用户名: 密码: 验证码:
西部干旱半干旱地区公路路基湿度场演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集中降雨期路基湿度场状态是正确评价路基强度和承载能力,以及合理选取设计参数进行路面结构设计的重要依据。通过现场调研、数值模拟试验、相似物理模型试验、理论分析与现场实测相结合的研究方法,系统研究了压实度、初始湿度、路面覆盖层、降雨条件、地下水位等因素影响下西部干旱半干旱地区公路路基湿度场演变的一般性规律,建立了路基湿度特征值预估模型,在此基础上针对西部干旱半干旱地区高等级公路,提出了给定工况状态下路基湿度场最不利分布状态的确定方法。主要研究工作及结论如下:
     (1)通过数值试验和相似物理模型试验与分析,揭示了压实度影响路基湿度场演变一般性规律。结果表明:随着压实度增大,路基湿度扰动区湿度值和层位水平距离呈线性递减,且扰动前区范围减小,湿度梯度增大;采用组合压实度的路基,上区压实度较大时,水分向下迁移困难,造成下区湿度增量减小。
     (2)通过数值试验与分析,揭示了初始湿度影响路基湿度场演变的一般性规律。结果表明:坡表湿度受初始湿度影响甚微,除坡表之外路基湿度值及扰动区范围随着初始湿度呈线性增长;扰动前区湿度梯度随着初始湿度呈指数曲线逐渐减小。
     (3)通过数值试验与分析,揭示了路面覆盖层影响路基湿度场演变的一般性规律。结果表明:路面透水后,随降雨时间的推移,湿度扰动区水平和竖向扩展距离呈线性增长,扰动前区湿度梯度呈二次曲线变化规律。
     (4)通过数值试验与分析,揭示了降雨条件影响路基湿度场演变一般性规律。结果表明:降雨湿度扰动区各水平层位的路基湿度呈二项式分布;坡表湿度随降雨强度及降雨历时呈对数增长;湿度扰动区随降雨强度呈对数扩大渐至稳定,稳定后对应的雨强值出现滞后效应;降雨历时越长,扰动区范围受降雨雨强影响越微小;间歇时间对于降雨扰动后区以及非降雨扰动区路基湿度和范围影响甚微,而扰动前区湿度随着间歇时间的增加而微幅减少,雨强愈大间歇降雨湿度场分布状态与连续降雨越接近。
     (5)通过数值试验与分析,揭示了地下水位影响路基湿度场演变的一般性规律。结果表明:除坡表之外,降雨扰动区湿度随着地下水位高度增加而增大,但层位越高增幅越微弱;各路基层位降雨湿度扰动区距离随着地下水位线提高呈二次曲线变化;一定工况对应存在一个平衡地下水位,在其之上,随地下水位的降低降雨扰动区的路基湿度增幅呈对数递减,地下水上侵扰动区的路基湿度梯度呈线性递减。
     (6)通过数值试验与现场试验分析相结合,对西部干旱半干旱地区路基湿度场分布状态进行研究。结果表明:扰动区扩展当路面不透水时受降雨历时和初始湿度影响显著,当路面透水后受降雨强度和地下水位影响显著;地下水上侵湿度扰动区的扩展受初始湿度和地下水位影响显著;基于BP神经网络建立了湿度特征值预估模型,在此基础上针对西部干旱半干旱地区,提出了一种基于降雨重现期的公路路基湿度场最不利分布状态确定方法。
The state of subgraded humidity field in concentrated rainfall period is a very importantbasis for correct evaluaion of subgrade strength and bearing capacity,and for reasonableselection of pavement structure design parameters. The general evolution rules of subgradehumidity field in western arid and semi arid regions influenced by compaction degree,initialhumidity,pavement layer rainfall,and groundwater level were studied systematically byfield investigation,numerical simulation,similar physical model experiment,theoreticalanalysis and field measurement. A prediction model of humidity characteristic value wasestablished based on witch a determination method to the most unfavorable distribution ofsugrade humidity field in a given condition was proposed in the light of high grade highwayin western arid and semi arid regions. The main contents and conclusions are as follows:
     (1)The general evolution rules of sugrade humidity field influenced by compactiondegree were revealed by numerical test and similar physical model experiment and analysis.The results show that humidity values and horizon distances gradually diminish withincreasing of compaction degree in subgrade humidity disturbance,and front disturbancearea reduce with increasing of humidity gradients;as sugrade using compaction degreecombination the humidity increment of lower disturbance diminish when compaction degreeof upper disturbance is larger because of water downward migration difficulties.
     (2)The general evolution rules of sugrade humidity field influenced by initialhumidity were revealed by numerical test and analysis. The results show that influences ofslope surface moisture affected by initial humidity are very slight outside that sugradehumidity and disturbance area show linear growth with increasing of initial humidity;humidity gradients of front disturbance area show exponential gradual decreasing withincreasing of initial humidity.
     (3)The general evolution rules of sugrade humidity field influenced by pavementlayer were revealed by numerical test and analysis. The results show that horizontal andvertical expansion distances of humidity disturbance show linear increasing along withrainfall time with permeable pavement,at the same time,humidity gradients of frontdisturbance area show binomial variation.
     (4)The general evolution rules of sugrade humidity field influenced by rainfall wererevealed by numerical test and analysis. The results show that sugrade humidity at everyhorizon positions show binomial distribution in rainfall humidity disturbance;humidity ofslope surface logarithmic grow with increasing of rainfall strength and duration;humidity disturbance expand in logarithmic form to stable,and hysteresis effect of rainfall strengthemerge corresponding to stable state;influences of disturbance areas affected by rainfallstrength become smaller with rainfall duration becoming longer;Influences that sugradehumidity and range of rainfall back disturbance area and non-disturbance area influenced byinterval time are every slight,however,humidity of front disturbance slightly reduce withincreasing of interval time,and humidity distribution of intermittent rainfall become morecloser to it of continuous rainfall with increasing of rainfall strength.
     (5)The general evolution rules of sugrade humidity field influenced by groundwaterlevel were revealed by numerical test and analysis. The results show that rainfall disturbancehumidity outside slope surface enlarge with increasing of groundwater level,but theamplitude trend to weak with horizon high;certain conditions will correspond to a balancegroundwater level above witch subgrade humidity amplitude of rainfall disturbance showlogarithmic decreasing with dropping of groundwater level,at the same time,subgradehumidity gradients of groundwater intrusion disturbance show linear decreasing.
     (6)The subgrade humidity field distributions in western arid and semi arid regionswere revealed by numerical and field test and analysis. The results show that it is verysignificant that rainfall strength and groundwater level influence disturbance areas extensionwith impermeable pavement,however,with permeable pavement what significantlyinfluencing disturbance areas extension are initial humidity and groundwater level;it is verysignificant that initial humidity and groundwater level influence groundwater intrusiondisturbance extension;a prediction model of humidity characteristic value was establishedusing BP neural network,based on witch a determination method to the most unfavorabledistribution of sugrade humidity field in a given condition,considering rainfall returnperiod,was proposed in the light of high grade highway in western arid and semi aridregions.
引文
[1] Jeong.Ho.Oh, E.G.Fernando, Woojin.Lee. Consideration of Moisture Effect on Load Bearing Capacityin Texas Flexible Pavements[J]. KSCE Journal of Civil Engineering,2009,14(4):493-501.
    [2]李同祥.基于土力学剪应力理论的沥青路面开裂分析[J].公路交通科技,2005,22(7):14-18.
    [3] Robert.Charlier, Pierre.Hornych, Mate.Sr enetal. Water Influence on Bearing Capacity and PavementPerformance: Field Observations [J]. Geotechnical, Geological and Earthquake Engineering,2009:175-192.
    [4]交通部.《公路沥青路面设计规范》(JTG D50-2006)[S].北京:人民交通出版社,2006.
    [5]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001.
    [6] X.B.Tu,A.K.L.Kwong, F.C.Dai,et al. Field Monitoring of Rainfall Infiltration in a Loess Slope andAnalysis of Failure Mechanism of Rainfall-induced Landslides[J]. Engineering Geology,2009,105(1):134-150.
    [7] Lu.N, Likos.W.J. Rate of Capillary Rise in Soil[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2004,130(6):646-650.
    [8]杨明,余飞.膨胀土路基毛细水上升规律及处置技术[J].中国公路学报,2009,22(3):26-30.
    [9]卢靖.非饱和黄土水分迁移问题的试验研究[D].西安:西安建筑科技大学,2006.
    [10] Khoury.Naji, Brooks.Robert, Zaman,et al. Variations of Resilient Modulus of Subgrade Soils withPost Compaction Moisture Contents[J]. Transportation Research Record,2010:72-81.
    [11]邓露,李向东.路基土的CBR强度与压实度关系的试验研究[J].华中科技大学学报(城市科学版),2005,22(增刊):109-115.
    [12]张丽娟,汪益敏,苏卫国,等.加固土的CBR试验研究[J].华南理工大学学报(自然科学版),2002,30(2):82-85.
    [13]景宏君.黄土路基积水入渗规律研究[J].公路交通科技,2004,21(4):40-42.
    [14]倪富健,屠伟新,黄卫.基于神经网络技术的路面性能预估模型[J].东南大学学报(自然科学版),2000,(5):91-95.
    [15]刘洁,魏连雨,杨春风.基于遗传-神经网络的交通量预测[J].长安大学学报(自然科学版),2003,23(1):68-70.
    [16] Jin.Myung.S, Lee.K.Wayne, Kovacs.William.D. Seasonal Variation of Resilient Modulus ofSubgrade Soils[J]. Journal of Transportation Engineering,1994,120(4):603-616.
    [17] Khogali.W. E. I., Anderson.K. O. Assessing Seasonal Variations in Cohesive Subgrade Soils[A].International Symposium on Subdrainage in Roadway Pavements and Subgrades [C]. Madrid:World RoadAssociation,1998:140-150.
    [18] Khogali.W. E. I., Anderson.K. O. Assessing Seasonal Variations in Cohesive Subgrade Soils[A].International Symposium on Subdrainage in Roadway Pavements and Subgrades [C]. Paris:WorldRoadAssociation,1998:140-150.
    [19] Wai.Y.Y.G, Jorge.A.C. Soil Suction and In-situ Resilient Modulus—A Study Devaloped at aFull-scale Pavement Test Facility in Southern Brazil[A]. International Symposium on Subdrainagein Roadway Pavement Sand Subgrades[C].Paris:World RoadAssociation,1998:165-173.
    [20] Wai.Y.Y.G, Jorge.A.C. A Study of The Influence of Suction on The Resilient Modulus of PavementSubgrade Soils[A]. International Symposium on Subdrainage in Roadway Pavements andSubgrades[C].Paris:World RoadAssociation,1998:265-275.
    [21] Ping.W.V. Effect of Moisture on Resilience Characteristics of Compacted Granular Subgrade[Z/CD].Washington,D.C:77thAnnual Meeting of Transportation Research Board,1998.
    [22]蒋宗岑,台电仓,赵永国.既有路基强度现场测试研究[J].公路,2008(7):83-87.
    [23]程培峰,侯恩创.哈尔滨市道路路基强度变化特性及预测[J].中外公路,2010(2):57-59.
    [24] Maher.A, Bennert.T, Gucunski.N, Papp.Jr.W.J. Resilient Modulus Properties of New JerseySubgrade Soils [J]. National Technical Information Service,2000:151.
    [25] Soheil.Nazarian, Deren.Yuan. Variation in Moduli of Base and Subgrade with Moisture[J].ASCE(American Society of Civil Engineers),2003:570-577.
    [26]谢华昌,吴海平,凌建明.湿度和吸力对处治土路基回弹模量的影响[J].中国公路学报,2010,16(增刊):21-23.
    [27] Naji.N.Khoury, Musharraf.M. Zaman. Correlation Between Resilient Modulus, Moisture Variationand Soil Suction for Subgrade Soils [J]. Transportation Research Record,2004:99-107.
    [28]陈开圣.压实黄土回弹模量试验研究[J].岩土力学,2010,31(3):748-752.
    [29]吴德华.陕西关中地区土基回弹模量研究[J].公路交通科技,2005,22(2):28-30.
    [30]叶燕呼,孙长新.广东省公路路基土强度及其分级研究[J].公路,2000(3):14-20.
    [31]朱志铎,郝建新,黄立平. CBR试验影响因素及在工程中应注意的几个问题[J].岩土力学,2006,27(9):1593-1595.
    [32]陈开圣.高液限红黏土CBR试验[J].公路,2010(2):148-151.
    [33]王雁然,曹定胜.改性膨胀土CBR值的试验研究[J].岩石力学与工程学报,2004,23(增1):4396-4399.
    [34]赵明华,刘小平,陈安.非饱和土路基毛细作用分析[J].公路交通科技,2007,24(8):26-30.
    [35]凌建明,经保,郑悦锋,等.基于地下水变位的路基顶面当量回弹模量预估[J].同济大学学报(自然科学版),2005,33(2):162-165.
    [36]黄义,张引科.非饱和土土-水特征曲线和结构强度理论[J].岩土力学,2002,23(3):268-277.
    [37]景宏君,张斌,熊承仁.黄土路基强度规律[J],交通运输工程学报,2004,4(2):14-18.
    [38]刘宝探,张家生.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学,2003,(52):195-198.
    [39]周建斌,魏金霞,李国强.交通动荷载模拟试验成果分析[J],公路与汽运,2005,(4):32-34.
    [40]赵俊明,刘松玉,石名磊,等.交通荷载作用下的低路堤动力特性试验研究[J].东南大学学报(自然科学版),2007,37(5):921-925.
    [41]黎冰,高玉峰,魏代现,等.车辆荷载的影响深度及其影响因素的研究[J],岩土力学,2005,26(增刊):310-313.
    [42] Chai.Jin-Chun, Miura.N. Traffic-load-induced Permanent Deformation of Road on Soft Subsoil[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(11):907-916.
    [43]梅英宝,朱向荣,吕凡任.交通荷载作用下道路与软土地基弹塑性变形分析[J].浙江大学学报(工学版),2005,39(7):997-1002.
    [44] Matsui.Tamotsu, Bahr.Mohamed, Abe.Nobuharu. Estimation of Shear Characteristics Degradationand Stress-strain Relationship of Saturated Clays After Cyclic loading[J]. Soils and Foundations,1992,32(1):161-172.
    [45] Yasuhara.K. Postcyclic Undrained Strength for Cohesive Soils[J]. Journal of GeotechnicalEngineering, ASCE,1994,120(11):1961-1979.
    [46] Ceratti, Jorge.Augusto. Seasonal Variations of A Subgrade Soil Resilient Modulus in SouthernBrazil[J]. Transportation Research Record,2004:165-173.
    [47] Li Cong, Ling Jianming, Guan Shengfei. Analysis on the Seasonal Effect of Subgrade ResilientModulus[R]. Wuhan:MechanicAutomation and Control Engineering (MACE),2010.
    [48] Andrew.James.W, Jackson.N.Mike, Drumm.Eric.C. Measurement of Seasonal Variations inSubgrade Properties[J]. Geotechnical Special Publication,1998:13-38.
    [49] Ksaibati. K., Armaghani.J, sher.J. Effect of Moisture on Modulus Values of Base and SubgradeMaterials[J]. Transportation Research Record,2000:20-29.
    [50] Beresford. Obafemi, nold. Davies. A Model for the Prediction of Subgrade Soil Resilient Modulusfor Flexible-Pavement Design: Influence of Moisture Content and Climate Change[M]. Toledo:TheUniversity of Toledo Civil Engineering,2004.
    [51]陆鼎中.路基路面工程(第二版)[M].上海:同济大学出版社,2008,2.
    [52]郝建新,朱志铎,虞娟,等.加州承载比试验作用机理和影响因素研究[J].工程勘察,2005(5):7-8.
    [53]龙海翔,兰伟.细粒土CBR值影响因素试验分析[J].中外公路,2009,29(3):235-238.
    [54]杨广庆.承载比(CBR)试验技术分析[J].铁道建筑,2004(6):51-52.
    [55]杨洋,姚海林,卢正.蒸发条件下路基对气候变化的响应模型及影响因素分析[J].岩土力学,2009,30(5):1209-1214.
    [56]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1998.
    [57]谭新,陈善雄,杨明.降雨条件下土坡饱和-非饱和渗流分析[J].岩土力学,2003,24(3):381-384.
    [58] LIU.M.C, PARLANGE.J.Y, SIVAPALAN M, et al. A Note on the Time CompressionApproximation[J]. Water Resour Res,1998,34(12):3683-3686.
    [59] Hopmans J.W., Schukking H., Torfs P.J.J.F. Two-dimensional Steady Unsaturated Water Flow inHeterogeneous Soils with Autocorelated Soil Hydraulic Properties[J].Water Resour.Res,1998,24(12):2005-2017.
    [60] Jarvis N.J., Jansson P-E., Dik P.E., etc. Modelling Water and Solute Transport in MacroporousSoil.I.Model Description and SensitivityAnalysis[J].J.Soil Sci,1991,42:1365-2389.
    [61] Jordi.Grifoll, Josep.Ma.Gasto, Yoram.Cohen. Non-isothermal Soil Water Transport andEvaporation[J].Advances in Water Res,2005,28:1254-1266.
    [62] Rigby.J.R, Porporato.A. Simpligied Stochastic Soil-moisture Models: a Look at Infiltration[J].Hydrol Earth Syst Sci,2006,10(12):1339-1367.
    [63] S.Assouline. A model for Soil Relative Hydraulic Conductivity Based on the WaterretentionCharacteristic Curve[J]. Water Reources Research,2001,37(2):265-271.
    [64] T.Vogela, H.H.Gerkeb, R.Zhangc, et al. Modeling Flow and Transport in a Two-dimensionalDual-permeability System with Spatially Variable Hydraulic Properties[J]. Journal of Hydrology,2000,238:78-89.
    [65] Mohanty.B.P, Bowman.R.S, Hendrickx, et al. New Piecewise-continuous Hydraulic Functions forModeling Preferential Flow in an Intermittent Flood-irrigated Field[J]. Water Resour.Res,1997,33(9):2049-2063.
    [66] Liu.H.H, Doughty C, Bodvarsson G.S. An Active Fracture Model for Unsaturated Flow andTransport in Tractured Rocks[C]. Washington, DC:Water Resour.Res,1998,34(10).
    [67] LUMB.P.B. Slope Failures in Hong Kong Q J[J]. Engineering Geologist,1975,8(2):31-65.
    [68] Rubin, J. Theoretical Analysis of Two-Dimensional Transient Flow of Water in Unsaturated andPartly Unsaturated Soils[C]. Madison, WI:Proc. SoilSci. Soc. Amer,1998,32(2).
    [69] Dekker.L, Ritsema.C. How Water Moves in a Water Repellent Sandy Soil:1. Potential and ActualWater Repellency[J]. Water Resour. Res,1994,30:2507-2517.
    [70]赤井浩一,大西有三,西垣诚.有限要素法饱和-不饱和的浸透流解析[R].土木学会论文报告集,1977.
    [71] JOHNSON. K. A and SITAR. N. Hydrologic Coniditions Leading to Debris-flow Initiation[J]. Can.Geotech. J,1990(6):789-801.
    [72]黄俊,苏向明,汪炜平.土坝饱和-非饱和渗流数值分析方法研究[J].岩土工程学报,1990,12(5):30-39.
    [73] T.T.Lim, H.Rahardjo, M.F.Chang. Effect of Rainfall on Matric Suctions in a Residual Soil Slope[J].Can.Geotech.J,1996,33:618-628.
    [74] Sammori T, Tsuboyama Y. Parametric Study on Slope Stability with Numerical Simulation InConsideration of Seepage Process[C]. Christchurch:Proc.6th,Int. Symp. on Landslide. A. A.Balkema,1991:539-544.
    [75] PRADEL.D, RAAD.G. Effect of Permeability on Surficial Stability of HomogeneousSlopes[J].Journal of Geotechnical Engineering, ASCE,1993,119(2):315-332.
    [76] Fredlund.D.G, Rahardjo.H. Soil Mechanics for Unsaturated Soils[M]. New York:john Wiley&Sons,Inc,1993.
    [77] Shimada.K, Fujii.H, Nishimura.S, et al. Stability of Unsaturated Soloes Considering Changes ofMatric Suction[J]. Unsaturated Soils,1995:293.
    [78]陈守义,考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学,1997,18(2):8-12.
    [79]戴经梁,伍石生,盛安连.压实黄土路基积水入渗规律研究[J].西安公路交通大学学报,1998,18(3):15-18.
    [80] Foutie.A.B, Rowe.D, Blight.G E. The Effect of Infiltration on the Stability of the Slopes of a DryAsh Dump[J]. Getechmique,1999,49(1):1-13.
    [81]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999(1):2-15.
    [82]朱伟,山村和野.雨水、洪水渗透时河堤的稳定性[J].岩土工程学报,1999(21):414-419.
    [83]吴梦喜,高莲士.饱和-非饱和非稳定渗流数值分析[J].水利学报,1999,44(12):38-42.
    [84] K D. Hall, S. Rao. Predicting Subgrade Miosture Content for Low-volume Pavement Design Usingin Situ Moisture Content Data[A]. Seventh International Conference on Low-Volume Roads [C].Washington, DC: Transportation Research Board,1999.
    [85]李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001(5):57-61.
    [86]陈善雄.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学,2001(5):447-450.
    [87]朱军,刘光廷,陆述远.饱和非饱和三维多孔介质非稳定渗流分析[J].武汉大学学报(工学版),2001,34(3):5-8.
    [88]朱文彬,刘宝琛.公路边坡降雨引起的渗流分析[J].长沙铁道学院学报,2002(2):104-108.
    [89]邓卫东,唐颂,黄华华.路堤边坡雨水渗流的模型试验研究[J].公路交通技术,2003(5):4-6.
    [90]张培文,刘德富,郑宏,等.降雨条件下坡面径流和入渗耦合的数值模拟[J].岩土力学,2004,25(1):109-113.
    [91]刘巍然.压实黄土路基中含水量的分布及水分迁移规律研究[D].西安:长安大学,2004.
    [92] Kim.J, Jeong.S, Park.S, et al. Influence of Rainfall-induced Wetting on the Stability of Slopes inWeathered Soils[J].Engineering Geology,2004,75(4):251-262.
    [93]潘宗俊,杨晓华,刘巍然,等.压实黄土路基导水参数的试验研究[J].公路交通科技,2005,22(7):52-54.
    [94]赵江.路基路面在降雨条件下渗流分析及边坡稳定性研究[D].昆明:昆明理工大学,2005.
    [95]杨果林,刘义虎.膨胀土路基含水量在不同气候条件下的变化规律模型试验研究[J]岩石力学与工程学报,2005,24(24):4524-4533.
    [96]魏云杰,许模,裴向军.基于渗流模型的路基排水设计计算方法初探[J].岩土力学,2006,27(7):1191-1194.
    [97]王铁行,岳彩坤,鲁洁,等.连续降雨条件下黄土路基水分场数值分析[J].西安建筑科技大学学报,2007,39(5):593-597.
    [98]吴延春.路基的渗流力学特性及其工程应用[D].湖北武汉:华中科技大学,2007.
    [99]谢华昌,凌建明.路基土湿度动态变化的测试方法[J].公路交通科技,2007,24(8):32-35.
    [100] Thang.Huu. Phan, Matthew.D.Cushman, David.J. White. Seasonal Variation in the Subgrade andBase Layeers of U.S. Highway20, Iowa [A]. Proceedings of the2007Mid-ContinentTransportation Research Symposium[C]. Iowa:Iowa Department of Transportation,2007.
    [101]王晓峰,刘光焰,王涛.非饱和土体降雨入渗的全过程数值模拟[J].水文,2007,27(1):30-32.
    [102]刘小平,赵明华.降雨对非饱和土路基含水量的影响分析[J].湖南大学学报,2008,35(8):9-13.
    [103]刘海松,倪万魁,杨泓全,等.黄土路基降雨入渗现场试验[J].地球科学与环境学报,2008,30(1):60-63.
    [104]赵明华,刘小平,何伟,等.非饱和土路基降雨渗流分析[J].公路交通科技,2009,26(3):49-53.
    [105]田东方,刘德富,周明涛.边坡降雨入渗与坡面径流影响因素敏感性分析[J].水力发电,2010,36(4):11-13.
    [106]商拥辉,董晴.基于我国南方连续降雨对软土路基影响的研究[J].北方交通,2010(8):3-5.
    [107]李侠.降雨渗流作用对路基含水量影响分析[J].公路与汽运,2010(4):114-116.
    [108]阙云,杨龙清,胡昌斌,等.多雨地区路基湿度季节变化特征的现场监测[J].公路,2010(12):83-90.
    [109]刘永贵,王有昌,廖春芳.降雨引起半填半挖路基水分场与差异沉降变化的数值模拟[J].中外公路,2010,30(4):57-61.
    [110]王协群,谢妮,邹维列,等.降雨条件下不同土质非饱和路基边坡响应特性[J].武汉理工大学学报,2010,32(8):107-110.
    [111]王桂尧,李斌,付宏渊.非饱和路基土水分运移的室内试验研究[J].岩土力学,2010,31(1):61-65.
    [112] Ramura S. Capabilities of a Four-layered Feed forward NN, Four Layer Versus Three Layer[C].NewYork:IEEE Trans NN,1997,8.
    [113] Roy.S, Shynk.John.J,Analysis of the Momentum LMSAlglorithm[J]. IEEE ISCAS, USA1990,5:2088-2098.
    [114] R. A.Jacobs. Increased Rates of Convergence Through Learning Rate Adaptation[J]. NeuralNetworks,1988,1(4).
    [115] Xiao hu, Guo an-chen. Efficient Back-propagation Learning Using Optimal Learning Rate andMomentum[J]. Neural Networks,1997,10(3):385-388.
    [116] W.L. Buntine, A.S. Weiqend. Computing Second Derivatives in Feed-forward Networks: AReview[J]. IEEE Trans. On Neural Networks,1994,5(4):480-488.
    [117]刘铁男,段玉波,陈广义,等.多层前向神经网络的新型二阶学习算法[J].控制理论与应用,2000,17(5):721-724.
    [118] N.B.KarayianniS, A.N.Venetsanopoulos. Artificial Neural Networks, Learning Algorithms,Pefformance Evaluation andAppcations[M]. NewYork: Kluwcr Academic Publishers,1993.
    [119]刘镇清.人工神经网络BP算法的改进及其在无损检测中的应用[J].测控技术,2001,20(3):56-58.
    [120]李晓峰,刘光中.人工神经网络BP算法的改进及其应用[J].四川大学学报,2000,32(2):105-109.
    [121]汪澜,刘万军,马国利.一种改进的BP人工神经网络模型[J].辽宁工程技术大学学报,2004,23(增刊):14-16.
    [122] S.Chang, K.A.S.Abdel-Ghattar. A Universal Neural Net Withguaranteed Convergence to ZeroSystem Error[J]. IEEE Trans. on Signal Processing,1992,40(12).
    [123] S.E.Fahlman, C.Lebiere. The Cascade-correlation Learning Architecture Advances[J]. Neurallnformation Process System,1990.
    [124] J.Sietsma, R.J.F.Dow. Creating Artificial Neural Networks that Generalize[J]. Neural Networks,1991,4(1):67-79.
    [125] J.Murata. AStructure Designing Method for Feedforward and Recurrent Neural Network: Based ina Net Significance Measure[C]. London: Iin Proc. of4m IEE Int. Conf. onANN,1995:358-363.
    [126] D.C.Psichogios, L.H.Ungar. SVD-NET: an Algorithm that Automatically Select NetworkStructure[J]. IEEE Trans. on Neural Networks,1994,5(3):513-516.
    [127]麻红昭,杨宇岭.改进B-P网性能的研究[J].电子计算机外部设备,1995,19(2):29-33.
    [128] S.C.Nq, Leunq.S.H, Luk.A. Fast Convergent Generalized Back-propagation Algorithm withConstsnt Learning[J]. Neural Processing Letter,1999,9:12-23.
    [129] Fritz.Stager. Three Methods to Speed to the Training of Feedforward and FeedbackPerceptrons[J]. Neural Networks,1997,10(8):1435-1443.
    [130]王科俊,王克成.神经网络建模、预报与控制[M].哈尔滨:哈尔滨工程大学出版社.1996.
    [131]胡耀垓,李伟,胡继明.一种改进激活函数的人工神经网络及其应用[J]武汉大学学报(信息科学版),2007,29(10):916-919.
    [132]赵进勇.滑坡问题的数值分析、神经网络预测及智能整治研究[D].南京:河海大学,2001.
    [133]季天剑,黄晓明,刘清泉,等.道路表面水膜厚度预测模型[J].交通运输工程学报,2004,4(3):1-3.
    [134]樊琨,杨涛,李国维.公路软基沉降函数干涉神经网络预测模型[J].岩土力学,2004,25(2):301-307.
    [135]张纯根,汪静,余宏明,等.高速公路软土路基沉降量的人工神经网络预测[J].地质科技情报,2005,24(增刊):115-117.
    [136]陈亭.综合神经网络法及双曲线拟合法预测软基沉降[J].路基工程,2008(5):151-153.
    [137]王银华.区域公路网规模发展的预测与优化方法研究[D].北京:北京交通大学,2008.
    [138]唐秀波.人工神经网络在边坡稳定性预测中的运用[J].公路与汽运,2009(4):145-147.
    [139]卞凤兰,黄晓明,刘睿.城镇化进程中公路网用地的BP神经网络预测模型[J].东南大学学报(自然科学版),2010,40(5):1073-1076.
    [140]张德刚,翟娟.基于BP人工神经网络的公路软土地基沉降预测[J].交通科技,2010(3):75-77.
    [141]曾晖,胡俊,鲍俊安.基于BP人工神经网络的基坑围护结构变形预测方法研究[J].铁道建筑,2011(1):70-73.
    [142]杨平,刘玉洁,聂忠权.不同气候带公路护坡植被研究[J].公路交通科技(应用技术版),2011,2:196-198.
    [143]陈冬冬,戴永久.近五十年我国西北地区降水强度变化特征[J].大气科学,2009,33(5):923-935.
    [144]王丽娟.西部公路路面结构研究[D].西安:长安大学,2005.
    [145]李志清,李涛,胡瑞林.非饱和土水分特征曲线特性[J].中国公路学报,2007,20(3):23-28.
    [146]中华人民共和国交通部.公路路基设计规范[S].人民交通出版社,2004.
    [147] L.Allen Cooley, Jr., E.Ray Brown, Saeed Maghsoodloo.Development Of Critical FieldPermeability And Pavement Density Values For Coarse-Graded SuperpavePavements[R].Auburn:NCAT Report No,2001.3.
    [148] Thomas Joseph Waters. AStudy of Water Infiltration Through Asphalt Road Surface Materials[C].Madrid: International Symposium on Subdrainage in Roadway Pavements and Subgrades.Espana,1998.
    [149]姚祖康.公路排水设计手册[M].北京:人民交通出版社,2002.1.
    [150]郑木莲,王崇涛,陈拴发,等.路面内部排水系统研究[J].西安建筑科技大学学报(自然科学版),2007,39(4):529-536.
    [151]李广信.高等土力学[M].北京:清华大学,2005.
    [152]苑莲菊,李振栓,武胜忠,等.工程渗流力学及应用[M].北京:中国建筑工业出版社,2001.
    [153]王彦,降雨入渗对边坡稳定的影响[D].南京:河海大学,2001.
    [154]邵明安,王全九.推求土壤水分运动参数的简单入渗法II.实验验证[J].土壤学报,2000,37(2):217-224.
    [155]柳志军,卞正富,刘春荣,等.聚酯纤维对水泥碎石干缩开裂影响的试验研究[J].中国矿业大学学报,2009,38(2):155-158.
    [156]柳志军,吕成.聚酯纤维对水泥碎石抗裂性能影响的试验研究[J].建筑技术,2009,40(5):449-451.
    [157]汪荣鑫.数理统计[M].西安:西安交通大学出版社,2002.
    [158]苗英豪,王秉刚.中国公路气候区划方案[J].北京工业大学学报,2007,39(4):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700