生物油重整合成气的制备及其用于生物燃料合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种资源丰富、环境友好的可再生能源,通过热化学的方法可以将生物质转化为高品位的液体燃料或者高附加值的化学品。生物质也可以通过气化或者生物油重整的方法制备合成气,这些合成气不但可以直接用作燃料,亦可以作为化工合成的初级原料。尽管生物质能的开发和利用受到了越来越多的关注,但是目前就如何有效地利用生物质能还存在很多问题,例如能量利用效率的提高等。本论文所研究的工作主要围绕以下几个方面展开:
     1.生物油水蒸汽重整制富氢合成气的研究
     制备了用于生物油水蒸汽重整制备合成气的碳纳米纤维负载的镍催化剂(Ni/CNFs),研究了重整温度以及S/C比对生物油的转化率,氢气的产率,合成气的组分的影响。结果表明:重整温度以及S/C都能有效地促进生物油的转化。在本文研究的范围内(重整温度:350-550℃,S/C:2-7),生物油最大转化率和氢气最大产率分别为94.7%和92.1%。合成气中,氢气的体积百分比约为69%,二氧化碳的体积百分比约为26%,并伴随少量的一氧化碳及其微量的甲烷生成。
     2.生物质炭用于生物油重整合成气组分调整的研究
     研究了利用生物质碳催化调整生物油重整合成气组分的过程。目的是利用生物质炭与生物油重整合成气中的二氧化碳反应以实现降低合成气中二氧化碳含量和增加一氧化碳含量,使得调整后的合成气中各组分含量达到适合传统甲醇合成的要求。考察了催化剂用量,调整温度以及进气流速对调整效果的影响。以二氧化碳转化率,一氧化碳产率和调整后合成气中C02/CO体积比以及各组分体积含量用来评价调整效果。实验结果表明,在普通催化调整下,温度为800℃时,二氧化碳转化率达到了71.1%,一氧化碳产率为0.88,C02/CO从调整之前的6.33降到0.28,调整后的合成气组分也达到合成甲醇的基本要求。为了进一步弄清调整的过程,本文还利用模拟气研究了调整过程的基元反应步骤,探讨了调整过程二氧化碳转化和一氧化碳生成的两个主要反应通道,即C02+C→CO和C02+H2→CO+H20.本文还研究了活性炭,稻壳生物质炭和锯木屑生物质炭用于富二氧化碳合成气的调整过程,证明了生物质炭中的固定碳部分和活性炭一样可以用于富二氧化碳合成气的调整,并且不受生物质炭种类的影响。另外本文还探讨了电流促进的催化调整过程,结果表明在电流存在的条件下可以高效地促进调整效果,在电流为4A,调整为600℃时,二氧化碳转化率达到了约82%,C02/CO下降到约为0.11:而当温度进一步上升到800℃时,二氧化碳几乎完全转化。
     3.调整前后生物油重整合成气用于合成甲醇和二甲醚
     本文为了体现合成气调整效果对液体燃料合成的影响,将模拟的调整前后生物油重整合成气用于合成甲醇和二甲醚。实验结果表明:在甲醇合成中,利用调整前合成气为原料时,最高碳转化率和甲醇时空产率分别为12%和每千克催化剂每小时0.44千克甲醇:经过调整后,碳转化率最高达24%,最高甲醇的时空产率为每千克催化剂每小时1.32千克甲醇。在二甲醚合成中,最高碳转化率从调整前的15.1%增加到调整后的84.8%,最高二甲醚产率从调整前的12.7%提高到60.1%。这种利用生物质炭的调整方法为从生物质制取甲醇等液体燃料提供了一个潜在的有效途径。
Biomass is a rich, environmentally friendly and renewable resource which can be converted to high-quality liquid fuels or high value-added chemicals using thermochemical means. Bio-syngas can also be produced from biomass gasification and bio-oil reforming. The development and application of biomass renewable energy is receiving great attention. However, there are still some problems for the utilization of biomass energy, especially, how to increase the efficiency to make biomass energy become the complement of petroleum. The main points of present work were focused on the items as follows:
     1. Studies on hydrogen-rich bio-syngas production from bio-oil steam reforming.
     A carbon nanofibers supported Ni catalyst was prepared for hydrogen production from bio-oil steam reforming. The effects of reforming temperature and S/C on bio-oil conversion, hydrogen yield and gas compositions were investigated. Results show that the increasing temperature and S/C can significantly promoted the bio-oil conversion. During our investigated range (the temperature ranges from350℃to550℃, and the S/C ranges from2to7), the maximum bio-oil conversion and hydrogen yield reached about94.7%and92.1%respectively. The main contents in the syngas were hydrogen and carbon dioxide, reaching about a volume fraction of69%and26%. Besides, a small amount of carbon monoxide and a trace of methane were detected in the bio-syngas.
     2. Studies on the process of bio-syngas conditioning using biomass char
     The present work proposed a new method of CO2-rich bio-syngas conditioning by using biomass char. The work aims to decrease the content of CO2and increase the content of CO in the conditioned syngas for producing liquid fuels through the reaction of biomass char and the excess CO2in the unconditioned syngas. The effects of catalyst/char (the mass ratio of catalyst and char), temperature and gas flow were investigated in the process of CO2-rich bio-syngas conditioning. The CO2conversion, CO yield, CO2/CO ratio and the gas compositions of the conditioned syngas were employed for evaluating the performance of conditioning. Results show that CO2conversion and CO yield reached about71.1%and0.88respectively at800℃, the CO2/CO ratio decreased from6.33to0.28, and the gas compositions of the conditioned syngas were suitable for conventional liquid fuels synthesis from syngas. To make clear the process of conditioning, the present work was also studied the two main paths (i.e. CO2+C=CO and CO2+H2=CO+H2O) by using model gases of CO2and CO2/H2. Furthermore, the activated carbon (AR), husk char and sawdust char were used for the conditioning of CO2-rich syngas, indicating that biomass char as well as activated carbon can be used for the conditioning. In addition, the results show the current can greatly improve the performance of conditioning in terms of CO2conversion and CO yield. At4A and600℃, the CO2conversion reaches about82%, the CO2/CO ratio drops to about0.11, when further increased the temperature to600℃, CO2was almost completely converted.
     3. Methanol and dimethyl ether synthesis from the unconditioned and conditioned bio-syngas
     To certify the effects of the present conditioning, two model syngases corresponding to the unconditioned and the conditioned bio-syngas were used for methanol and dimethyl ether (DME) synthesis. Results show that, for methanol synthesis from the unconditioned bio-syngas during our investigated ranges, the maximum carbon conversion and space time yield of methanol are12%and0.44kg/(kgcatalyst h), and increase to23.9%and1.32kg/(kgcatalyst h) after conditioning. Similarly, for DME synthesis from the unconditioned syngas, the maximum carbon conversion and DME yield were15.1%and12.7%, which increased to84.8%and60.1%respectively from the conditioned syngas.
引文
[1]阚涛.2009.自制串联流化床系统中生物质制氢及双固定床中粗生物油制氢的基础研究[D]:[博士].合肥:中国科学技术大学,1-115.
    [2]蔡仲秋,朱海龙.2003.谈一次能源消费结构变化对煤炭工业的影响[J].煤炭经济研究,6:14-15.
    [3]世界能源理事会,阎季惠译,新的可再生能源未来发展指南[M].北京:海洋出版社,1998,314.
    [4]庞名立.2011.2010年世界各国一次能源消费结构[J].中外能源,16(S1):94-95.
    [5]D.A.Tillman, D.E.Prinzing.1995. Fundamental bio-fuel characteristics impacting coal-biomass cofiring. EPRI Technical Report (TR-104982),2-19.
    [6]N.L.Panwar, S.C.Kaushik, S.Kothari.2011. Role of renewable energy sources in environmental protection:A review. Renewable and Sustainable Energy Reviews,15: 1513-1524.
    [7]Ramage, J., Scurlock, J.1996. Renewable energy power for a sustainable future. 2nd ed. London: Godfrey Boyle-Oxford University Press,1-452.
    [8]刘荣厚.2007.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报,38(1):3-7.
    [9]V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, et al.2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews,13:179-186.
    [10]Robert H. Williams, Eric D. Larson, Guangjian Liu, et al.2009. Fischer-Tropsch Fuels from Coal and Biomass:Strategic Advantages of Once-Through ("Polygeneration") Configurations. Energy Procedia,1:4379-4386.
    [11]阴秀丽,吴创之,徐冰燕,等.2000.生物质气化对减少C02排放的作用[J].太阳能学报,21(1):40-44.
    [12]雷学军,罗梅健.2010.生物质能转化技术及资源综合开发利用研究[J].中国能源,1:22-28.
    [13]蒋剑春.2002.生物质能源应用研究现状与发展前景[J].林产化学与工业,22:75-80
    [14]郭艳.2001.生物质快速裂解液化技术的研究进展[J].技术进展,8:13-17.
    [15]Peter McKendry.2002. Energy production from biomass (part 1):overview of biomass. Bioresource Technology,83:37-46.
    [16]Peter McKendry.2002. Energy production from biomass (part 3):gasification technologies. Bioresource Technology,83:55-63.
    [17]Peter McKendry.2002. Energyproduction from biomass (part 2):conversion technologies. Bioresource Technology,83:47-54.
    [18]M. P. Pandey, C. S. Kim.2011. Lignin Depolymerization and Conversion:A Review of Thermochemical Methods. Chemical Engineering & Technology,34:29-41.
    [19]Kristina Goransson, Ulf Soderlind, Jie He, et al.2011. Review of syngas production via biomass DFBGs. Renewable and Sustainable Energy Reviews,15 482-492.
    [20]龚欣,郭晓镭,代正华等.2005.气流床粉煤加压气化制备合成气新技术[J].煤化工,33(6):5-8.
    [21]李文怀,马玉刚,张侃等.2003.煤基合成气合成低碳醇进展[J].煤化工31(5):12-15.
    [22]张东亮.1996.干法进料加压粉煤气化制合成气[J].煤化工,4:24-30.
    [23]肖雄兵.2004.从天然气制备合成气[J].化工设计通讯,30(1):14-16.
    [24]黄海燕,沈志虹.2000.天然气转化制合成气的研究[J].石油与天然气化工,29(6):276-279.
    [25]S.S. Bharadwaj, L.D. Schmidt.1995. Catalytic partial oxidation of natural gas to syngas. Fuel Processing Technology,42(2-3):109-127.
    [26]M. E. S. Hegarty, A. M. O'Connor, J. R. H. Ross.1998. Syngas production from natural gas using ZrO2-supported metals. Catalysis Today,42(3):225-232.
    [27]Yildiz Kalinci, Arif Hepbasli, Ibrahim Dincer.2009. Biomass-based hydrogen production:A review and analysis. International Journal of Hydrogen Energy,34 8799-8817.
    [28]Ajay Kumar, David D. Jones, Milford A. Hanna.2009. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies,2 556-581.
    [29]陈桂芳,马春元,陈守燕等.2010.超临界水气化生物质技术研究进展[J].化工进展,29:45-50.
    [30]S. Czernik, R. French, C. Feik, et al.2002. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermo conversion processes. Industrial & Engineering Chemistry Research,41:4209-4215.
    [31]X. F. Zhu, J. L. Zheng, Q. X. Guo, et al.2006. Pyrolysis of rice husk and sawdust for liquid fuel. Journal of Environment Sciences-China,18(2):392-396.
    [32]G. Chen, J. Andries, H. Spliethoff.2003. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Conversion and Management.44:2289-2296.
    [33]C. Rioche, S. Kulkarni, F.C. Meunier, et al.2005. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B:Environmental,61:130-139.
    [34]J. L. Zheng, X. F. Zhu, Q. X. Guo, et al.2006. Thermal conversion of rice husks and sawdust to liquid fuel. Waste Management,26:1430-1435.
    [35]L.X. Yuan, Y. Q. Chen, C. F. Song, et al.2008. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil. Chemical Communication,5215-5217.
    [36]Z. X. Wang, T. Dong, L. X. Yuan, et al.2007. Characteristics of bio-oil-syngas and its utilization in Fischer-Tropsch synthesis. Energy Fuels,21:2421-2432.
    [37]P. N. Kechagiopoulos, S. S. Voutetakis, A. A. Lemonidou, et al.2006. Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor. Energy Fuels,20:2155-2163.
    [38]P. N. Kechagiopoulos, S. S. Voutetakis, A. A. Lemonidou, et al.2009. Hydrogen Production via Reforming of the Aqueous Phase of Bio-Oil over Ni/Olivine Catalysts in a Spouted Bed Reactor. Industrial & Engineering Chemistry Research,48:1400-1408.
    [39]Z. X. Wang, Y. Pan, T. Dong, et al.2007. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O" based catalysts Applied Catalysis A: Genenal.320:24-34.
    [40]A. A. Iordanidisa, P. N. Kechagiopoulos, S. S. Voutetakisa, et al.2006. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells:Concept analysis and process simulation. International Journal of Hydrogen Energy,31:1058-1065.
    [41]A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios.2002. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75:145-155.
    [42]A. C. Basagiannis, X. E. Verykios.2007. Catalytic steam reforming of acetic acid for hydrogen production. International Journal of Hydrogen Energy,32:3343-3355.
    [43]E. C. Vagia, A. A. Lemonidou.2007. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy,32:212-223.
    [44]E. C. Vagia, A. A. Lemonidou.2008. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy,33:2489-2500.
    [45]A. Iulianelli, T. Longo, A. Basile.2008. CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd-Ag membrane reactor:The effect of co-current and counter-current mode. International Journal of Hydrogen Energy,33 4091-4096.
    [46]P. N. Kechagiopoulos, S. S. Voutetakis, A. A. Lemonidou, et al.2007. Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor. Catalysis Today,127:246-255.
    [47]T. Dong, Z. X. Wang, L. X. Yuan, et al.2007. Hydrogen Production by Steam Reforming of Ethanol on Potassium-Doped 12CaO · 7Al2O3 Catalyst. International Journal of Hydrogen Energy,119:29-39.
    [48]C. Resini, L. Arrighi, M. C. H. Delgado, et al.2006. Production of hydrogen by steam reforming of C3 organics over Pd-Cu/y-Al2O3 catalyst. International Journal of Hydrogen Energy,31:13-19.
    [49]S. Adhikari, S. Fernando, S. R. Gwaltney, et al.2007. A thermodynamic analysis of hydrogen production by steam reforming of glycerol. International Journal of Hydrogen Energy,32:2875-2880.
    [50]M. Ni, D. Y. C. Leung, M. K. H. Leung.2007. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy,32:3238-3247.
    [51]Y. Q. Chen, L. X. Yuan, T. Q. Ye, et al.2009. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. International Journal of Hydrogen Energy,34:1760-1770.
    [52]T. Davidian, N. Guilhaume, E. Iojoiu, et al.2007. Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Applied Catalysis B: Environmental.73:116-127.
    [53]F. Y. Gong. T. Q. Ye, L. X. Yuan, et al.2009. Direct reduction of iron oxides based on steam reforming of bio-oil:a highly efficient approach for production of DRI from bio-oil and iron ores. Green Chemistry,11:2001-2012.
    [54]T. Hou, L. X. Yuan, T. Q. Ye, et al.2009. Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. International Journal of Hydrogen Energy,34:9095-9107.
    [55]T. Kan, J. X. Xiong, X. L. Li, et al.2010. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming. International Journal of Hydrogen Energy, 35:518-532.
    [56]T. Q. Ye, L. X. Yuan, Y. Q. Chen, et al.2009. High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn-Al2O3 Catalyst. Catalysis Letter,127:323-333.
    [57]S. B. Qiu, L. Gong, L. Liu, et al.2011. Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst. Chinese Journal of Chemical Physics,24(2):211-217.
    [58]孙晓轩.2007.生物质气化合成甲醇二甲醚技术现状及展望[J].中外能源,12:29-36.
    [59]阴秀丽等.2004.生物质气化制甲醇的关键技术和可行性分析[J].煤炭转化,27(3):17-22.
    [60]仇松柏.2010.利用生物质基合成气制备清洁生物燃料的研究[D]:[博士].合肥:中国科学技术大学,1-113.
    [61]王铁军,常杰,祝京旭.2003.生物质一步法合成燃料二甲醚的技术[J].化工进展,22:1156-1159.
    [62]Matthew M. Yung, Whitney S. Jablonski, Kimberly A. Magrini-Bair.2009. Review of Catalytic Conditioning of Biomass-Derived Syngas. Energy Fuels,23: 1874-1887.
    [63]Miguel A. Caballero, Maria P. Aznar, Javier Gil, et al.1997. Commercial Steam Reforming Catalysts To Improve Biomass Gasification with Steam-Oxygen Mixtures. 1. Hot Gas Upgrading by the Catalytic Reactor. Industrial & Engineering Chemistry Research,36(12):5227-5239.
    [64]Keiichi Tomishige, Tomohisa Miyazawa, Mohammad Asadullah, et al.2003. Catalyst performance in reforming of tar derived from biomass over noble metal catalysts. Green Chemistry,5:399-403.
    [65]Andrey I. Tsyganok, Mieko Inaba, Tatsuo Tsunoda, et al.2003. Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts. Catalysis Communications,9(4):493-498.
    [66]J. Sun; X. P. Qiu, F. Wu, W. T. Zhu.2005. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy,30:437-445.
    [67]S. Seok, S. Choi, E. Park, et al.2002. Mn-Promoted Ni/Al2O3 Catalysts for Stable Carbon Dioxide Reforming of Methane. Journal of Catalysis,209:6-15.
    [68]Y. Mukainakano, B. Li, S. Kado, et al.2007. Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane. Applied Catalysis A: General,318:252-264.
    [69]J. J. Strohm, J. Zheng, C. S. Song.2006. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh-Ni catalysts for fuel cells. Journal of Catalysis,238(2):309-320.
    [70]H. Song, L. Z. Zhang, Rick B. Watson, et al.2007. Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today,129 (3-4):346-354.
    [71]B. C. Zhang, X. L. Tang, Y. Li, et al.2006. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catalysis Communications,7 (6):367-372.
    [72]T. Furusawa, A. Tsutsumi.2005. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Applied Catalysis A:General,278 (2):207-212.
    [73]T. Furusawa, A. Tsutsumi.2005. Development of cobalt catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Applied Catalysis A:General,278 (2):195-205.
    [74]Narcis Homs, Jordi Llorcal, Pilar Ramirez de la Piscina.2006. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts:The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts. Catalysis Today, 116 (3):361-366.
    [75]F. Aupretre, C. Descorme, D. Duprez.2002. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications,3 (6):263-267.
    [76]K. Matsuoka, T. Shimbori, K. Kuramoto, et al. Steam Reforming of Woody Biomass in a Fluidized Bed of Iron Oxide-Impregnated Porous Alumina. Energy Fuels,20 (6):2727-2731.
    [77]P. K. Cheekatamarla, A. M. Lane.2006. Efficient sulfur-tolerant bimetallic catalysts for hydrogen generation from diesel fuel. Journal of Power Sources,153 (1):157-164.
    [78]K. Polychronopoulou, J. L. G. Fierro, A. M. J. Efstathiou. The phenol steam reforming reaction over MgO-based supported Rh catalysts. Journal of Catalysis,228, (2):417-432.
    [79]M. Inaba, K. Murata, M. Saito, et al.2006. Hydrogen production by gasification of cellulose over Ni catalysts supported on zeolites. Energy Fuels,20:432-438.
    [80]M. Asadullah, T. Miyazawa, S. Ito, et al.2003. Catalyst performance of Rh/CeO2/SiO2 in the pyrogasification of biomass. Energy Fuels,17:842-849.
    [81]K. Tomishige, T. Miyazawa, T. Kimura, et al.2005. Novel catalyst with high resistance to sulfur for hot gas cleaning at low temperature by partial oxidation of tar derived from biomass. Catalysis Communications,6:37-40.
    [82]K. Tomishige, M. Asadullah, K. Kunimori.2004. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catalysis Today, 89:389-403.
    [83]M. Asadullah, T. Miyazawa, S. Ito, et al.2003. Catalyst development for the gasification of biomass in the dual-bed gasifier. Applied Catalysis A:General,255 (2): 169-180.
    [84]M. Asadullah, S. Ito, K. Kunimori, et al. Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis,208 (2):255-259.
    [85]L. S. Wang, K. Murata, M. Inaba.2004. Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen. Applied Catalysis A:General,257(1):43-47.
    [86]R. Zhang, Y. Wang, R. Ma, et al.2003. Characterization of alumina-supported Ni and Ni-Pd catalysts for partial oxidation and steam reforming of hydrocarbons. Applied Catalysis A: General,243(2):251-259.
    [87]S. Natesakhawat, R. Watson, X. Q. Wang, et al.2005. Deactivation characteristics of lanthanide-promoted sol-gel Ni/Al2O3 catalysts in propane steam reforming. Journal of Catalysis,234 (2):496-508.
    [88]N. V. Parizotto, K. O. Rocha, S. Damyanova, et al.2007. Alumina-supported Ni catalysts modified with silver for the steam reforming of methane:Effect of Ag on the control of coke formation. Applied Catalysis A: General,330:12-22.
    [89]T. Miyazawa, T. Kimura, J. Nishikawa, et al.2006. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catalysis today,115:254-262.
    [90]J. Liberatori, R. Ribeiro, D. Zanchet, et al.2007. Steam reforming of ethanol on supported nickel catalysts. Applied Catalysis A:General,327:197-204.
    [91]D. Moon, J. Ryu.2007. Partial oxidation reforming catalyst for fuel cell-powered vehicles applications. Catalysis letters,89:207-212.
    [92]M. Youn, J. Seo, P. Kim, et al.2006. Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al2O3 catalysts:Effect of second metal addition. Journal of Power Sources,162 (2):1270-1274.
    [93]S. Bona, P. Guillen, J. G. Alcalde, et al.2008. Chem. Eng. J. (Amsterdam, Neth.), 137:587.
    [94]Benito, M., Garcia, S., Ferreira-Aparicio, P., Garcia Serrano, L., Daza, L.2007. Development of biogas reforming Ni-La-Al catalysts for fuel cells. Journal of Power Sources,169:177-183.
    [95]Y. Chin, D. King, H. Roh, et al.2006. S. Structure and reactivity investigations on supported bimetallic AuNi catalysts used for hydrocarbon steam reforming. Journal of Catalysis,244:153-162.
    [96]R. L. Bain, D. C. Dayton, D. L. Carpenter, et al.2005. Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas. Industrial & Engineering Chemistry Research,44:7945 - 7956.
    [97]K. A. Magrini-Bair, S. Czernik, R. French, et al.2007. Fluidizable reforming catalyst development for conditioning biomass-derived syngas. Applied Catalysis A: General,318:199-206.
    [98]D. Li, I. Atake, T. Shishido, et al.2007. Self-regenerative activity of Ni/Mg(Al)O catalysts with trace Ru during daily start-up and shut-down operation of CH4 steam reforming. Journal of Catalysis,250:299-312.
    [99]Atsushi Ishihara, Eika W. H. Qian, Ida Nuryatin Finahari, et al.2005. Addition effect of ruthenium on nickel steam reforming catalysts. Fuel,84:1462-468.
    [100]K. Tomishige, M. Asadullah, K. Kunimori.2003. Novel catalysts for gasification of biomass with high conversion efficiency. Catalysis Surveys from Asia, 7:219-233.
    [101]B. Li, S. Kado, Y. Mukainakano, et al.2006. Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane. Journal of Catalysis, 245:144-155.
    [102]R. Q. Zhang, R. C. Brown, A. Suby, K. Cummer.2004. Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management,45:995-1014.
    [103]F. Scala, P. Salatino.2000. Fluidized Bed Combustion of a Biomass Char (Robinia pseudoacacia). Energy Fuels,14 (4):781-790.
    [104]K. Matsumoto, K. Takeno, T. Ichinose, T. Ogi, M. Nakanishi.2009. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900-1000 ℃. Fuel,88:519-527.
    [105]Y. Q. Huang, X. L. Yin, C. Z. Wu, C. W. Wang, J. J. Xie, Z. Q. Zhou, L. L. Ma, H. B. Li.2009. Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnology Advances,27:568-572.
    [106]Y. Okumura, T. Hanaoka, K. Sakanishi.2009. Effect of pyrolysis conditions on gasification reactivity of woody biomass-derived char. Proceedings of the Combustion Institute,32:2013-2020.
    [107]E. Cetin, B. Moghtaderi, R. Gupta, T. F. Wall.2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel,83: 2139-2150.
    [108]Z. A. El-Rub, E.A. Bramer, G. Brem.2008. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel,87:2243-2252.
    [109]D. M. Keown, X. J. Li, J. Hayashib, C. Z. Li.2008. Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Processing Technology,89:1429-1435.
    [110]K. Mitsuoka, S. Hayashi, H. Amano, K. Kayahara, E. Sasaoaka, M. A. Uddin. 2011. Gasification of woody biomass char with CO2:The catalytic effects of K and Ca species on char gasification reactivity. Fuel Processing Technology,92:26-31.
    [111]E. Kastanaki, D. Vamvuka.2006. A comparative reactivity and kinetic study on the combustion of coal-biomass char blends. Fuel,85 (9):1186-1193.
    [112]W. Klose, Mi. Wolki.2005. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam. Fuel,84 (7-8):885-892.
    [113]F. Yan, S. Y. Luo, Z. Q. Hu, B. Xiao, G Cheng.2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresource Technology,101:5633-5637.
    [114]D. M. Keown, J. I. Hayashi, C. Z. Li.2008. Drastic changes in biomass char structure and reactivity upon contact with steam. Fuel,87:1127-1132.
    [115]K. Raveendran, A. Ganesh.1998. Adsorption characteristics and pore-development of biomass-pyrolysis char. Fuel,77:769-781.
    [116]L. Dong, S. Q. Gao, W. L. Song, G. W. Xu.2007. Experimental study of NO reduction over biomass char. Fuel Processing Technology,88:707-715.
    [117]E. G. Garijo, A. D. Jensen, P. Glarborg.2003. Kinetic study of NO reduction over biomass char under dynamic conditions. Energy & fuels,17:1429-1436.
    [118]S. V. Pisupati, S. Bhalla.2008. Numerical modeling of NOx reduction using pyrolysis products from biomass-based materials. Biomass and Bioenergy,32:146 154.
    [1]Y. Xu, T. Q. Ye, S. Q. Qiu, et al.2011. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char:a useful approach for production of bio-methanol from bio-oil. Bioresource Technology,102:6239-6245.
    [2]Y. Xu, S. Z. Yan, T. Q. Ye, et al.2011. Dimethyl Ether Production from Biomass Char and CO2-Rich Bio-Syngas. Acta Phys.-Chim. Sin.27 (8):1926-1932.
    [3]Q. X. Li, K. Hayashi, M. Nishioka, et al,2002. Absolute emission current density of Ofrom 12CaO7Al2O3 crystal. Applied Physics Letter 80:4259-4261.
    [4]L. X. Yuan, T. Q. Ye, F. Y. Gong, et al.2009. Hydrogen production from the current-enhanced reforming and decomposition of ethanol. Energy Fuels,23:3103-3112.
    [5]C. F.Song, J. Q. Sun, S. B. Qiu, et al.2008. Atomic Fluorine Anion Storage Emission Material C12A7-F- and Etching of Si and SiO2 by Atomic Fluorine Anions. Chemistry of Materials,20:3473-3479.
    [6]C. F. Song, J. Q. Sun, J. Li, et al. Characteristics and Mechanism of Atomic Fluorine Anions Emission from Nanoporous Crystal [Ca24Al28O64]4+(F-)3.36 (O2-)0.32 Surface. The Journal of Chemical Physics:C,112:19061-19068.
    [1]王卫平,吕功煊.2003.乙醇催化制氢研究进展[J].化学进展,15:74-78.
    [2]D. K. Liguras, D. I. Kondarides, X. E. Verykios.2003. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B:Environmental,43:345-354.
    [3]衣保廉.燃料电池-高效、环境友好的发电方式,化学工业出版社,2000.
    [4]A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios.2002. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal. Today,75:145-155.
    [5]A. Demirbas.2005. Hydrogen production from biomass via supercritical water extraction. Energy Sources,27:1409-1417.
    [6]J. R. Galdamez, L. Garcia, R. Bilbao.2005. Hydrogen production by steam reforming of bio-oil using coprecipitated Ni-Al catalysts. Acetic acid as a model compound. Energy & Fuels,19:1133-1142.
    [7]M. Marquevich, S. Czernik, E. Chornet, D. Montane.1999. Hydrogen from Biomass:Steam Reforming of Model Compounds of Fast-Pyrolysis Oil. Energy & Fuels,13:1160-1166.
    [8]J. Comas, F. Marino, M. Laborde, N. Amadeo.2004. Bio-ethanol steam reforming on M/Al2O3 catalyst. Chemical Engineering Journal,98:61-68.
    [9]J. Sehested, J. A. P. Gelten, I. N. Remediakis, H. Bengaard, J. K. Norskov.2004. Sintering of nickel steam-reforming catalysts:effects of temperature and steam and hydrogen pressures. Journal of Catalysis,223:432-443.
    [10]D. N. Wang, S. Czernik, E. Chornet.1998. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy & Fuels,12:19-24.
    [11]L. Garcia, M. L. Salvador, J. Arauzo, R. Bilbao.1999. Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy & Fuels,13:51 859.
    [12]T. Hou, L. X. Yuan, T. Q. Ye, et al.2009. Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. International Journal of Hydrogen Energy,34:9095-9107.
    [13]T. Q. Ye, L. X. Yuan, Y. Q. Chen, et al.2009. High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn-Al2O3 Catalyst. Catalysis Letter,127:323-333.
    [1]Hans Schulz.1999. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A:General,186:3-12.
    [2]T. Riedel, M. Claeys, H. Schulz, G. Schaub, S. S. Nam, K. W. Jun, M. J. Choi, G. Kishan, K. W. Lee. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe-and Co-based catalysts. Applied Catalysis A:General, 186:201-213.
    [3]A. Parkash.1994. On The Effects of Syngas Composition and Water Gas Shift Reaction Rate on FT Synthesis over Iron Based Catalyst in a Slurry Reactor. Chemical Engineering Communications,128:143 - 158.
    [4]A.K. Dalai, B.H. Davis.2008. Fischer-Tropsch synthesis:A review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis A:General,348:1-15
    [5]Mark E Dry.2001. High quality diesel via the Fischer-Tropsch process-a review. Journal of Chemical Technology and Biotechnology,77:43-50.
    [6]Jens R. Rostrup-Nielsen.2002. Syngas in perspective. Catalysis Today,71:243-247.
    [7]V. Subramani, S. K. Gangwal.2008. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy Fuels, 22:814-839.
    [8]M. A. Haider, M. R. Gogate, R. J. Davis.2009. Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol. Journal of Catalysis,261:9-16.
    [9]Y. H. Du, D. A. Chen, K. R. Tsai.1987. Promoter action of rare earth oxides in rhodium/silica catalysts for the conversion of syngas to ethanol. Applied Catalysis, 35:77-92.
    [10]M. Gupta, M. L. Smith, J. J. Spivey.2011. Heterogeneous Catalytic Conversion of Dry Syngas to Ethanol and Higher Alcohols on Cu-Based Catalysts. ACS Catalysis, 1 (6):641-656.
    [11]R. Burch, M. J. Hayes.1997. The Preparation and Characterisation of Fe-Promoted Al2O3-Supported Rh Catalysts for the Selective Production of Ethanol from Syngas. Journal of Catalysis,165:249-261.
    [12]K. G. Fang, D. B. Li, M. G. Lin, M. L. Xiang, W. Wei, Y. H. Sun.2009. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today,147:133-138.
    [13]F. Y. Gong. T. Q. Ye, L. X. Yuan, et al.2009. Direct reduction of iron oxides based on steam reforming of bio-oil:a highly efficient approach for production of DRI from bio-oil and iron ores. Green Chemistry,11:2001-2012.
    [14]T. Hou, L. X. Yuan, T. Q. Ye, et al.2009. Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. International Journal of Hydrogen Energy,34:9095-9107.
    [15]T. Kan, J. X. Xiong, X. L. Li, et al.2010. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming. International Journal of Hydrogen Energy,35:518-532.
    [16]T. Q. Ye, L. X. Yuan, Y. Q. Chen, et al.2009. High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn-Al2O3 Catalyst. Catalysis Letter,127:323-333.
    [17]S. B. Qiu, L. Gong, L. Liu, et al.2011. Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst. Chinese Journal of Chemical Physics,24(2):211-217.
    [18]Z. X. Wang, Y. Pan, T. Dong, et al.2007. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O- based catalysts Applied Catalysis A: Genenal.320:24-34.
    [19]Z. G. Hao, Q. S. Zhu, Z. Jiang, B. L. Hou, H. Z. Li.2009. Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed. Fuel Processing Technology,90:113-121.
    [19]H. S. Roh, K. W. Jun, S. C. Baek, S. E. Park.2002. A Highly Active and Stable Catalyst for Carbon Dioxide Reforming of Methane:Ni/Ce-ZrO2/γ-Al2O3 Catalysis Letters,81:147-151.
    [20]E. Ruckenstein, Y. H. Hu.1996. Role of Support in CO2 Reforming of CH4 to Syngas overNi Catalysts. Journal of Catalysis,162:230-238.
    [21]Z. Y. Hou, T. Yashima.2003. Small Amounts of Rh-Promoted Ni Catalysts for Methane Reforming with CO2. Catalysis Letters,89:193-197.
    [22]J. S. Choi, K. I. Moon, Y. G. Kim, J. S. Lee, C. H. Kim, D. L. Trimm.1998. Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts. Catalysis Letters,52:43-47.
    [23]L. X. Yuan, T. Q. Ye, F. Y. Gong, et al.2009. Hydrogen production from the current-enhanced reforming and decomposition of ethanol. Energy Fuels,23:3103 -3112.
    [24]Y. Q. Chen, L. X. Yuan, T. Q. Ye, et al.2009. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. International Journal of Hydrogen Energy,34:1760-1770.
    [25]T. Osaki, T. Moria.2006. Kinetic Studies of CO2 Dissociation on Supported Ni Catalysts. Reaction Kinetics and Catalysis Letters,87:149-156.
    [26]D. B. Cao, Y. W. Li, J. G. Wang, H. J. Jiao.2009. CO2 dissociation on Ni(211). Surface Science,603:2991-2998.
    [1]李伟,张希良.2007.国内二甲醚研究述评[J].煤炭转化,30:88-95.
    [2]蔡飞鹏,林乐腾,孙立.2006.二甲醚合成技术研究概况[J].生物质化学工程,40:37-42.
    [3]J. L. Hu, Y. Wang, C. S. Cao, D. C. Elliott, D. J. Stevens, J. F. White.2005. Conversion of Biomass Syngas to DME Using a Microchannel Reactor. Industrial and Engineering Chemistry Research,44:1722-1727.
    [4]L. G. Wang, Y. Qi, Y. X. Wei, D. R. Fang, S. H. Meng, Z. M. Liu.2006. Research on the Acidity of the Double-function Catalyst for DME Synthesis from Syngas. Catalysis Letters,106:61-66.
    [5]P. S. S. Prasad, J. W. Bae, S. H. Kang, Y. J. Lee, K. W. Jun.2008. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts:The superiority of ferrierite over the other zeolites. Fuel Processing Technology,89:1281-1286.
    [6]S. Y. Lee, M. R. Gogate, C. J. Kulika.1992. A novel single-step dimethyl ether (DME) synthesis in a three-phase slurry reactor from co-rich syngas. Chemical Engineering Science.47:3769-3776.
    [7]X. D. Peng, A. W. Wang, B. A. Toseland, P. J. A. Tijm.1999. Single-Step Syngas-to-Dimethyl Ether Processes for Optimal Productivity, Minimal Emissions, and Natural Gas-Derived Syngas. Industrial and Engineering Chemistry Research,38 (11):4381-4388.
    [8]J. W. Bae, S. H. Kang, Y. J. Lee, K. W. Jun.2009. Synthesis of DME from syngas on the bifunctional Cu-ZnO-Al2O3/Zr-modified ferrierite:Effect of Zr content. Applied Catalysis B:Environmental,90:426-435.
    [9]Y. Borodko, G. A. Somorjai.1999. Catalytic hydrogenation of carbon oxides-a 10-year perspective. Applied Catalysis A:General,186:355-362.
    [10]J. S. Lee, K. H. Lee, S. Y. Lee, Y. G. Kim.1993. A Comparative Study of Methanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst. Journal of Catalysis,144:414-424.
    [11]X. M. Liu, G. Q. Lu, Z. F. Yan, J. Beltramini.2003. Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO2. Industrial and Engineering Chemistry Research,42:6518-6530.
    [12]Q. Sun, C. W. Liu, W. Pan, Q. M. Zhu, J. F. Deng.1998. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst. Applied Catalysis A:General,171:301-308.
    [13]Y. D. Yoo, S. J. Lee, Y. S. Yun.2007. Synthesis of dimethyl ether from syngas obtained by coal gasification. Korean Journal of Chemical Engineering,24:350-353.
    [14]S. H. Ahn, S. H. Kim, K. B. Jung, H. S. Hahm.2008. Effect of pressure on direct synthesis of DME from syngas over metal-pillared ilerites and metal/metal-pillared ilerite. Korean Journal of Chemical Engineering,25:466-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700