用户名: 密码: 验证码:
选煤厂结构——设备复合体系抗震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对选煤厂结构—设备复合体系在地震作用下的反应问题进行了系统研究,主要从考虑和不考虑设备的相互作用角度进行了对比分析。针对选煤厂的实际情况,选择了有代表性的三个钢筋混凝土框架结构(FR1,FR2,FR3)。FR1,FR2代表了选煤厂中典型的框支式复合体系,其中FR1针对设备为单自由度的情况,FR2针对设备为双自由度的情况;FR3代表了选煤厂中复杂的复合体系。在对FR3分析时,分别对主结构和子结构的地震反应进行了对比。本文对三个体系分别进行了弹性和弹塑性时程分析,根据场地条件输入不同的强震记录。主要内容如下:
     1.通过查阅大量文献,对目前结构—设备复合体系的研究中存在的问题进行了总结与评述。
     2.通过分析FR1,FR2的地震反应结果,得出以下结论:
     (1).对于设备为单自由度的复合体系,在弹性阶段考虑相互作用时,反应减小,有利于体系的抗震;在弹塑性阶段的反应规律同弹性阶段,但随着地震动的加强其有利的方面逐渐减小,在高峰值加速度作用下出现了考虑相互作用后体系进入弹塑性状态比较早的情况,认为在弹塑性状态下考虑相互作用使结构反应加大,产生不利影响。
     (2).对于设备为双自由度的复合体系,在弹性阶段考虑相互作用时,反应增大,不利于体系的抗震;在弹塑性阶段最大位移和层间位移角的反应规律同弹性阶段,但同时出现了考虑相互作用后底部剪力减小的情况,综合分析后认为在弹塑性状态下考虑相互作用不利。
     3.对FR3体系的分析中,着重考虑了单台设备和多台设备两种情况,在多台设备的情况下,区分了存在和不存在主设备两种不同情况。通过分析,得出了以下结论:
     (1).对于复杂的复合体系,在弹性阶段,相互作用有利于主结构抗震。当楼层存在大型主设备时,体系的反应以主设备为主。当主设备和所在楼层的质量比在30%,周期比在0.8~1.0之间时,相互作用对主结构有明显的减震作用,位移和底部剪力减小率分别达到25%和15%。在楼层布置多台设备时,次设备与主设备的相对位置变化对体系的地震反应有不同的影响。
     (2).在弹塑性阶段,相互作用在减小了主结构的最大位移和层间位移角的同时造成了体系底部剪力的显著增大,本文在对比分析后,认为底部剪力增大系数应确定为1.25。
     4.对于设备(子结构)的反应,本文在详细的分析了各种工况后认为考虑相互作用同样减小了设备的地震反应。
     5.最后根据分析结果对选煤厂的结构设计提出了几点建议。
This research investigated systematically the seismic performance of combined structure-equipment systems in the coal preparation plant, and analyzed the effects of considering the dynamic interaction or not. Three frame constructions (FR1, FR2, FR3) are chosen as research examples according to the true state of coal preparation plant. FR1 and FR2 are typical systems with equipments supported on frame. FR3 is the typical complicated system. The primary and secondary systems are analyzed separately for FR3. Elastic and inelastic time history analyses are conducted on the three frames, and different strong motion records are iuput according to the field types. The main contents including:
    1. On the basis of summarization of current researches, the problems in this area are discussed.
    2. Conclusions are summarized for FR1 and FR2:
    (1) .It's beneficial for seismic resistant of the system with single-degree-of-freedom equipment to consider interaction in elastic stage, responses of the system is reduced .In inelastic stage, the responses are same, but with the increase of seismic intensity, the benefit is impaired. Even in the case of interaction considered under lager amplitude acceleration, the system will enter inelastic stage earlier. So interaction will cause responses increased and disadvantage factors in inelastic stage.
    (2) .It's unbeneficial for seismic resistant of the system with two-degree-of-freedom equipment to consider interaction in elastic stage, responses of the system is increased . In inelastic stage, the response of top displacement and the maximum interstory drift ratio are same as in elastic stage, but the bottom shear force is reduced simultaneously when considering interaction. After comprehension analysis, it's believed that interaction is disadvantage in inelastic state.
    3. Single-equipment and multi-equipment are considered in the analysis of FR3. According to the existence of main equipment, the multi-equipment situation is divided into different type. Through analysis, the conclusions are as follows:
    (1) .For the complex compound system, interaction benefit to seismic resistance of primary structure in elastic stage .When main equipment is on the floor, it's response is the main component of systematic response. When the mass ratio of primary equipment is 30% of the mass of the floor and the period ratio is between 0.8~1.0, interaction is obviously effective to reduce seismic response for the primary structure. The reduction ratio of displacement and bottom shear force are up to 25% and 15% respectively. When there are more equipments on the floor, seismic performance of the system will vary with the different position of the primary and secondary equipments.
    -II-
    
    
    Abstract
    (2). In inelastic range, though dynamic interaction reduces top displacement and the maximum interstory drift ratio, however it increases the bottom shear simultaneously. The bottom shear amplification factor is assumed to be 1.25 after comparison and analysis.
    4. For the secondary structure, interaction is considered to reduce the seismic response after concrete analysis.
    5. At last, suggestion on structure design of coal preparation plant are presented.
引文
[1] 包世华,新编高层建筑结构,中国水利水电出版社,2001年。
    [2] 陈建兵等,结构—设备体系动力相互作用研究,地震工程与工程振动,2001(9)。
    [3] 曹万霖等,钢筋混凝土与楼梯共同工作性能试验研究,工程力学增刊,1999年。
    [4] 冯军和,动力设备作用下选煤厂的振动分析与研究,中国地震局工程力学研究所硕士学位论文,2003年。
    [5] 郭长城主编,建筑结构振动计算,建筑工业出版社,1982年。
    [6] 龚思礼等,建筑抗震设计,中国建筑工业出版社,1994。
    [7] 联邦工程顾问股份有限公司.李森(?),SAP2000入门与工程上之应用,科技图书股份有限公司出版社,2003年。
    [8] 刘恢先主编,唐山大地震震害,地震出版社,1986年。
    [9] 李应民等,工程结构的地震动输入问题,第十二届全国结构工程学术会议特邀报告,工程力学增刊,2003年。
    [10] 卢薇等,工业设备的抗震计算模型与破坏准则,哈尔滨建筑大学学报,1997(2)。
    [11] 林均岐,二级结构地震反应的实验研究,地震工程与工程振动,2001(9)。
    [12] 李杰等,结构—设备动力相互作用实验研究,工程力学,2003(2)。
    [13] 李杰等,子结构物理参数识别与输入地震动的复合反演研究,振动和冲击,1998(17)。
    [14] 李杰等,工业结构—设备体系在地震作用下动力相互作用研究,地震工程与工程振动,1997(6)。
    [15] 李杰等,结构—设备动力相互作用研究综述,世界地震工程,1994(2)。
    [16] 李杰等,地震工程学导论,地震出版社,1992年。
    [17] 李杰等,结构—设备模型性体系的振动台实验研究,第四届全国地震工程会议论文集,1994,哈尔滨。
    [18] 李康宁,建筑物三维分析模型及其用于结构地震反应分析的可靠性,建筑结构,2000(6)。
    [19] 楼梦麟,连接子结构与子结构模态综合法,振动工程学报,1995(3)。
    [20] 吕西林等,钢筋混凝土结构非线性有限元理论与应用,同济大学出版社,1999年。
    [21] 钱培风著,结构抗震分析,地震出版社,1983年。
    [22] 秦权等,非结构构件和设备的抗震设计楼面谱,清华大学学报,1997(37)。
    [23] 秦权等,非结构构件和设备的抗震设计和简化计算方法,建筑结构学报,2001(6)。
    [24] 苏经宇,计算楼层上设备地震作用的方法,地震工程与工程振动,1990(6)。
    [25] 孙景江,钢筋混凝土结构地震反应分析和实验的若干研究,中国地震局工程力学研究所工学博士学位论文,2001年。
    [26] 孙增寿等,结构—设备复合系统振动特性研究,工业建筑,1997(2)。
    [27] 汪梦甫等,钢筋混凝土高层结构非线性地震反应分析现状,世界地震工程,1998(6)。
    [28] 魏琏,建筑结构抗震设计,万国学术出版社,1991年。
    [29] R.W.克拉夫,J.彭津著,王光远等译,结构动力学,科学出版社,1983年。
    [30] 王亚勇等,建筑结构时程分析法输入地震波的研究,建筑结构学报,1991(4)。
    [31] 项忠权等,石油化工设备抗震,地震出版社,1995年。
    [32] 杨溥,结构时程分析法输入地震动的选择控制指标,土木工程学报,2000(12)。
    [33] 中华人民共和国国家标准.动力机器基础设计规范(GB50040-96),中国建筑工业出
    
    版社,1996年。
    [34] 中华人民共和国国家标准.建筑抗震设计规范GB50011-2001,中国建筑工业出版社,2001年。
    [35] 中华人民共和国行业标准.选煤厂建筑结构设计规范(MT/T5023-1998),煤炭工业出版社,1998年。
    [36] 张建霖,楼层反应谱次结构系统的动力反应分析,现代地震工程进展,1994年。
    [37] 周锡元等,地震工程概论,科学出版社,1985年。
    [38] 赵晓等,结构—设备体系地震反应分析模型研究,第四届全国地震工程会议论文集,1994年,哈尔滨。
    [39] 张新培,钢筋混凝土抗震结构非线性分析,科学出版社,2003年。
    [40] Giuseppe Muscolino, Dynamic response of multiply connected primary-secondary systems, Eathquake Engineering And Structural Dynamics, VOL19,205-216(1990).
    [41] G. Falsone, G. Muscolino, G. Riccicardi, Combined dynamic response of primary and multiply connected cascaded secondary subsystems, Eathquake Engineering And Structural Dynamics, VOL20,749-767(1991).
    [42] Wen-Jeng Hsueh, Analytical solution for frequency response of equipment in laterally loaded multistory buildings, Eathquake Engineering And Structural Dynamics, VOL28,1051-1060(1999).
    [43] Aparna Dey Viny K. Gupta, Response of multiply supported secondary systems to earthquakes in frequency domain, Eathquake Engineering And Structural Dynamics, VOL27,187-201(1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700