用户名: 密码: 验证码:
受水稻白叶枯病菌诱导的水稻转录因子基因OsBTF3的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,简称Xoo)引起的水稻白叶枯病是世界水稻生产上最严重的细菌病害之一,水稻—Xoo互作系统是植物—病原物互作研究的一个重要模式系统。然而,至今对于其互作的分子过程及水稻抗/感病性调控的分子机理所知甚少。在前期研究工作中,本实验室通过对水稻品种日本晴(Oryza sativa L. cv. Nipponbare)与Xoo菌株(JXO I)亲和互作后的表达谱分析,发现水稻转录因子基因OsBTF3受Xoo侵染而显著地被诱导上调表达。推测OsBTF3可能是水稻对Xoo侵染的抗/感病性表达中重要的调控因子之一。鉴此,本研究对OsBTF3基因的结构、定位、表达和功能进行了系统研究,试图揭示其在水稻—Xoo分子互作、抗逆性以及生长发育中的作用和生物学功能。
     利用生物信息学方法,对OsBTF3基因结构及其同源性进行了分析。发现该基因位于第3号染色体上,具有5个外显子和4个内含子,成熟mRNA全长有528核苷酸;可编码具有175个氨基酸的蛋白质(分子量=19.2KDa、等电点=5.26)。OsBTF3在N端22–26区域有RRKKK核定位信号(NLS),在34–92区域具有NAC结构域,而在C端171–174区域存在内质网滞留信号(KKES)。在水稻基因组中存在2个OsBTF3同源基因(10号染色体上的Os10g0483000和3号染色体上的Os03g085100),其与OsBTF3具有极为相似的基因结构;不同物种BTF3同系物氨基酸序列以及NAC结构域长度、位置和序列具有物种特异性和保守性,其意味着BTF3在生物的生命活动中可能具有重要的、基础的功能。
     利用GFP融合蛋白技术对OsBTF3进行了亚细胞定位分析,发现其定位于细胞核内和细胞膜区域,表明其具有核蛋白和胞质蛋白的特性。利用RT-Q-PCR方法对OsBTF3基因表达进行测定,发现其在水稻根、茎、叶、叶鞘和小穗组织中均可组成性表达;OsBTF3具有病原菌、信号分子以及逆境诱导应答特性。Xoo菌株JXO I、水稻细菌性条斑病菌(Xooc)菌株RS63和稻瘟菌(Mg)菌株YN1均能诱导OsBTF3的表达增强,但表达反应速度和强度有差异;脱落酸(ABA)诱导活性最强,茉莉酸甲酯(MeJA)和乙烯(ETH)次之,水杨酸(SA)诱导作用不显著;干旱和高盐胁迫抑制其表达;伤口和光不诱导其表达。
     利用基因过量表达和RNAi沉默方法,进行了OsBTF3基因的生物学功能分析。通过农杆菌介导法,获得了159个过量表达和RNAi转基因水稻株系。对苗期、分蘖期和孕穗期的T1代转基因水稻株系对Xoo菌株(JXO I和PXO99A)的抗病性进行测定,发现所有测试的过量表达和RNAi株系均比对照株更加感病;PXO99A接种后,几种代表性防卫基因(PAL,AOS、LOX、PR1、PR4和PBZ1)在野生型、过量表达和RNAi株系中的表达发生了不同程度的变化;此外,过量表达株系OE37、OE39、OE17和RNAi株系RI30、RI32、RI19比野生型对Xooc菌株(RS63)更加感病。对T2代转基因水稻株系的抗逆性进行测定,发现过量表达株系对高盐(200mM NaCl)和低温(4℃)胁迫抗性显著增强,但抗旱性下降,RNAi株系表型正好相反。表明OsBTF3在水稻对生物和非生物逆境胁迫的反应中起着重要的作用。
     对T1代转基因水稻株系的生长发育进行分析,发现与野生型对照相比,过量表达株系植株高大、生长旺盛,而RNAi株系严重矮化、生长较弱;尽管所有转基因植株的节数未发生变化,但节长度发生了明显改变,造成株高的显著差异;过量表达株系的节中薄壁细胞分裂加速,叶片气孔变小;过量表达株系的光合作用显著增强,穗长、穗粒数和千粒重显著增加,而RNAi株系则明显降低。上述结果表明OsBTF3在水稻生长发育中具有重要的生物学功能。
     总之,本研究基本明确了水稻基因OsBTF3的结构特征和表达特性,阐述了其在水稻对Xoo和Xooc抗/感病性中的作用,揭示了其在非生物胁迫抗性以及生长发育中的生物学功能。因此,本研究通过对OsBTF3这一新基因的功能发掘,为其将来可能应用于转基因水稻的研究提供了重要的科学依据和信息。
Bacterial blight of rice caused by Xanthomonas oryzae pv. Oryzae (Xoo) is a serious worldwide bacterial disease. The interaction between rice and Xoo is a model system of the study of plant-pathogen interaction. But untill now, little is known about the interaction process and molecular mechanism of resistance/susceptibility. In previous research, OsBTF3, a rice transcriptional factor gene, was found to be up-regulated during the interaction between rice(Oryza sativa L. cv. Nipponbare)and Xoo strain JXOI. We speculated that OsBTF3 may be a crucial regulating facter for rice resistance/susceptibility to Xoo infection. So the gene structure, localization, expression and function were studied to elucidate the biological function of OsBTF3 in rice-Xoo interaction, tolerance to abiotic stress and development of rice.
     Bioinformatic was applied to analysed the gene structure and sequence characters of OsBTF3. OsBTF3 was located in Chromosome 3 with 5 exons and 4 introns, the full length mRNA is 528bp which can encode a protein of 175 aa with predicted molecular weight 19.2 KD and PI 5.26. There exist a RRKKK nuclear localization signal in the 22-26 residues of N-terminal , a NAC domain in 34-92 residues and an ER retention signal KKES in the 171-174 residues of C-terminal. Os03g085100 and Os10g0483000 identified as two homologous genes of OsBTF3 in rice genome have a high similar gene structure with OsBTF3. BTF3 is found to be species-specific and conserved on the base of sequence alignment of BTF3 homologues from diferent species and charaters of length, position and sequence of their NAC domain, which implies that BTF3 may play important and fundamental roles in biology organism.
     Subcellular location analysis of GFP-fusion protein showed that OsBTF3 located in nucleus and cell membrane with a property of nucleus and cytoplasm protein. OsBTF3 was constitutive expressed in root, stem, leaf, sheath and panicle of rice revealed by real-time quantitative PCR. OsBTF3 have the charaters of response to pathogen, signal molecule and abiotic stress. Expression of OsBTF3 can be induced by Xoo strain JXO I、Xooc strain RS63 and Mg strain YN1 with different speed and strength. OsBTF3 was strongly induced by ABA, followed by MeJA and ETH but with no obvious response to SA. OsBTF3 can be suppressed by drought and salt stress. It can not be induced by light and wound.
     The biological function of OsBTF3 had been analyzed through over-expression and RNAi method. 159 over-expression and RNAi transgenic lines of OsBTF3 were obtained using agrobacterium-mediated rice transformation. Resistance detection of T1 transgenic rice lines had been conducted by inoculation with Xoo strain JXOI and PXO99A in seedling, tillering and booting stage of rice, the results showed that all over-expression lines and RNAi lines were more sensitive to Xoo than wild type. After inoculation by PXO99A, several representative defence-related genes (PAL, AOS, LOX, PR1, PR4 and PBZ1) showed various degree of expression level. Furthermore, over-expression lines OE37、OE39、OE17 and RNAi lines RI30、RI32、RI19 were also more sensitive to Xooc strain RS63. Abiotic stress response detection of T2 transgenic lines showed that the tolerance of over-expression lines to salt and cold is highly improved but the tolerance to drought is depressed, while the result of RNAi lines is reverse. This showed that OsBTF3 has a close relationship with the response of rice to biotic and abiotic stress.
     The effectes of OsBTF3 on growth and development were analysed in T1 transgenic rice lines. Compared to wild type rice, the over-expression lines of OsBTF3 grow higher and stronger while the RNAi lines are shorter and weaker; Though the stem nodes number of all transgenic lines maintain unchanged, changes of the length of stem nodes led to significant difference on height of over-expression and RNAi rice plants; SEM results revealed that, for over-wxpression lines, fission of parenchymatous cells in stem node were accelerated, while leaf stomas were smaller than normal; Photosynthesis analysis showed that the photosynthesis ability of over-expression lines were obviously enhanced while the RNAi lines were depressed; Survey on several biological charaters including spike length, seeds number per spike and thousand seeds weight showed significantly increased tendency in overexpression lines and obvious decrease tendency in RNAi lines; Our results implies that OsBTF3 may play important and fundamental roles in growth and development of rice.
     In conclusion, we have made clear the gene structure and expression characters of OsBTF3, and have elucidated the effect of OsBTF3 on rice resistance/susceptibility to Xoo and Xooc and illuminated its biological function in tolerance to abiotic stress and development of rice. Therefore, the finding of biological function of OsBTF3 will afford scientific foundation and information for its potential applying on the study of transgenic rice.
引文
1.白辉,李莉云,刘国振.水稻抗白叶枯病基因Xa21的研究进展遗传, 2006,28(6):745- 753.
    2.柏亚男.水稻基因启动子OsBTF3P的克隆及其启动活性分析.中国农业科学院学位论文, 2008.
    3.高东迎,刘蔼民,翟文学,等.水稻抗白叶枯病基因Xa25的分子定位.遗传学报, 2005, 32(2):183-188.
    4.谭光轩,任翔,翁清妹,等.药用野生稻转育后代一个抗白叶枯病新基因的定位.遗传学报, 2004, 31(7):724-729.
    5.阮辉辉,严成其,安德荣,等.水稻抗白叶枯病基因的鉴定、定位和克隆进展.生物技术通讯, 2008, 19(3): 463-467.
    6.吴静.两个受水稻白叶枯病菌调控的水稻基因(OsBTF3和OsCtBP-A)的鉴定和功能初探.中国农业科学院学位论文, 2007.
    7.吴茂森,田峰,齐放军,等.水稻与白叶枯病菌互作的基因表达谱分析与差异性表达基因的识别.中国农业科学, 2007, 40 (2): 277-282.
    8.章琦.水稻白叶枯病抗性基因鉴定进展及其利用.中国水稻科学, 2005,19( 5) :453-459.
    9.章琦.中国抗白叶枯病基因的利用与策略.植物保护学报, 1995, 22(3):241-246.
    10. Agrawal N, Dasaradhi P.V. N, Mohmmed A, et al. RNA Interference: biology, mechanism, and applications. Microbiology and molecular biology reviews, 2003, 67: 657-685.
    11. Alonso J M, Stepanova A N, Leisse TJ, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301:653-657.
    12. An G, Lee S, Kim S H, et al. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005, 46:14-22.
    13. Arya M, Shergill I S, Williamson M, et al. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn, 2005, 5(2):209-219.
    14. Avrona A O, Venter E, Birch P R J, and Whisson S C. Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genetics and Biology, 2003, 40: 4-14.
    15. Bachem C W B, Oomen R J F J, and Visser R G F. Transcript Imaging with cDNA-AFLP: A Step-by-Step Protocol. Plant Molecular Biology Reporter, 1998, 16: 157-173.
    16. Baker B, Zambryski P, Staskawicz B, et al. Signaling in plant-microbe interactions. Science, 1997, 276(5313): 726-733.
    17. Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at
    2.4 A resolution. Science, 2000, 289: 905-920.
    18. Beatrix B, Sakai H and Wiedmann M. The alpha and beta subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem, 2000, 275: 37838-37845
    19. Beckmann R, Spahn C M, Eswar N, et al. Architecture of the protein-conducting channelassociated with the translating 80S ribosome. Cell, 2001, 107: 361-372.
    20. Beclin C, Boutet S, Waterhouse P, et al. A branched pathway for iransgene-induced RNA silencing in plane. Curr Biol, 2002, 12: 684-688.
    21. Bedbrook J R, Smith S M, Ellis R J. Molecular cloning and sequencing of cDNA encoding the precursor tc the small subunit of chloroplast ribulose-1,5-biophosphate carboxylase. Nature, 1980, 287: 692-697.
    22. Beetham P R, Kipp P B, Sawycky X L, et al. A tool for functional plant genomics:chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA, 1999, 96: 8774-8778.
    23. Blair M W, Garris A J, Anjali S, et al. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet, 2003, 107:62-73.
    24. Blobel G and Potter V R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J. Mol. Biol, 1967, 26: 279-292.
    25. Brockstedt E, Otto A, Rickers A, et al. Preparative high-resolution two-dimensional electrophoresis enables the identification of RNA polymerase B transcription factor 3 as an apoptosis-associated protein in the human BL60-2 Burkitt lymphoma cell line. J. Protein Chem, 1999, 18: 225-231.
    26. Bukau B, Deuerling E, Pfund C, et al. Getting newly synthesized proteins into shape. Cell, 2000, 101:119-122.
    27. Bull A. Bicaudal, a genetic factor which affects the polarity of the embryo in Drosophila melanogaster. J. Exp. Zool, 1966, 161: 221-242.
    28. Bustin S A, Benes V, Nolan T, et al. Quantitative real-time RT-PCR a perspective. J. Mol. Endocrinol, 2005, 34: 597-601.
    29. Bustin S A. Absolute quanlitification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endoctinology, 2000, 25:169-193.
    30. Cao H, Bowling S A, Gordon A S, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6:1583-1592.
    31. Cao Y F, Song F M, Robert M, et al. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expression in response to biotic and abiotic stress. Journal of plant physiology, 2006,163:1167-1178.
    32. Cech T R. Structural biology. The ribosome is a ribozyme. Science, 2000, 289:878-879.
    33. Century K S, Adkisson M, Morlan J, et al. Developmental control of Xa21-mediated disease resistance in rice. The Plant Cell, 1999, 20 (2) : 231-236.
    34. Chavez S, Beilharz T, Rondon A G, et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J, 2000, 19: 5824-5834.
    35. Chen C H and Chen Z X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced arabidopsi stranscription factor. Plant Physiology, 2002, 129:706-716.
    36. Chen H L, Wang S P, Zhang Q F. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology, 2002,92(7):750-754.
    37. Chern M S, Canlas P E, Fitzgerald H A, et al. NRR, a negative regulator of disease resistance in rice that interacts with Arabidopsis NPR1 and rice NH1. Plant J, 2005, 43 (5):623-635.
    38. Chern M S, Fitzgerald HA, Canlas P E, et al. Over expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Molecular Plant-Microbe Interaction, 2005, 8:511-520.
    39. Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci, 2000, 25, 9:4985-4990.
    40. Clark I E, Wyckoff D and Gavis E R. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr. Biol, 2000, 10: 1311-1314.
    41. Cooper B, Hutchison D, Park S, et al. Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Mol Biol, 2003, 53:273-279.
    42. Creelman R A, Mullet J E. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology, 1997,48:355-382.
    43. Datta K, Velazhahan R, Ona I, et al. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease.Theor Appl Genet, 1999, 98: 1138-1145.
    44. Dellagi A, Birch P R, Heilbronn J, et al. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology, 2000, 146: 165-171.
    45. Dempsey D, Shah J, Klessing D F. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Science, 1999, 18(6):547-575.
    46. Deng J M. and Behringer R R. An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res, 1995, 4: 264-269.
    47. Deng X, Li H, Tang YW. Cytokine expression in respiratory syncytial virus-infected mice as measured by quantitative reverse-transcriptase PCR. Journal of Virological Methods, 2003, 107 (2): 141-146.
    48. Dixon R A, Achine L, Kota P, et al. The phenylprpanoid pathway and plant defence-a genomic perspective. Molecular Plant Pathology,2002,3:371-390.
    49. Dong X.N. SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1996, 1:316-323.
    50. Dresselhaus T, Srilunchang K O, Leljak-Levanic D, et al. The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential forplant growth and development. Plant Physiol, 2006, 140:512-527.
    51. Du L and Chen Z. Identification of genes encoding novel receptor-like protein kinases as possible target genes of pathogen-induced WRKY DNA-binding proteins. Plant J, 2000, 24: 837-848.
    52. Durrant W E, Rowland O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in race-Specific resistance and wound response gene expression profiles. The Plant Cell, 2000, 12: 963–977.
    53. el-Tanani M K and Green C D. Transcription factor, BTF3, and the AF-1 function of the estrogen receptor. Biochem. Soc. Trans, 1998, 26: S252.
    54. Ezuka A, Horino O, Toriyama K, et al. Inherence of resistance of rice variety Wase Aikoku 3 to Xathomonas oryzae. Bull Tokai-kinki Nat Agr Exp Sta, 1975, 28: 124-130.
    55. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
    56. Fitzgerald H A, Canlas P E, Chern M S, et al. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. Oryzae. Plant J, 2005, 43:335-347.
    57. Flores O, Lu H and Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem, 1992, 267: 2786-2793.
    58. Franke J, Reimann B, Hartmann E, et al. Evidence for a nuclear passage of nascent polypeptide-associated complex subunits in yeast. J. Cell Sci, 2001, 114: 2641-2648.
    59. Freire M.A. Translation initiation factor (iso) 4E interacts with BTF3, theβsubunit of the nascent polypeptide-associated complex. Gene, 2005, 345: 271-277.
    60. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem, 2001, 70:603-647.
    61. Fünfschilling U and Rospert S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell, 1999, 10: 3289-3299.
    62. Gallard A, Foucras G, Coureau C, et al. Tracking T cell clonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarity determining region-3-specific probes. Journal of Immunological Methods, 2002, 270 (2): 269-280.
    63. Gao D Y, Xu Z G, Chen Z Y, et al. Identification of a new gene for resistance to bacterial blight in a somaclonal mutant HX-3 (indica). Rice Genet Newsl, 2001,18:66-68.
    64. Gautschi M, Lilie H, Fünfschilling U, et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA, 2001, 98: 3762-3767.
    65. Gautschi M, Mun A, Ross S, et al. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA, 2002, 99: 4209-4214.
    66. George R, Beddoe T, Landl K, et al. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc. Natl. Acad. Sci. USA, 1998, 95: 2296-2301.
    67. Girard BM, May V, Bora SH, et al. Regulation of neurotrophic peptide expression in sympatheticneurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regulatory Peptides, 2002, 109 (1-3): 89-101.
    68. G?rlich D, Prehn S, Hartmann E, et al. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell, 1992, 71: 489-503.
    69. Grein S and Pyerin W. BTF3 is a potential new substrate of protein kinase CK2. Mol. Cell. Biochem, 1999, 191: 121-128.
    70. Gu K, Tian D, Yang F, et al. High- resolution genetic mapping of Xa27( t) , a new bacterial blight resistance gene in rice Oryza sativa L. Theor Appl Genet, 2004,108( 5) :800-807.
    71. Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲeffector triggers disease resistance in rice. Nature, 2005, 435:1122-1125.
    72. Hacia J G. Resquencing and mutational analysis using oligonucleotide microarrays. Nature Genetics Supplement, 1999, 21: 42-47.
    73. Hannappel U, Balzer H J, Ganal M W. Direct isolation of cDNA sequences from specific chromosomal regions of the tomato genome by differential display technique.Mol Gen Genet, 1995, 249: 19-24.
    74. He Q, Li D, Zhu Y, et al. Fine mapping of Xa2, a bacterial blight resistance gene in rice. Mol Breeding, 2006, 17(1):1-6.
    75. He Z H, Wang Z Y, Li J M, et al. Perception of brassino steroids by the extracellular domain of the receptor kinase BRI1.Science, 2000, 288 :2360-2363.
    76. Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271-282.
    77. Hieter P, Hieter M B P. Functional genomics: It′s all how youread it. Science, 1997, 278: 601-602.
    78. Hirokazu O, Yasuhiro I, Masaru T. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ, 2005, 39(4):275-287.
    79. Hu G Z. and Ronne H. Yeast BTF3 protein is encoded by duplicated genes and inhibits the expression of some genes in vivo. Nucleic Acids Res, 1994 , 22: 2740-2743.
    80. Hu H, Xiong L and Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222: 107-117.
    81. Huang N, Angeles E R, Domingo J, et al. Pyramiding of bacterial blight resistance genes in rice :marker aided selection using RFLP and PCR. Theor Appl Genet, 1997, 95:313-320.
    82. Iyer-Pascuzzi A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. MPMI, 2004, 17:1348- 1354.
    83. Jin H, Axtell M J, Dahlbeck D, et al. NPK1, an MEKK1-like mitogen-activated protein kinase, regulates innate immunity and development in plants. Cell, 2002 3, 291-297.
    84. Jonak C, Kiegerl S, Ligterink W, et al. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl.Acad. Sci. USA, 1996,93:1274-11279.
    85. Jun L, Saiki R, Tatsumi K, et al. Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana. Plant Cell Physiol, 2004, 45:1882-1888.
    86. Jungnickel B and Rapoport T A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell, 1995, 82: 261-270.
    87. Kalies K U, G?rlich D and Rapoport T A. Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex. J. Cell Biol, 1994, 126: 925-934.
    88. Kampin S A, Lijegren S J, Block L M, et al. Targeted disruption in Arabidopsis.Nature, 1997, 389: 802-803.
    89. Kanno M, Chalut C and Egly J M. Genomic structureof the putative BTF3 transcription factor. Gene, 1992, 117:219-228.
    90. Keenan R J, Freymann D M, Stroud R.M, et al. The signal recognition particle. Annu. Rev. Biochem, 2001, 70: 755-775.
    91. Kende H, van der Knaap E, Cho H T. Deepwater rice: a model plant to study stem elongation.Plant Physiol,1998,118: 1105-1110.
    92. Khush G S, Angeles E R. A new gene for resistance to race 6 of bacterial blight in rice, Oryza sativa L. Rice Genet Newsl, 1999, 16:92-93.
    93. Kim S T, Chol K S, Yul S, et al. Protellmic analysis of proteins inclucell by rice blast fungus and elicitor in rice suspensior cells. Protromics, 2003, 3:2368-2378.
    94. Kinoshita T. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl, 1995, 2:9-153.
    95. Kong Z, Li M, Yang W, et al. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388.
    96. Lauring B, Kreibich G, Weidmann M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent polypeptide-associated complex. Proc. Natl. Acad. Sci. USA, 1995, 92: 9435-9439.
    97. Lauring B, Sakai H, Kreibich G, et al. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 1995, 92: 5411-5415.
    98. Lauring B, Wang S, Sakai H, et al. Nascent-polypeptide-associated complex: a bridge between ribosome and cytosol. Cold Spring Harb. Symp. Quant. Biol, 1995, 60: 47-56.
    99. Lee B M, Park Y J, Park D S, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 2005, 33(2):577-586.
    100. Lee K S, Rasabandit H S, Angeles E R, et al. Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology, 2003, 93(2):147-152.
    101. Li M, Xu W Y, Yang W Q, et al. Genome-wide gene expression profiling reveals conserved andnovel molecular functions of the stigma in rice. Plant Physiology, 2007, 144: 1797-1812.
    102. Li H Q, Willianm R R. and Du S J. skNAC (skeletal Naca), a muscle-specific isoform of Naca(nascent polypeptide-associated complex alpha), is required for myofibril organization. The FASEB Journal, 2009, 23:1-13.
    103. Lin X H,Zhang D P, Xie Y F. Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP makers. Phytopatholoy, 1996, 86:1156-1159.
    104. Lipshitz H D and Smibert C A. Mechanisms of RNA localization and translational regulation. Curr. Opin. Genet. Dev, 2000, 10: 476-488.
    105. Liu G Z, Pi L Y, Walker J C, et al. Biochemiical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem, 2002, 277(23): 20264-20269.
    106. Maguire B A and Zimmermann R A. The ribosome in focus. Cell, 2001, 104:813-816.
    107. Markesich D C, Gajewski K M, Nazimiec M E, et al. Bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development, 2000, 127: 559-572.
    108. Matthew L. RNAi for plant functional genomics.Comparative and Functional Genomics, 2004, 5:240-244.
    109. McGinnis K, Chandler V, Cone K, et al. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enrymol, 2005, 392: 1-24.
    110. Meister G. and Tuschl T. Mechanisms of gene silencing by double-stranded RNA, Nature, 2004, 431: 343-349.
    111. Menetret J, Neuhof A, Morgan D G, et al. The structure of ribosomechannel complexes engaged in protein translocation. Mol. Cell, 2000, 6: 1219-1232.
    112. Mew TW. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359-382.
    113. Michael W P. A new mathematical model for relative quantitative real-time RT-PCR. Nucleic acids research, 2001, 29: 2003-2007.
    114. Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol, 2004, 45: 490-495.
    115. M?ller I, Beatrix B, Kreibich G, et al. Unregulated exposure of the ribosomal Msite caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Letter, 1998, 441: 1-5.
    116. M?ller I, Jung M, Beatrix B, et al. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc. Natl. Acad. Sci. USA, 1998, 95: 13425-13430.
    117. Moncollin V, Fischer L, Cavallini B, et al. Class II (B) general transcription factor (TFIIB) that binds to the template-committed preinitiation complex is different from general transcription factor BTF3. Proc. Natl. Acad. Sci. USA, 1992, 89: 397-401.
    118. Moncollin V, Miyamoto N G, Zheng X M, et al. Purification of a factor specific for the upstream element of the adenovirus-2 major late promoter. EMBO J, 1986, 5:2577-2584.
    119. Moreau A, Yotov W V, Glorieux F H, et al. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol. Cell. Biol, 1998, 18: 1312-1321.
    120. Moritoh S, Miki D, Akiyama M, et al. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol, 2005, 46: 699-715.
    121. Munz B, Wiedmann M, Lochmuller H, et al. Cloning of novel injury-regulated genes. Implications for an important role of the muscle-specific protein skNAC in muscle repair. J. Biol. Chem, 1999, 274: 13305-13310.
    122. Nakashima J, Endo S, Fukuda H. Immunocytochemical localization of polygalacturonase during tracheary element differentiation in Zinnia elegans. Planta, 2004; 218(5): 729-739.
    123. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2:279-289.
    124. Neuhof A, Rolls M M., Jungnickel B, et al. Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction. Mol.Biol. Cell, 1998, 9: 103-115.
    125. Neupert W and Lill R. Protein synthesis. Cradle at the ribosome. Nature, 1994, 370: 421-422.
    126. Neupert W. Protein import into mitochondria. Annu. Rev. Biochem, 1997, 66: 863-917.
    127. Nino-Liu D O, Darnielle L,Bogdanove A J. A simple method of mass inoculation of rice effective for both pathovars of Xanthomonas oryzae, and the construction of comparable sets of host cDNA libraries spanning early stages of bacterial leaf blight and bacterial leaf streak. Journal of Phytopathology, 2005, 153: 500-504.
    128. Noda T, Ohuchi A. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety to it. Ann Phytopathol Soc Jpn, 1989, 55:201-207.
    129. Nouzova M, Neumann P, Navratilova A,et al. Microarray-based survey of repetitive genomic sequences inVicia spp.Plant Molecular Biology, 2000, 45: 229-244
    130. Ogawa T and Khush G S. Major genes for resistance to bacterial blight in rice. Bacterial Blight of Rice. First Edition. IRRI, 1989, 177-192.
    131. Ogawa T, Kaku H, Yamamoto T. Resistance gene of rice cultivar, Asominori to bacterial blight of rice. Jpn J Breed, 1989, 39: 196-197.
    132. Ogawa T, Khush G S. Major genes for resistance to bacterial blight in rice. Proceedings of thr international workshop on bacterial blight of rice. IRRI, Los Banos, Phillipines, 1989, 177-192.
    133. Ogawa T, Lin L, Tabien R E, et al. A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl, 1987, 4: 98-100.
    134. Ogawa T, Morinaka T, Fuiii K, et al. Inheritance of resistance of rice varieties Kogyoku and Java14 to bacterial group V of Xanthomonas oryzae. Ann Phytopath Soc Jpn, 1978, 44: 137-141.
    135. Ogawa T. Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xoo) in rice. JARQ, 1993, 27: 71-80.
    136. Ogg S C and Walter P. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell, 1995, 81:1075-1084.
    137. Ogi Y. The effects on culm and other agronomic characters caused by semidwarfing genes at the sd-locus in rice. Japan J. Breed, 1993, 43:267-275.
    138. Ohdan T, Perigio B. Francisco, Jr, et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J. Exp. Bot, 2005, 56: 3229 -3244.
    139. Ou SH. Rice Disease. Second Edition in 1985. by E. M. I
    140. Parthun M R, Mangus D A and Jaehning J A. The EGD1 product, a yeast homolog of human BTF3, may be involved in GAL4 DNA binding. Mol. Cell. Biol, 1992, 12: 5683-5689.
    141. Peng Y, Park J C, Dardick C, et al. Xb15 is a negative regulator of Xa21-mediated disease resistance. Abstract. The 5th International rice Genetics Symposium. Manila, Philippines. 2005, 19-23.
    142. Persidis A. Proteomics. Nat Biotechnol. 2000, 18 Suppl: IT 45-46.
    143. Plath K and Rapoport T A. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J. Cell Biol, 2000, 151:167-178.
    144. Pollack J R, Perou C M, Alizadeh A A, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 1999, 23: 41-46.
    145. Pontier D, Miao Z H, and Lam E. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J, 2001, 27 (6): 529-538.
    146. Porter B W, Chittoor J M, Yano M, et al. Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7. Crop Sci, 2003,43:1484-1492.
    147. Powers T and Walter P. The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr. Biol, 1996, 6: 331-338.
    148. Prinz A, Behrens C, Rapoport T A, et al. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J, 2000, 19: 1900-1906.
    149. Quélo I, Gauthier C, Gregory E, et al. Integrin-linked kinase regulates the nuclear entry of the c-Jun coactivatorα-NAC and Its coactivation potency. The Journal of Biological Chemistry, 2004, 279(42) :43893-43899.
    150. Raden D and Gilmore R. Signal recognition particledependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex. Mol. Biol. Cell, 1998, 9: 117-130.
    151. Rapoport T, Jungnickel B and Kutay U. Protein transport across the eukaryotic endoplasmicreticulum and bacterial inner membranes. Annu. Rev. Biochem, 1996, 65: 271-303.
    152. Reddy APK. Bacterial blight crop less assessment and disease management. In: IRRI eds, Bacterial blight of rice, IRRI, Manila, 1989.
    153. Reimann B, Bradsher J, Franke J, et al. (1999) Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15: 397-407.
    154. Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense genee ex pression.Current Opinion in Plant Biology, 1998, 1(5):404-411.
    155. Rock C. Pathways to abscisic acid-regulated gene expression. New Phytol, 2000, 148: 357-396.
    156. Ronald P C, Beng A, Rodante T, et al. Genetic and physical analysis of the rice bacterial blight resistance locus, Xa21. Mol Gen Genet, 1992, 236:113- 120.
    157. Rospert S, DubaquiéY and Gautschi M. Nascent-polypeptide-associated complex. Cell Mol Life Sci, 2002, 59:1632-1639.
    158. Salzberg S L, Sommer D D, Schatz M C, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics, 2008, 9: 204.
    159. Sanchez A C, Brar D S, Huang N, et al. Sequence tagged site marke-assisted selection for three bacterial blight resistance genes in rice. Crop Sci, 2000, 40:792-797.
    160. Sanchez A C, Ilag L L, Yang D, et al. Genetic and physical mapping of xa13, a recessive bacterial blight resistance gene in rice. Theor Appl Genet, 1999, 98:1022-1028.
    161. Sato H, Ozawa K, Yonemura K, et al. Quantitative PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells: implication of equimolar target and competitor end products. Clinica Chimaica Acta, 2003, 328 (1-2): 147-153.
    162. Sato Y, Sentoku N, Miura Y. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants . The EMBO Journal, 1999, 18, (4):992-1002.
    163. Schwarz D S, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115: 199-208.
    164. Scott A , Wyat t S , TsouP L, et al . Model system for plant cell Biology: GFP imaging in living onion epidermal cells. Biotechniques, 1999, 26:1125-1132.
    165. Settles A M, Yonetani A, Baron A, et al. Sec-independent protein translocation by the maize Hcf106 protein. Science, 1997, 278: 1467-1470.
    166. Shi X, Parthun M R. and Jaehning J A. The yeast EGD2 gene encodes a homologue of the aNAC subunit of the human nascent-polypeptide-associated complex. Gene, 1995, 165: 199-202.
    167. Sidhu G S, Khush G S. Dominance reversal of bacterial of bacterial blight resistant genes in some varieties. Phytopathology, 1978, 68:461-463.
    168. Singh G P, Srivastara M K, Singh R V, et al. Variation in quantitative and qualitative losses caused by bacterial blight on rice varieties. Indian Phytopathol, 1977. 30: 180-185.
    169. Small I. RNAi for revealing and engineering plant gene functions. Current Opinion inBiotechnology, 2007, 18:148-153.
    170. Smit M L, Giesendorf B A, Vet J A, et al.Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clin chem., 2001, 47:739-744.
    171. Smith NA, Singh SP, Wang MB, et al. Total silencing by intron-spliced hairpin RNAs. Nature, 2000, 407:319-320.
    172. Song W Y, Wang G L, Chen L L, et al. A receptor kinase like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 279:1804-1806.
    173. Spreter T, Pech M and Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. The Journal of Biological Chemistry, 2005, 280(16):15849-15854.
    174. Springer P S. Gene traps: Tools for plant development and genomics.The Plant Cell, 2000, 12: 1007-1020.
    175. St-Arnaud R. Dual functions for transcriptional regulators: myth or reality? J. Cell. Biochem. Suppl, 1999, 32/33: 32-40.
    176. Sticher L, Mauch-ManiB, Métraux J P.Systemic acauired resistance.Annu. Rev. Phytopathol, 1997, 35:235-270.
    177. Stroud R M and Walter P. Signal sequence recognition and protein targeting. Curr. Opin. Struct.Biol,1999, 9: 754-759.
    178. Sun X L, Cao Y L, Yang Z F, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase like. Plant J, 2004, 37:517-527.
    179. Sun X, Yang Z, Zhang Q, et al. Identification of a 47- kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003,1 06:683- 687.
    180. Swing J M. Reclassification of the causal agents of bacterial blight (Xoo) and bacterial leaf streak of rice. Nom Rev J Bacterial, 1990, 40: 309-311.
    181. Tagami Y, Mizukami T. Historical review of the researches on bacterial blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Spec Rep Plant Dis Ins Pests Forecasting Serv, 1962, 10: 112.
    182. Taura S, Ogawa T, Tabien R E, et al. Resistance gene of rice cultivar, Taichung Native to Philippines races of bacterial blight pathogens. Jpn J Breed, 1992, 42:195-201.
    183. Taura S, Ogawa T, Tabien R E, et al. The specific reaction of Taizhung Native to Philippine races of bacterial blight and in heritance of resistance to race 5 (PXO 112). Rice Genet Newsl, 1987, 4:101-102.
    184. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol, 1996, 14:303-308.
    185. Utans V, Liang P, Wyner L R, et al. Chronic cardiac rejection: identification of five up-regulated genes in transplanted hearts by differential mRNA display. Proc Natl Acad Sci USA, 1994, 91: 6463-6467.
    186. van der Graaff E, Hooykaas P J, and Keller B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J, 2002, 32 (5):819-830.
    187. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 2006, 20:759-771.
    188. Walter P. and Johnson A E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell. Biol, 1994, 10: 87-119.
    189. Wang C, Tan M, Xu X, et al. Localizing the bacterial blight resistance gene, Xa22(t), to a
    100-kilobase Bacterial Artificial Chromosome. Phytopathology, 2003, 10:1258-1262.
    190. Wang G, Ding X, Yuan M, et al. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol, 2006, 60: 437-449.
    191. Wang G.L, Song W.Y, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Molecular Plant-Microbe Interactions, 1996, 9:850-855.
    192. Wang G L, Wu C, Zeng L, et al. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to Xanthomonas oryzae pv. Oryzae.Theor Appl Genet, 2004, 108:379-384.
    193. Wang S, Sakai H and Wiedmann M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell. Biol, 1995, 130: 519-528.
    194. Wang W, Zhai W, Luo M, J et al. Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol Gen Genet, 2001, 265: 118-125.
    195. Wang Y H, Xue Y B,Li J Y. Towards molecular breeding and improvement of rice in China. Trends in Plant Science, 2005, 12:610-614.
    196. Wang Z, Chen C B, Xu Y Y, et al. A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol. Biol, 2004, 22: 409-417.
    197. Wang Z, Zou Y, Li X, Zhang Q, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18:676-687.
    198. Wesley SV, Helliwell CA, Smith NA, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J, 2001, 27: 581-590.
    199. Whitby M C and Dixon J. Fission yeast nascent polypeptide-associated complex binds to four-way DNA junctions. J. Mol. Biol, 2001, 306: 703-716.
    200. White T M, Mahalingam R, Traina-Dorge V, et al. Persistence of simian varicella virus DNA in CD4(+) and CD8 (+) blood mononuclear cells for years after intratracheal inoculation of African green monkeys. Virology, 2002, 303 (1): 192-198.
    201. Wickert L, Steinkrüger S, Abiaka M, et al. Quantitative monitoring of the mRNA expression pattern of the TGF-β-isoforms (β1,β2 ,β3) during transdifferentiation of hepatic stellate cellsusing a newly developed real-time SYBR Green PCR. Biochemical and Biophysical Research Communications, 2002, 295(2): 330-335.
    202. Wickner W. The nascent-polypeptide-associated complex: having a NAC for fidelity in translocation. Proc. Natl. Acad. Sci. USA, 1995, 92: 9433-9434.
    203. Wiedmann B and Prehn S. The nascent polypeptide-associated complex (NAC) of yeast functions in the targeting process of ribosomes to the ER membrane. FEBS Lett, 1999, 458: 51-54.
    204. Wiedmann B, Sakai H, Davis T A, et al. A protein complex required for signal-sequence-specific sorting and translocation. Nature, 1994, 370:434-440.
    205. Wielopolska A, Townley H, Moore I, et al. A high-throughput inducible RNAi vector for plants. Plant Biotechnol J, 2005, 3: 583-590.
    206. Wilhelm M.L, Reinbolt J, Gangloff J, et al. Transfer RNA binding protein in the nucleus of Saccharomyces cerevisiae. FEBS Lett, 1994, 349: 260-264.
    207. Wilkinson J Q, Lanadan M B, Conner T W, et al. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Molecular Biology, 1995, 27: 1097-1108.
    208. Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase- like protein, is the same as Xa26. Theor Appl Genet, 2006, 28(6):745-753.
    209. Xiong L Z and Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell, 2003, 15:745-759.
    210. Xu W H, Wang Y S, Liu G Z, et al. The autophosphorylated Ser686, Thr688 and Ser689 residues in the intracellular juxtamembrane domain of XA21 stabilize the rice receptor-like kinase . The Plant Journal, 2006, 45 (5) : 740-751.
    211. Yamada T. Studies on genetics and breeding of resistance to bacterial leaf blight in rice. Discovery of new varietal groups on the basis of reaction patterns to five different pathotypes of Xanthomonas oryzae(Uyeda et Ishiyama) Dwoson in Japan. Ann Phytopathol Soc Japan, 1984, 45(2): 240-246.
    212. Yamakawa H, Hirose T, Kuroda M, et al. Profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant physiology, 2007, 144: 258-277.
    213. Yamamoto T, Ogawa T. Inheritance of resistance in rice cultivars, Toyonishiki, Milyang23 and IR24 to Myanmar isolates of bacterial leaf blight pathogen. J A RQ, 1990, 24:74-77.
    214. Yan W, Schilke B, Pfund C, et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J, 1998, 17: 4809-4817.
    215. Yang B, Sugio A, and White F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc. Natl. Acad. Sci. USA, 2006, 103: 10503-10508.
    216. Yang D, Sanchez A, Khush G S, et al. Construction of a BAC contig containing the xa5 locus in rice. Theor Appl Genet, 1998, 97: 1120-1124.
    217. Yang K. S, Kim H. S, Jin U. H, et al. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants, 2007, Planta 225: 1459-1469.
    218. Yang Z, Sun X, Zhang Q, et al. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106(5):1467-1472.
    219. Yazaki J, Shimatani Z, Hashimoto A, et al. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and arabidopsis.Physiol Genomics, 2004,17: 87-100.
    220. Yoon K, Cole-Strauss A, Kmiec E B, et al. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA·DNA oligonucleotide.Proc Natl Acad Sci USA, 1996, 93: 2071-2076.
    221. Yoshimura S, Umehara Y, Kurata N, et al. Identification of a YAC clone carrying the Xa1 allele, a bacterial blight resistance gene in rice. Theor Appl Genet, 1996, 93: 117-122.
    222. Yoshimura S, Yamanouchi U, Kayayose Y, T et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
    223. Yoshimura S, Yoshimura A, Iwata N, et al. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed, 1995, 1375-387.
    224. Yoshimura S, Yoshimura A, Saito A, et al. RFLP analysis of introgressed chromosomal segments in three near-isolines of rice for bacterial blight resistance genes Xal, Xa3 and Xa4. Jpn J Genet, 1992, 67: 29-37.
    225. Yoshimura S. Genetic analysis of bacterial blight resistance genes in rice by using molecular markers. Bull Inst Trop Agric Kyushu Univ, 1993, 16: 1-63.
    226. Yoshimura, Nelson R J, Yoshimura A, et al. RFLP mapping of the bacterial blight resistance genes Xa3 and Xa4. Rice Genet Newsl, 1992, 9: 136-138.
    227. Yotov W V and St-Arnaud R. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Genes Dev, 1996, 10: 1763-1772.
    228. Yotov W V and St-Arnaud R. Mapping of the human gene for the alpha-NAC/1.9.2 (NACA/1.9.2) transcriptional coactivator to Chromosome 12q23-24.1. Mamm. Genome, 1996, 7: 163-164.
    229. Yotov W V, Moreau A and St-Arnaud R. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol. Cell. Biol, 1998, 18:1303-1311.
    230. Zamore P D. Ancient pathways programmed by small RNAs. Science, 2002, 296: 1265-1269.
    231. Zhai W.X, Wang W.M, et al. Breeding bacterial blight resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Molecular Breed, 2001, 8:285-293.
    232. Zhang G, Angeles E R, Abenes M L P. RAPD and RFLP mapping of the bacterial blight resistance gene xal3 in rice. Theor Appl Genet, 1996, 93: 65-70.
    233. Zhang L, Meakin H, and Dikinson M. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Mol. Plant Pathol, 2003, 4:469-477.
    234. Zhang Q, Lin S C, Zhao B Y, et al. Identification and Theor Appl Genetging a new gene for resistance to bacterial blight (Xanthomonas aryzae pv. Oryzae) from O. rufipogon. Rice Genet Newsl, 1998, 15: 138-142.
    235. Zhang Q, Wang C L, Zhao K J, et al. Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chinese Iournal of Rice Science, 2002, 16(3): 206-210.
    236. Zhang Q, Wang C L, Zhao K J, et al. The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genetics News letter, 2001, 18: 71-73.
    237. Zhang S, Lockshin C, Herbert A, et al. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J, 1992, 11: 3787-3796.
    238. Zhang S, Song W.Y, et al. Transgenic elite Indica rice varieties, resistant to Xanthomonas oryzae pv. oryzae. Molecular Breed, 1998, 4:551-558.
    239. Zheng X M, Black D, Chambon P, et al. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature, 1990, 344: 556-559.
    240. Zheng X M., Moncollin V, Egly J.M, et al. A general transcription factor forms a stable complex with RNA polymerase B (II). Cell , 1987,50:361-368.
    241. Zhou S Y, Zhao W S, Li H, et al. Characterization of a novel RING finger gene OsRFP1, which is induced by ethylene, salicylic acid and blast fungus infection in rice. Phytopathology, 2008, 156:396-402.
    242. Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53, 247-273.
    243. Zimmerman J W, Schultz R. Analysis of gene expression in the preimplantation mouse embryo: Use of mRNA differential display. Proc Natl Acad Sci USA, 1994, 91: 5456-5460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700