绿素含量为35mg/L左右。说明转基因藻的生长并未受到抑制,其叶绿素含量反而有所增加。
     7.用气相色谱对转基因藻和对照藻产氢量和耗氧量进行检测表明无论在黑暗耗氧法除氧还是冲氩法除氧的条件下转基因衣藻hemHc-lbac比hemH-lba和对照藻的产氢量都高。
     8.用乙醚萃取血红素,利用紫外分光光度计扫描样品,在550nm处转基因衣藻hemH-lba和hemHc-lbac有小的血红素吸收峰,表明有微量血红素合成。
     9.通过对对照藻849和转基因藻hemH-lba、hemHc-lbac的呼吸速率和光合放氧速率的检测表明,两种转基因藻的净光合放氧速率都比对照藻的偏低,而hemHc-lbac的净光合放氧速率比hemH-lba的更要低。两种转基因藻的呼吸速率比对照藻的都高,尤其是转密码子优化的藻hemHc-lbac的呼吸速率最高。
Chlamydomonas reinhardtii, with simple structure, clear molecular genetic background, easy operation and low cost on culturation, especially with high activity of hydrogenase which can produce hydrogen using solar energy and water, is considered as the most potential algal species for development of biological hydrogen production in the future.
     Hydrogenase of C. reinhardtii has high catalytic activity, but particularly sensitive to oxygen which is the main byproduct of algal photosynthesis. Therefore, the process of hydrogen production and hydrogenase activity is very susceptible to oxygen inhibition and inactivation, which is the maximum obstacle for hydrogen production of C. reinhardtii. To improve the biohydrogen production of C. reinhardtii, the yield of oxygen must be reduced in C. reinhardtii cells to ensure the activity of hydrogenase. The most common way at present is to remove sulfur in the culture medium or by adding some of inhibitors to inhibit the activity of photosystem II. But at the same time it will also reduce the electronic source from the water photolysis process and result in low hydrogen production. Therefore, how to reduce the oxygen content in algal cells without affecting the electronic supply for hydrogenase is a key issue to increase hydrogen production of C. reinhardtii.
     Leghemoglobin (Lb) has high oxygen affinity and rapid turnover rate. It helps to reduce the oxygen concentration inside the nodule cells and ensures the oxygen-sensitive nitrogenase activity. No Lbs, no nitrogen fixation activities in the soybean nodules.
     We have tried to transfer soybean Lb protein genes lba and hemH-lba into the chloroplast of C. reinhardtii in our previous work. Since the expression of protein in the C. reinhardtii chloroplast has AT bias, in this experiment, the codon-optimized Lb genes lbac and hemHc-lbac were transfered into the chloroplast of C. reinhardtii in order to increase recombinant protein expression levels and hydrogen production. The contents and results of this thesis are as follows:
     1. The codon-optimized soybean Lb genes lbac and hemHc were synthezed in the company and the chloroplast expression vector cg401-1-hemHc-lbac with the design of the polycistronic hemHc and lbac genes was successfully constructed.
     2. The plasmid DNA of cg401-1-hemHc-lbac was transfered into C. reinhardtii chloroplasts with the particle bombartment method. Transformants were screened by the resistance of spectinomycin and the well-growth one was picked up and named as transgenic alga hemHc-lbac after screening.
     3. PCR assay based on DNA templates of the transgenic alga hemHc-lbac showed that the hemHc-lbac gene fragments had been heteroplasmicly integrated into the chloroplast genome DNA of C. reinhardtii. RT-PCR assay based on RNA templates of the transgenic algae showed that the hemHc and lbac genes transcripted successfully in algal chloroplasts.
     4. By the method of Western blotting, the recombinant hemHc and lbac proteins had been successfully expressed in the chloroplasts of transgenic algae hemHc-lbac under both normal culture condition and hydrogen production condition. On the fifth days, the expression of recombinant protein reached to the maximum level and the expression level of the codon-optimized recombinant proteins was 6.8 times of the non-optimzied one. The Western blotting result on the native gel electrophoresis showed that the two Lb subunits, hemH and Lba were in the same hybridyzation band with their own specific antibodies .
     5. By the quantitative real-time PCR assay, the transcriptions of hydrogenase genes in both codon-optimized and non-optimized transgenic algae were increased than those in the control algal strain cc849.
     6. The growth curves of the control algae 849 and transgenic algae hemH-lba, and hemHc-lbac showed that the growth of control algae 849 reached saturation with the maximum OD750 value of 3.2, while that of the transgenic algae hemH-lba was 3.5 and transgenic alga hemHc-lbac was 3.3. At saturation phase, the maximum chlorophyll contents of the transgenic alga hemHc-lbac and hemH-lba were all about 41mg / L, while it was about 35mg / L for the control algae 849. The results showed the growth of the transgenic algae was not inhibited. Moreover, their chlorophyll contents were increased slightly.
     7. Hydrogen production and oxygen consumption of both transgenic algae and the control alga were detected. The results showed that the hydrogen production of transgenic algae hemHc-lbac and hemH-lba were higher than that of the control algae nomatter under full argon condition or under the dark anaerobic condition.
     8. Heme was extracted with ether from both transgenic algae and scaned by using UV spectrophotometer. There was a small absorption peak at 550nm for both transgenic algae hemH-lba and hemHc-lbac, indicating that a trace heme might be synthesized.
     9. Respiratory rate and photosynthetic rate of the control and transgenic algae were measured. The results showed that net photosynthetic oxygen evolution rate of transgenic algae hemHc-lbac was lower than transgenic algae hemH-lba and both were significantly lower than that of the control algae. On the other hand, the respiration rates of both transgenic algae were higher than that of the control algae, particularly for that of the codon-optimized algae hemHc-lbac.
引文
[1] Turner J A. Sustainable hydrogen production. Science, 2004,305: 972– 974.
    [2]邢新会,张羽中.发酵生物制氢研究进展.生物加工过程,2005, 3 (1) : 1– 8.
    [3]康铸慧,王磊,郑广宏,等.微生物产氢研究的进展.工业微生物, 2005, 35: 41– 49.
    [4]吴双秀,王全喜.衣藻生物制氢的研究进展[J].中国生物工程杂志,2006, 26(10):88– 92.
    [5]毛宗强.氢能——21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [6]张全国,李刚.生物制氢技术现状及其发展潜力.新能源产业,2007,4:17– 22.
    [7] Miyake, Schnackenberg M J ,Nakamura C, et al. Molecular Handling of Hydrogenase, In: Biohydrogen II, An approach to environmentally acceptable technology [M].Amsterdam: ElsevierPublishers, 2001.
    [8] IlgiKarapinar Karapdan, FikretKargi.Bio-hydrogen production from waste materials [J]. Enzyme and Microbial Technology, 2006,38:569-582.
    [9] Nakamura H. Photosynthese beiderschwe-felfreien Purpur-bakterie, Rhodobacillus palustris. Beitragezur Stoffwechselphysiologieder Purpurbakterien [J]. Acta Phytochimica, 1937, 9: 189-229.
    [10] Gaffron H. Reduction of CO2 with H2 in green plants, Nature, 1939, 143: 204– 205.
    [11] Gaffron H, Rubin J .Fermentative and photochemical production of hydrogen in algae. J Gen Physiol, 1942, 26: 219– 240.
    [12] Maione TE, Gibbs M. Hydrogenase-mediated activities in isolated chloroplast of Chlamydomonas reinhardtii.Plant physiol, 1986, 80:360-363.
    [13] Kessler E. Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolism of algae with and without hydrogenase.Arch Microbiol, 1973, 93: 91–100.
    [14] Gest H, Kamen MD. Photoproduction on molecular hydrogen by Rhodospirillum rubrum [J]. Science, 1949, 109 (2840): 558–559.
    [15] Gest H, Kamen MD. Studies on the metabolism of photosynthetic bacteria; photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria[J]. J Bacteriol,1949,58 (2):239–45.
    [16]柯水洲,马晶伟.生物制氢研究进展(I)产氢机理与研究动态[J],化工进68展,2006,9(25):1001-1010.
    [17]毛宗强.氢能--21世纪的绿色能源[M].北京:化学工业出版社. 2005.
    [18] Benemann J R.Feasibility analysis of photobiological hydrogen production[J].International Journal of Hydrogen Energy,1997,22(10-11):979–987.
    [19] Llama MJ,Serra J L,Rao K IL et a1.1solation and characterization of the hydrogenase activity from the non-heterocystous cyanobacterium Spirulina maxima[J].FEBS letters,1979,98(2):342–346.
    [20]师玉忠.光合细菌连续制氢工艺及相关机理研究[D].郑州:河南农业大学,2008,6.
    [21]邢新会,张翀.发酵生物制氢研究进展。生物加工过程,2005,3(1)1~8
    [22]王海宾,贾万利,刘耀辉。生物制氢的现状与发展趋势。生物技术,2005,15(4):90~94
    [23] Ren N, Wang B, et al. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor [J]. Biotechnology and Bioengineering, 1997, 54(5): 428.
    [24]王艳锦.畜禽粪便污水光合细菌制氢技术研究. [D]河南农业大学硕士学位论文,2004
    [25]李鹏鹏.光合生物制氢过程中的固定化细胞技术研究. [D]河南农业大学硕士学位论文,2005
    [26]原玉丰.利用畜禽粪便产氢的高效光合生物产氢菌群筛选及其产氢过程初步研究.河南农业大学硕士学位论文,2005
    [27]尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究. [D]河南农业大学博士学位论文,2005
    [28]王素兰.光合生物制氢菌群生长动力学与系统温度场特性研究. [D]河南农业大学博士学位论文,2007
    [29]周汝雁.环流罐式光合生物制氢反应器及其能量传输过程研究. [D]河南农业大学博士学位论文,2007
    [30]杨艳,卢滇楠,李春等.面向21世纪的生物能源.化工进展,2002,21(5):99–302,303
    [31] Levin D B,Pitt L,Love M.Biohydrogen production :prospects and limitations to practical application. International Journal of Hydrogen Energy,2004,29:173–185.
    [32]Pinto FAL,Troshina O, Lindbald P. A brief look at three decades of research on cyanobacterial hydrogen evolution.International Journal of Hydrogen Energy,2002,27:1209–1215.
    [33]Masukawa H, Mochimaru M, Sakurai H. Hydrogenase and photobiological hydrogen production utilizing nitrogenase enzyme system in cyanobacteria. International Journal ofHydrogen Energy,2002,27:1471–1474.
    [34] Guan Y F, Deng M C,Yu X J,et al.Two stage photoproduction of hydrogen by marine green algae Platymonas subcordiformis. Biochemical Engineering Journal, 2004,19:69–73.
    [35]杨素萍,赵春贵,曲音波,钱新民.生物产氢研究与进展.中国生物工程杂志.2002,22(4):44–48.
    [36] Belikn S, Padan E. Arch Microbiol, 1978,16:109
    [37] Aoyama K,Uemura I,Miyake J,et al.J Ferment Bioehg,1997,83:17.
    [38] Laczko I.Physiol Plant,1986,67:634.
    [39]管英富,邓麦村,张卫等. 4种海洋绿藻光合放氢特征研究.海洋科学,2004 ,28 (9) :32–35
    [40]Happe T, Hemschemeier A, Winkler M , et al . Hydrogenase in green: do they save the algae’s life and solve our energy problems? Trends In Plant Science, 2002, 7:246–250
    [41] Yokoi H, Saitsu A S, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue .Journal of Bioscience and Bioengineering,2001,91:58–63.
    [42] Collet C, Adler N, Schwitzgu' ebel J P, et al. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose.International Journal of Hydrogen Energy, 2004,29:1479–1485.
    [43] Liu G, Shen J. Effects of culture medium and medium conditions on hydrogen production from starch using anaerobic bacteria.Journal of Bioscience and Bioengineering,2004,98:251~–256.
    [44] Lin CY, Lay CH .Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy,2004, 29:41–45.
    [45] Evvyernie D, Morimoto K, Karita S, et al. Conversion of chitinous waste to hydrogen gas by Clostridium paraputrificum M-21. Journal of Bioscience and Bioengineering, 2001,91:339–343.
    [46]户元.张翀.邢新会.Clostridium paraputrificum M-21发酵制氢培养条件研究..生物加工过程, 2004,2 (2) :41–46.
    [47] Wang CC, Chang CW,Chu CP, et al. Producing hydrogen from wastewater sludge by Clostridium bifermentans.Journal of Biotechnology, 2003,102: 83–92.
    [48] PodestáJJ, Navarro AMG,Estrella CN, et al. Electrochemical measurements of trace concentrations of biological hydrogen produced by Enterobacteriaceae.Institut Pasteur,1997,148:87~93.
    [49] Nakashimada Y, Rachman MA, Kakizono T, et al. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. International Journal of Hydrogen Energy,2002,27:1399–1405.
    [50] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08.Process Biochemistry, 2000,35:589–593.
    [51]李永峰,任南琪.杨传平等.一株高效产氢产酸细菌的鉴定与产氢特性.中国环境科学, 2005,25(2):210~213.
    [52] Oh YK, Park MS, Seol EH,et al. Isolation of hydrogenproducing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor.Biotechnology and Bioprocess Engineering, 2003,8:54–57.
    [53] Shin H S, Youn J H,Kim S H.Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy,2004,29:1355–1363.
    [54] Zhang T,Liu H,Fang H H P. Biohydrogen production from starch in wastewater under thermophilic conditions.Journal of Environmental Management,2003,69:149–156.
    [55] Kanai T, Imanaka H ,Nakajima A, et al.Continuous hydrogen production by the hyperthermophilic archaeon,Thermococcus kodakaraensis KOD1.2005,116:271–282.
    [56] Minnan L, Jinli H, Xiaobin W, et al.Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring.Research in Microbiology,2005,156:76–78.
    [57] Eroglu E,Gündüz U,Yücel M ,et al.Photobiological hydrogen production from olive mill wastewater as sole substrate sources. International Journal of Hydrogen Energy, 2004, 29:163–171.
    [58] Kim M S,Baek J S,Lee J K. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant . International Journal of Hydrogen Energy, 2006, 31:121–127.
    [59] Fang H H P, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. International Journal of Hydrogen Energy, 2005, 30: 785–793.
    [60] He D,Bultel Y, Magnin JP , et al. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to PEM fuel cell.Journal of Power Sourcess, 2005, 141: 19.
    [61] Maeda I, Miyasaka H, Umeda F, et al. Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxcbutyrate) as sole substrate.Biotechnology and Bioengineering,2003,81:474–481.
    [62] Shi XY, Yu HQ. Hydrogen production from propionate by Rhodopseudomonas capsulate.Applied Biochemistry and Biotechnology, 2004, 117: 143–154.
    [63] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials.Enzyme and Microbial Technology, 2006, 38: 569–582.
    [64] Yokoi H, Mori S, Hirose J , et al. H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp.M-19.Biotechnology Letters,1998,20:895–899.
    [65] Kawaguchi H,Hashimoto K,Hirata K,et al. H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus.Journal of Bioscience and Bioenergy,2001,91:277~282.
    [66] J-D Rochaix Chlamydomonas reinhardtii Acadmic Press, 2001.
    [67] Harries EA. Chlamydomonas resource book: a comprehensive guide to biology and laboratory use [M].New York Academic Press, 1989.
    [68] Rochalx JD. Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardtii [J].J Mol Biol, 1978, 126: 597-617.
    [69] Grant D, Chiang KS. Physical mapping and characterization of Chlamydomonas mitochondrial DNA molecules: their unique ends, sequence homogeneity, and conservation [J].Plasmid, 1980, 4: 82-96.
    [70] Sabeeha S.Merchant,Simon E.Prochnik et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions [J]. Science, 2007, 318: 245-251.
    [71] Melis A and Happe T. Hydrogen production. Green algae as a source of energy. Plant Physiology. 200, 127: 740-748.
    [72] Benemann JR. Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy.1997, 22:979-987.
    [73] Happe T, Mosler B, Naber J D. Induction, isolation and characterization metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. European Journal of Biochemistry. 1994, 222: 769-774.
    [74] Happe T and Kaminski A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. European Journal of Biochemistry. 2002, 269: 1022-1032.
    [75] Happe, T, Naber, J D. Isolation, characterization and N-terminal amino aci sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 1993, 214: 475–481.
    [76] Forestier M , King P , Zhang L , et a1 . Expression of two [Fe]-hydrogenases in Chlamydonmonas reinhardtii under anaerobic conditions[J].European Journal of Biochemistry,2003,270:2 750-2 758.
    [77] Zhang L,Zhang W,Jin M,et a1.Cloning and structure analysis of hydrogenase gene from Chlamydomonas reinhardtii SE[J].Process Biochemistry,2005,40:2968-2972.
    [78] Forestier M, King P, Zhang L P, et al.Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.Eur.J.Biochem.2003, 270: 2750-2758.
    [79] Happe T, Mosler B, Naber J D. Induction, isolation and characterization metal content of hydrogenase in the green alga Chlam ydom onas reinhardtii. European Journal of Biochemistry, 1994, 222: 769–774.
    [80] Melis A, Seibert M, Happe T. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii[J].Plant Physiol,2000,122:127-135.
    [81] Abeles FB. Cell free hydrogenase from Chlamydomonas reinhardtii. Plant Physiol.1964, 39: 167–176.
    [82] Wunschiers R,Senger H,Schulz R. Electron pathways involved in H2一metabolism In the green alga Scenedesmus obliquus.Biochim Biophys Acta.2001,1503(3):271–278.
    [83] HanseI A,Lindblad P.Towards optimition of cyanobacteria as biotechnologically Relevant producers of molecular hvdrogen,a clean and renewable energy source. Appl Microbiol Biotechno1.1998,50:153–160.
    [84] Schnackenberg J,Schulz R, Senger H. Characterization and purification of a hydrogenase from the eukaryotic green alga Scenedesmus odliquus. FEBS Lett. 1993, 327: 21一24.
    [85] Keith D. Allen L.AndrewbStaehelin , Polypeptide composition , assembly and Photophorylation patterns of the PhotosystemⅡantenna system of Chlamydomonas rejnhardtii.Planta,1994,194:42一54.
    [86]姜闯道,高辉远,邹琦.类囊体膜pH梯度在光抑制中的保护机理.植物生理学通讯,2000,36 (2):97一101.
    [87] Ruban AV,Horton P.Mechanism of pH一dependent dissipation of absorbed excitation energy by photosynthetic membrane:spectroscopic analysis of isolated light一harvesting complexe.Biochem Biophys Acta,1992,1116:219一227.
    [88]沈允钢,施教耐,许大全.动态光合作用.北京:科学出版社1998:18.
    [89] Melis A,Investigator P.Renewable hydrogen fuel production by microalgal photosynthesis. Energy Innovation Small grant (EISG) program final report, March 2001.
    [90] Melis A.Green alga hydrogen production:progress,challenges and prospects.Inter J Hydrogen Energy 2002,27:1217-1228.
    [91] Posewitz MC, King PW, Smolinski SL, et al. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. The Journal of Biological Chemistry, 2004, 279 (24): 25711–25720.
    [92] Suman Kundu,James T.Trent III. Plants, humans and hemoglobins, Trends in Plant Science,2003, 8 (8) : 387-393.
    [93] Appleby, CA. Leghemoglobin and Rhizobium respiration [J]. Annu. Rev. Plant.Physiol, 1984, 35:443-478.
    [94] Nadler, KD and Avissar YJ. Heme Synthesis in Soybean Root Nodules I. On the role of bacteroidδ-aminolevulinic acid synthase andδ-aminolevulinic acid dehydratase in the synthesis of the heme of leghemoglobin [J]. Plant Physiol , 1977, 60: 433-436.
    [95]张静娴,荆玉祥.植物的血红蛋白.生命科学. 1999, 11(2):66-71.
    [96]王潮岗,胡章立.利用转基因衣藻合成聚-β-羧基丁酸的研究[J].科学通报,2004,9(15): 1519–1522.
    [97] Nakamura Y, Gojobori T, Ikemura T. Condon usage tabulated from international DNA sequence databases:status for the year 2000[J].Nucleic Acids Res,2000,28:292-298.
    [98] Leon-Banares, Gonzalez-BallesterD, Galvan. Transgenic microalgae as green cell-factories cell-factories [J].TRENDS in Biotechnology,2004,22(1):45-52.
    [99]Mayfield SP, Franklin S E.Expression of human antibodies in eukaryotic micro-algae[J].Vacc ine, 2005,23:1828–1832.
    [100] Heifetz P B.Genetic engineering of the chloroplast[J]. Biochimie, 2000, 82:655-666.
    [101] Ishikura K, Takaoka Y, Kato K, et al. Expression of a Forgeign Gene in Chlamydomonas reinhardtii Chloroplast [J]. Journal of Bioscience and Bioengineering, 1999, 87(3): 307-314.
    [102]范国昌,苏宁,张中林.衣藻叶绿体表达体系的建立[J].科学通报, 1999, 44(12): 1301-1306.
    [103]钱炳俊,周志刚,张大兵.外源基因在叶绿体表达系统中高效表达研究进展[J].生物技术, 2002, 12(5): 30-33.
    [104] Anthonisen IL, Kasai S, Kato K, et al. Structural and functional characterization of a transcription-enhancing sequence element in the rbcl gene of the Chlamydomonas chloroplast genome [J]. Curr Genet, 2002, 41: 349-356.
    [105] Kasai S, Yoshimura S, Ishikura K, et al. Effect of Coding Regions on Chloroplast Gene Expressionin Chlamydomonas reinhardtii [J]. Journal of Bioscience and Bioengineering, 2003, 95 (3): 276-282.
    [106] Klein U, Salvador M L, Bogorad L. Activity of the Chlamydomonas chloroplast rbcL gene promoter is enhanced by a remote sequence element [J]. Proc Natl Acad Sci USA, 1994, 91: 10819-10823.
    [107] Sangwan I and O’Brain MR. Evidence for an inter-organismic heme biosynthetic pathway in symbiotic soybean root nodules. Science,1991, 251, 1220-1222.
    [108] Santana MA, Pihakaski-Maunsbach K, Sandal N, Marcker KA and Smith AG. Evidence that the plant host synthesizes the heme moiety of leghemoglobin in the root nodules. Plant Physiol. 1998,116, 1259-1269.
    [109]阎光宇,刘晓磊,王全喜,吴双秀.豆血红蛋白基因lba的克隆及其转化衣藻叶绿体.中国生物工程杂志. 2009, 29(5): 66-71.
    [110] Shuangxiu Wu, Guangyu Yan, Lili Xu, Quanxi Wang, Xiaolei Liu. Improvement of hydrogen production with expression of lba gene from soybean in chloroplast of Chlamydomonas reinhardtii. International Journal of Hydrogen Energy. 2010 (35): 13419-13426.
    [111]Shuangxiu Wu, Rui Hang, Lili Xu, Guangyu Yan, Quanxi Wang. Improvement of hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. Journal of Biotechnology. 2010,146(3):120-125.
    [112] Harris EH.The Chlamydomonas sourcebook.Academic Press Inc, San Diego,1989.
    [113]Harris EH.The Chlamydomonas sourcebook (second edition). Introduction to Chlamydomonas and Its Laboratory Use, vol 1. Academic Press ,San Diego.
    [114]Rochaix JD. Chlamydomonas reinhardtii as the photosynthetic yeast[J]. Annual review of Genetics, 1995, 29:209-230.
    [115] Franklin S, Ngo B, EfuetE,et al. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast.Plant J,2002,30(6):733-744.
    [116] Hyung-Kyun Jun ,Gautam Sarath, et al. Characteristics of Modified Leghemoglobins Isolated from Soybean (Glycine max Merr.)Root Nodules [J].Plant Physiol,1994,104:1231-1236.
    [117] Makarova V V, Kosourov S, Krendeleva T E, et al. Photoproductiion of hydrogen by sulfur-deprived C.reinhardtii mutants with impaired photosystem II photochemical activity [J].Photosynth Res,2007,94:79-89.
    [118] Miyake J., Miyake M., Asada Y. Biotechnological hydrogen production: research for efficient light energy conversion. 1999, 70: 89-101
    [119]范晓蕾,郭荣波,王广策,许晓辉,时艳侠.绿藻氢化酶及其产氢代谢的分子生物学研究进展.海洋科学. 2009, 33 (1): 77-83.
    [120] Ghirardi, M.L., Togasaki, R.K., and Seibert, M. (1997) Oxygen sensitivity of algal H2-production. Appl. Biochem. Biotech. 63, 141–151.
    [121] Ghirardi, M.L., Posewitz M C, Maness P C. Dubini A, Yu J, and Seibert, M. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annual Review of Plant Biology. 2007, 58: 71–91.
    [122] Melis, A. (2007) Photosynthetic H2 metabolism in Chlamydomonas reinahrdtii. Planta 226, 1075-1086.
    [123] Adams M W. The structure and mechanism of ironhydrogenases. Biochemistria and Biophysia Acta. 1990, 1020: 115-145
    [124] Grierson D.植物分子生物学. [M].北京:北京大学出版. 1988.
    [125]赵亚兰,尉亚辉.豆血红蛋白的研究进展[J].西北植物学报, 2000, 20(4): 684-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700