用户名: 密码: 验证码:
无机粘土包覆有机纤维复合材料的制备及其耐火阻燃性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐高温阻燃防护服由三层构成:外壳层、蒸汽阻挡层和隔热层。隔热层是防止外界热量渗透到穿着者皮肤上最重要的一层,是关系到阻燃防护服性能好坏的关键。目前隔热层材料的耐高温隔热性能尚不能满足穿用者的需要。如何制备出一种既具有优良耐火阻燃性能又具有较好机械性能的隔热层材料一直是学术界和工业界关注的焦点。尽管国内外研究开发出了多种耐高温有机纤维用于隔热层,但这些纤维耐明火能力差,不能赋予消防服和作战服足够出入火场的能力。而一些无机纤维,如陶瓷纤维和玻璃纤维等虽具有优良的耐明火性能,但其织造性能和柔韧性较差,也不适合作为耐高温防护服的隔热层材料。因此,有机/无机复合型隔热层材料的开发成为研究重点,通过有机和无机材料的复合可实现优势互补,兼顾材料的耐火阻燃性能和机械性能。
     本课题是国家863项目“有机纤维表面耐明火热隔绝柔性防护层的设计与实现”(项目号2007AA03Z336)的部分内容,旨在开发出既具有优良耐火阻燃性能又具有较好机械性能的隔热层材料。本文通过对蛭石、蒙脱土结构的分析,研究其成膜性及成膜条件,并分别制备蛭石、蒙脱土(montmorillonite, MMT);和改性聚多巴(poly(N-benzyloxy-carbony1-3,4-dihydroxyphenylal-anine), PNBD)-MMT复合膜包覆聚酰亚胺(polyimide, PI)复合材料,同时对复合材料的耐明火热隔绝性能进行研究。具体研究内容如下:
     (1)剥分蛭石包覆PI纤维复合材料的制备及性能研究;
     a、剥分蛭石的制备及表征:采用化学和物理相结合的方法对蛭石原矿进行膨胀和剥分处理,制备剥分蛭石。采用扫描电子显微镜(SEM)技术对每个处理阶段的蛭石进行表征,研究发现,经过有机插层和机械剥分处理后的蛭石,其解离程度增加,单个蛭石片晶的径厚比与蛭石原矿相比增大。选择粒径分布均一的剥分蛭石片晶制备纯无机蛭石膜,并对其结构进行分析表征,结果发现纯无机蛭石膜具有规整的层状结构。
     b、剥分蛭石包覆PI复合材料的制备及性能研究:将经过筛选的剥分蛭石片晶包覆在PI纤维表面制备出一种新型的有机/无机复合材料。采用SEM对具有不同蛭石增重率的复合材料表面状态进行分析表征,结果表明复合材料表面无机蛭石膜的覆盖程度随蛭石增重率的增加而增大,当蛭石增重率达到一定值时,剥分蛭石片晶也可以在纤维之间的空隙形成无机蛭石膜。对剥分蛭石包覆PI复合材料进行耐高温隔热性能测试发现,复合材料(蛭石增重率为90wt%)在600℃下加热480s后内外表面温差为220℃,而纯PI材料在相同条件下测试内外表面温差小于100℃,说明剥分蛭石对PI纤维材料的包覆提高了材料的隔热性能,且复合材料的隔热性能随蛭石增重率的增加而增强。此外,在600℃加热480s后纯PI材料的形变率为38%,而复合材料(蛭石增重率为90wt%)的形变率仅为15%,材料形变率的降低说明剥分蛭石的包覆提高了有机纤维材料在高温条件下的热稳定性。
     (2)MMT包覆PI纤维复合材料的制备及性能研究;
     a、纯无机MMT膜的制备:以不同浓度的乙醇水溶液作为分散介质,调节钠基MMT分散液的pH值,采用超声波细胞粉碎仪对MMT分散液进行处理,以此MMT分散液为原料制备纯无机MMT膜。通过对膜的微结构及柔韧性等的研究,确定最佳制膜工艺。
     b、MMT包覆PI复合材料的制备及性能研究:将钠基MMT片晶包覆在PI纤维表面制备复合材料并对其进行表征。采用SEM研究MMT片晶在PI纤维表面的排列状态,发现MMT片晶相互交叠包覆在PI纤维表面形成一层无机膜。分别采用热重分析(TG)、锥形量热仪、明火烧蚀、温差测定等对复合材料的热稳定性能、火灾危害性能、耐明火性能及隔热性等进行研究。结果表明,经MMT包覆后的PI材料其耐明火阻燃性能、隔热性能等都得到了极大提高,经过MMT包覆后的PI复合材料在800℃加热600s内外表面温差为400℃,而纯PI材料在相同条件下内外表面温差为100℃。对复合材料进行力学性能测试发现,经MMT包覆后的PI复合材料与纯PI材料相比,其机械强力有所提高。
     (3) PNBD-MMT复合膜包覆PI纤维复合材料的制备及性能研究;a、PNBD-MMT复合膜的制备:以阳离子交换容量为90mmol/100g的钠基MMT和实验室自制的PNBD(?):分子量为6000g/mol)为原料采用Layer-by-Layer (LbL)自组装方法制备复合膜。对复合膜热稳定性和层间距的研究发现,复合膜的失重率随制备复合膜所用PNBD溶液浓度的增加而增大,同时,随着制备复合膜所用PNBD溶液浓度的增加,复合膜中MMT的001晶面间距亦增加。
     b、PNBD-MMT复合膜包覆PI纤维复合材料的制备及性能研究:以浓度分别为0.02wt%、0.04wt%和0.10wt%的PNBD溶液与重量百分比为0.02wt%的MMT分散液为不同组分,通过LbL方式在经过预处理的PI纤维材料表面进行组装制备复合材料。研究了复合膜包覆对PI纤维耐火阻燃性能的影响及复合膜与PI纤维的结合牢度。结果表明,纯无机MMT膜包覆PI复合材料经过20次标准水洗后,其表面无机膜的覆盖量明显减少;而PNBD-MMT复合膜包覆PI复合材料经过20次水洗后,其表面仍被大量复合膜包覆,且复合材料表面所包覆膜的残留量随PNBD浓度的增加而增加。对比两者的热稳定性和耐火阻燃性发现,PNBD-MMT复合膜包覆PI复合材料进行多次水洗后仍具有优良的热稳定性能和阻燃性能,而MMT包覆PI复合材料经过多次水洗后,其热稳定性能和阻燃性能明显下降。对水洗前后复合材料进行垂直燃烧测试,PNBD-MMT复合膜包覆PI复合材料经过20次标准水洗后损毁长度为7-14mm,与水洗前(7-9mm)相比略有增加,而MMT包覆PI复合材料从水洗前的8mm增大到水洗后的17mm,说明包覆在PI纤维表面的PNBD-MMT复合膜与有机纤维具有更好的结合牢度,从而可赋予有机材料持久的耐火阻燃性。强力测试表明,PNBD-MMT复合膜包覆PI材料的机械强力较纯PI材料有一定程度增强。
     综上所述,通过PNBD参与MMT包覆PI过程,大大提高了MMT与PI的结合牢度,所制得的复合材料,既具有持久的耐火阻燃性能,又具有很好的机械性能,完全满足作为耐高温阻燃防护服隔热层材料的要求,是隔热层材料研发的又一突破。
High-temperature resistance flame-retardant protective suit is composed by three layers: out layer, vapor barrier layer and heat insulation layer. The heat insulation layer is the most important layer that prevents the penetration of external heat into wearer's skin, and the key which is related to the characteristic of flame-retardant protective suit. Currently, heat insulation performance of the insulation layer can not meet the needs of users. It has always been an important issue for academia and industry that producing a kind of excellent flexible and fire retardant material to be used as insulation layer for flame-retardant suit. Although there has been a variety of high-temperature resistance organic fibers to be used as thermal insulation layer of fire-retardant uniform, the fire resistance of these fibers is too poor to achieve the need of the uniform. In spite of the excellent high-temperature resistance performance of ceramic fiber and glass fiber, the limited weaving property and flexibility of the fibers make them not suitable to be used as insulation layer of flame-retardant protective suit. Therefore, the exploitation of organic/inorganic composite materials has become the important issue. The composites of organic and inorganic material could achieve the complementary advantages, and both mechanical behavior and fire retardant property of the material.
     This study was part of the State863Project "Design and realization of flexibility and high temperature resistance protective coating of organic fiber"(Project NO.2001AA03Z336), aimed at developing a kind of material with wonderful mechanical behavior and flame retardant. This study focused on analyzing the structure and film-forming property of vermiculite and montmorillonite (MMT), and preparing the exfoliated vermiculite coated polyimide(PI) composite, MMT coated PI composite and PNBD(poly(N-benzyloxycarbonyl-3,4-dihydroxyphenylalanine))- MMT coated PI composite. Then the fire resistance and thermal insulation property of those composites was discussed. The main work of the study were as follows:
     (1) Study the preparation of exploited vermiculite, exploited vermiculite coated PI composite, and discuss the fire retardant properties of the composites.
     A. Preparation and characteristic of exploited vermiculite. First, chemical and physical method was used to prepare exfoliated vermiculite. Scanning electron microscope (SEM) was used to analyze vermiculite samples, the results showed that the layered structure of vermiculite was almost cleavage and the aspect ratio of lamellae became larger after intercalation and exfoliated treatment. Finally, exfoliated vermiculite lamellae with uniform size was selected to prepare inorganic vermiculite film. The structure of the film was layered. This could indicate the film-forming property of exploited vermiculite.
     B. Study the preparation and thermal insulation property of exfoliated vermiculite coated PI composite. Exfoliated vermiculite lamellae with uniform size were used to coat on PI fiber material to prepare a new type of organic/inorganic composite material. The composite material was characterized by SEM, the result shown that with the increasing weight of vermiculite, more lamellae were covered on PI fibers. When the weight gain of vermiculite reached a certain value, the inorganic clay coating could also form between fibers. The exploited vermiculite coated PI composite was tested at600℃for480s to evaluate the heat-insulation performance of the composites, the results indicated that the temperature difference between the inner and outer surfaces of composites (weight gain,90wt.%) was220℃, and that of uncoated PI was less than100℃under the same condition. It suggested that the vermiculite coating could enhance heat-insulating property of PI, and the insulation performance of the composite material was stronger with the increase of vermiculite weight addition. In addition, the deformation rate for uncoated PI fiber material was38%after heated at600℃for480s, and that of the composites (weight gain,90wt.%) was only15%under the same condition. This could also indicate that the vermiculite coating could enhance the thermal stability of the composites.
     (2) Study the preparation of MMT coated PI composite, discuss the fire retardant and heat insulation property of the composites.
     A. Preparation of MMT film. Different kinds of MMT dispersion were prepared with different pH value and different dispersing medium, in order to prepare MMT films. The optimum process which was used to prepare MMT film was determined by investigating the structure and flexibility of those MMT films.
     B. Study the preparation and characteristic of MMT coated PI composite. MMT-PI composites were prepared by coating MMT on the surface of PI material. The arrangement of MMT lamellae on the surface of PI fiber was analyzed by SEM, the result indicated the MMT lamellae coated on the surface of PI fiber by forming a kind of inorganic film. TG, cone calorimeter, open flame ablation, temperature difference of internal and external surface test were used to investigate the thermal stability property, fire hazard performance, resistance to open flame performance and thermal insulation property of the composites. The results showed that those characteristics of the composites were more excellent than pure PI. For example, the thermal insulation property of MMT-PI composite and PI material was tested at800℃for600s, the temperature difference between outer surface and inner surface of MMT-PI was400℃, and that of PI material was just100℃under the same condition. In addition, mechanical property of the composites was tested and the result indicated that, compared with pure PI, the mechanical strength of MMT-PI was improved.
     (3) Study the preparation of PNBD-MMT composite film, and discuss the fastness between PNBD-MMT film and PI fiber, and the fire resistance of the composites.
     A. Preparation PNBD-MMT composite film. Na-MMT (CEC=90mmol/100g) and homemade PNBD (6000g/mol) were used to prepare composite film by LbL self-assembly method on the surfaces of glass slides. The test result of thermal stability property and interlayer distance of composite film indicated that the weight loss of the composite films and d001of MMT lamellae in the composite films were increased with the increase of PNBD solution concentration.
     B. Study preparation and characteristic of PNBD-MMT coated PI composite material. PNBD solution (concentration,0.02wt%,0.04wt%,0.10wt%) and MMT dispersion (0.02wt%) were used to coat on PI fiber by LbL method to prepare composite materials. The flame resistance of PNBD-MMT coated PI and fastness between PNBD-MMT composite film and PI fibers was investigated. The result indicated that there was more PNBD-MMT coating on the surface of PI than MMT coating after20times standard washing. The thermal stability and flame resistance of PNBD-MMT coated PI composite was still excellent after20times standard washing. However, those properties of MMT-PI was decreased after20times standard washing. For example, the result of vertical burning test showed that, the burning length of PNBD-MMT coated PI were about7-9mm and7-14mm before and after20times standard washing, and that of MMT-PI were8mm and17mm. Those result indicated that the combination fastness between PNBD-MMT composite film and PI fiber was stronger than that of MMT film, so as to endue durable fire retardant property to the composites. The mechanical strength testing of PNBD-MMT composite film coated PI showed that the mechanical strength of the composites was stronger than that of pure PI.
     In summary, the combination fastness between MMT lamellae and PI fiber was improved greatly by PNBD. So as to endue durable fire retardant property and mechanical properties to the PNBD-MMT coated PI composite material. The composites could meet the need of thermal insulation layer of high-temperature resistance and flame-retardant protective suit. So it was another breakthrough of the thermal-insulation materials research and development.
引文
1. 李俊,施雷花,张渭源等.耐高温防护服及其发展趋势[J].中国个体防护装备:2005.1:16-18.
    2. NFPA,1971-2000, Standard on Protective Clothing for Structural Fire-Fighting, National Federation of Paralegal Associations[S],2000.
    3. Ee H. Yii, Andrew H. Buchanan and Charles M. Fleischmann. Simulating the effects of fuel type and geometry on post-flashover fire temperatures[J]. Fire Safety J.:2006.41:62-75.
    4. C. R. Barnett. BFD curve:a new empirical model for fire compartment temperatures[J]. Fire Safety J.:2002.37:437-463.
    5. Hiroshi M., Teijin L., Osaka, et al. High-Performance Fibers[J].2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. DOI:10.1002/14356007.a13_001.
    6. Serge B., Xavier F.. Heat Resistance and Flammability of High Performance Fibres:A Review[J]. Fire Mater.:2002.26:155-168.
    7.赵若飞,周晓东,戴干策.玻璃纤维增强热塑性复合材料的增强方式及纤维长度控制[J].纤维复合材料:2000.1:19-23.
    8.彭雨晴,韩克清,赵曦等.新型耐高温氮化物陶瓷纤维研究进展[J].合成纤维工业:2011.34(4):39-43.
    9. Y.-C. Li, S. Mannen, A. B. Morgan, et al. Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric[J]. Adv. Mater. DOI: 10.1002/adma.201101871.
    10. Wakelyn P. J., Bertoniere N. R., French A. D., et al. Cotton Fiber Chemistry and Technology[M]. CRC Press(Taylor and Francis Group):Boca-Raton, FL.2007: 77-80.
    11. Q.-H. Mao, L.-P. Zhang, Z.-P. Mao, et al. Preparation and characterization of flame-retardant lamellar Mg(OH)2 thin films on citric acid-treated cotton fabrics[J]. Surf. Interface Anal.:2011.43:903-912.
    12.同小刚,王芬,冯海涛等.二氧化硅气凝胶的制备和应用研究[J].材料导报:2006.5(20):24-27.
    13. Y.-C. Li, J. Schulz and J. C. Grunlan. Polyelectrolyte/Nanosilicate thin-film assemblies:influence of pH on growth, mechanical behavior, and flammability [J]. ACS Appl. Mater.. Inter.:2009.1(10):2338-2347.
    14. Y.-C. Li, J. Schulz, S. Mannen, et al. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric[J]. ACSnano:2010. 4(6):3325-3337.
    15.丁会利,袁金凤,钟国伦等.高分子材料及应用[M].北京:化学工业出版社,2012:122-124.
    16. X.-G. Jin, L.-Y. Huang, Y. Shi, et al. Thermosetting process and thermal degradation mechanism of high-performance polyimide[J]. J. Anal. Appl. Pyrol.: 2002.64:395-406.
    17.郭晓芳,李俊.防护服装的应用及发展趋势[J].中国个体防护装备:2007.6:16-19.
    18.李利君,李风.耐高温阻燃防护服研究进展[J].消防技术与产品信息:2009.4:12-16.
    19.蔡超君,胡炳成,吕春绪.吡咯及二氢吡咯类化合物的合成研究进展[J].有机化学:2005.25:1311-1317.
    20.李乐平,段学民,陈立功.N-烷基-3-吡咯酮类化合物的合成[J].精细化工:2005.22(2):158-160.
    21. Patrick E. Cassidy.梯形聚合物[J].北京纺织:1985.6:47-52.
    22.李庚年,周燕,邓诗峰等.耐高温苯基梯形有机硅树脂及其复合材料研究[J].复合材料-基础、创新、高效:第十四届全国复合材料学术会议论文集(上):2006:385-389.
    23. S.-I. Noro, S. Kitagawa, T. Akutafawa, et al. Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands:Crystal structures and microporous properties [J]. Prog. Polym. Sci.:2009.34:240-279.
    24.王富忠,秦岩,黄志雄等.树脂基热防护材料研究进展[J].
    25.王秀丽,周璐瑛.阻燃防火服及其开发策略[J].上海纺织科技:2001.29(4):44-46.
    26.化工新型材料:2012.40(12):1-3姚波,张文斌.阻燃服用隔热层织物的热防护性能分析[J].天津工业大学学报:2012.31(4):39-43.
    27.郝新敏.羊毛混纺耐高温阻燃织物的研究与开发[J].毛纺科技:2001.5:9-15.
    28.冯继斌.阻燃纤维、阻燃纱线与阻燃织物的研究[J].广西纺织科技:2004.33(3):35-39.
    29.王晓春,傅裕.阻燃涤纶/棉织物的阻燃整理[J].印染:2009.1:10-13.
    30.张丽.阻燃抗静电织物的研制[J].产业用纺织品:2004.4:17-21.
    31.纪芳,王万秀,高鲁青等.芳纶与阻燃粘胶纤维混纺织物的开发[J].棉纺织技术:2004.32(3):185-186.
    32.徐田慧,郭荣如,陈旭炜等.消防员化学防护服面料用涂层织物的研究[J].产业用纺织品:2012.4:33-37.
    33.蒋晓军,黄长庚,叶宏等.空心微球对隔热涂层导热性能的影响[J].涂料工业:2006.36(4):8-11.
    34.王科林,牛家嵘,陈克宁.Ti02涂层织物的隔热性能极其影响响因素[J].“润禾杯”第八届全国印染后整理学术研讨会论文集:142-149.
    35.陈英英,于德海,曾军等.织物用水性阻燃涂层胶的研究开发现状及展望[J].中国阻燃学术年会论文:2010.233-239.
    36.张兴娟,孔祥明,杨春信.气凝胶消防服概念研究[J].中国个体防护装备:2011.3:15-17.
    37.李国春,沈勇,王黎明等.芳砜纶/粘胶混纺织物的阻燃/亲水复合整理[J].印染:2013.3:5-9.
    38.常过,刘庆生,邓炳耀.涤纶针刺非织造布阻燃整理工艺的研究[J].功能性整理技术:2011.3:27-30.
    39.翟保京,侯建龙,徐静等.纯棉织物阻燃增白同浴整理[J].印染助剂:2006.23(1):29-30.
    40.刘蕊平,沈志斌,包润妍等.真丝织物低甲醛阻燃整理工艺及机理研究[J].浙江理工大学学报:2012.29(6):817-822.
    41.宫艳强,李美江.阻燃聚酰胺纤维织物[J].合成纤维:2013.42(3):24-27.
    42.曹国兰,崔运花,王其.尼龙织物耐久性阻燃整理工艺研究[J].国际纺织导报:2011.6:34-36.
    43. G. Decher, J. D. Hong, J. Schmitt. Bulidup of ultrathin multilayer film by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films:1992.210-211: 831-835.
    44. Y. Lvov, G.Decher, H.Haas, et al. X-ray analysis of ultrathin polymer films self-assembled onto substrates[J]. Physica B:1994.198(1-3):89-91.
    45. F.Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science:1998.282:1111-1114.
    46. F. Caruso, H. Mohwald. Protein multilayer formation on colloids through a stepwise self-assembly technique[J]. J. Am. Chem. Soc.:1998.121:6039-6046.
    47. F. Mesefuer. Colloidal crystals as photonic crystals[J]. Colloid. Surface. A:2005. 270-271:1-7.
    48. P. Masse, S. Ravaine. The langmuir-blodgett technique:a powerful tool to elaborate multilayer colloidal crystals[J]. Colloid. Surface. A:2005.270-271: 148-152.
    49. P. Podsiadlo, S. Paternel, J. M. Rouillard, et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties[J]. Langmuir: 2005.21:11915-11921.
    50. Z. Y. Tang, N. A. Kotov, S. Magonov, et al. Nanostructured artificial nacre[J]. Nat. Mater.:2003.2:413-418.
    51. P. Bernt, K. Kurihara, T. Kunitake. Adsorption of poly(styrenesulfonate) onto an ammonium monolayer on mica:a surface forces study[J]. Langmuir:1992. 8:2486-2490.
    52. Z. Li, N. F. Hu. Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles[J]. J. Electroanal. Chem.:2003.558:155-165.
    53. P. Cool, A. Clearfield, V. Mariagnanam, et al. Self-assembly of aluminium-pillared clay on a gold support[J]. J. Mater. Chem.:1997.7(3): 443-448.
    54. I. Place, T. L. Penner, D. W. McBranch, et al. Layered nanocomposites of aggregated dyes and inorganic scaffolding[J]. J. Phys. Chem. A:2003. 107:3169-3177.
    55. A. Guyomard, G. Muller, K.Glinel. Buildup of multilayers based on amphiphilic polyelectrolytes[J]. Macromolecules:2005.38:5737-5742.
    56. S. Sukhishvili, S. Granick. Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly[J]. Macromolecules:2002.35: 301-310.
    57. D. Lee, R. E. Cohen, M. F. Rubner. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles[J]. Langmuir:2005.21:9651-9659.
    58. E. Kharlampieva, S. A. Sukhishvili.Release of a dye from hydrogen-bonded and electrostatically assembled polymer films triggered by adsorption of a polyelectrolyte[J]. Langmuir:2004.20:9677-9685.
    59. J. L. Lutkenhaus, K. D. Hrabak, K. McEnnis, et al. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies[J]. J. Am. Chem. Soc.: 2005.127:17228-17234.
    60. F. Wang, N. Ma, Q.Chen, et al. Halogen bonding as a new driving force for layer-by-layer assembly [J]. Langmuir: 2007.23:9540-9542.
    61. C. R. Kinnane, K. Wark, G. K. Such, et al. Peptide-functionalized, low-Biofouling click multilayers for promoting cell adhesion and growth[J]. Small:2009.5(4): 444-448.
    62. J. Chen, L. Huang, L. Ying, et al. Self-assembly ultrathin films based on diazoresins[J]. Langmuir:1999.15:7208-7212.
    63. C. B. Bucur, Z. Sui, J. B. Schlenoff. Ideal mixing in polyelectrolyte complexes and multilayers:Entropy driven assembly[J]. J. Am. Chem. Soc.:2006.128, 13690-13691.
    64. S. Bharadwaj, R. Montazeri, D. T. Haynie. Direct determination of the thermodynamics of polyelectrolyte complexation and implications thereof for electrostatic layer-by-layer assembly of multilayer films[J]. Langmuir:2006.22: 6093-6101.
    65. Y. Lvov, K. Ariga, I. Ichinose, et al. Layer-by-layer architectures of concanavalin a by means of electrostatic and biospecific interactions [J]. J. Chem. Soc., Chem. Commun.:1995.2313-2314.
    66. Yu. Lvov, K. Ariga, M. Onda, et al. A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation[J]. Colloid. And Surfaces A:Physi.:1999.146:337-346.
    67. H. N. Kim, S. W. Keller, T. E. Mallouk, et al. Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions[J]. Chem. Mater:1997.9:1414-1421.
    68. Yu. M. Lvov, J. F. Rusling, D. C. Thomsen, et al. High-speed multilayer film assembly by alternate adsorption of silica nanoparticales and linear polycation[J]. Chem. Commun.:1998.1229-1230.
    69. B. Van Duffel, R. A. Schoonheydt, C. P. M. Grim, et al. Multilayered clay films: atomic force microscopy study and modeling[J]. Langmuir:1999.15:7520-7529.
    70. X. Arys, A. M. Jonas, B. Languitton, et al. Ultrathin multilayers made by alternate deposition of ionenes and polyvinylsulfate:from unstable to stable growth[J]. Thin Solid Films:1998.327-329:734-738.
    71. D. Yoo, S. S. Shiratori, M. F. Rubner. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes[J]. Macromolecules:1998.31:4309-4318.
    72. S. T. Dubas, J. B. Schlenoff. Factors controlling the growth of polyelectrolyte multilayers[J]. Macromolecules:1999.32:8135-8160.
    73. L. Kolarik, D. F. Furlong, H. Joy, et al. Building assemblies from high molecular weight polyelectrolytes[J]. Langmuir:1999.15:8265-8275.
    74. X. Zhang, J. Shen. Self-assembled ultrathin films:from layered nanoarchitectures to functional assemblies[J]. Adv. Mater.:1999.11:1139-1143.
    75. Yu. Lvov, G. Decher, Helmuth Mohwald. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine)[J]. Langmuir:1993.9:481-486.
    76. M. Muller, M. Brissova, T. Rieser, et al. Deposition and properties of polyelectrolyte multilayers studied by ATR-FTIR spectroscopy[J]. Mater. Sci. Eng. C:1999.8-9:163-169.
    77. P. Fischer, A. Laschewsky, E. Wischerhoff, et al. Polyelectrolytes bearing azobenzenes for the functionalization of multilayers[J]. Macromol. Symp.:1999. 137:1-24.
    78. Zh. H. Chen, Y. A. Yang, J. B. Qiu, et al. Fabrication of photochromic WO3/4,4'-BAMBp superlattice films[J]. Langmuir:2000.16:722-725.
    79. D. L. Elbert, C. B. Herbert, J. A. Hubbell. Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces[J]. Langmuir:1999. 15:5355-5362.
    80. M. Fang, Ch. H. Kim, G. B. Saupe, et al. Layer-by-layer growth and condensation reactions of niobate and titanoniobate thin films[J]. Chem. Mater.:1999.11: 1526-1532.
    81. X. Arys. Understanding Ordering in Polyelectrolyte Multilayers:Effect of the Chemical Architechture of the polycation[D]. Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.2000.
    82. S. Dante, R. Advincula, C. W. Frank, et al. Photoisomerization of polyionic layer-by-layer films containing azobenzene[J]. Langmuir:1999.15:193-201.
    83. F. Caruso, H. Lichtenfeld, E. Donath, et al. Investigation of electrostatic interactions in polyelectrolyte multilayer films:binding of anionic fluorescent probes to layers assembled onto colloids[J]. Macromolecules:1999.32: 2317-2328.
    84. P. Schultz, D. Vautier, L. Richert, et al. Polyelectrolyte multilayers functionalized by a synthetic analogue of an anti-inflammatory peptide, a-MSH, for coating a tracheal prosthesis [J]. Biomaterials:2005.26:2621-2630.
    85. S. Krol, S. Del Guerra, M. Grupillo, et al. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets[J]. Nano Lett.:2006. 6(9):1933-1939.
    86. Q. G. Tan, J. Ji, F. Zhao, et al. Fabrication of thromboresistant multilayer thin film on plasma treated poly(vinyl chloride) surface[J]. J. Mater. Sci.:Mater. M.:2005. 16:687-692.
    87. M. N. V. R. Kumar. A review of chitin and chitosan applications [J]. React. Funct. Polym.:2000.46:1-27.
    88. D. M. Lynn. Peeling back the layers:controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films[J]. Adv. Mater.:2007.19: 4118-4130.
    89. C. M. Jewell, D. M. Lynn. Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics[J]. Adv. Drug Deliver. Rev.:2008.60:979-999.
    90. P. J. G. Goulrt, D. S. Dos Santos, Jr, R. A. Alvarez-Puebla. Surface-enhanced raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates [J]. Langmuir:2005.21:5576-5581.
    91. A. M. Hollman, D. Bhattacharyya. Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation [J]. Langmuir:2004. 20:5418-5424.
    92. M. Onda, Y. Lvov, K. Ariga, et al. Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter[J]. J. Ferment. Bioeng.:1996.82(5):502-506.
    93. Y. Wang, Z. Tang, P. Podsiadlo, et al. Mirror-like photoconductive layer-by-layer thin films of Te nanowires:the fusion of semiconductor, metal, and insulator properties[J]. Adv. Mater.:2006.18:518-522.
    94. J. A. Jaber, J. B. Schlenoff. Dynamic viscoelasticity in polyelectrolyte multilayers: nanodamping[J]. Chem. Mater.:2006.18:5768-5773.
    95. Y.-C. Li, S. Mannen, J. Schulz, et al. Growth and fire protection behavior of POSS-based multilayer thin films[J]. J.Mater. Chem.:2011.21:3060-3069.
    96. Y.-C. Li, S. Mannen, A. B. Morgan, et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric[J]. Adv. Mater.:2011. DOI: 10.1002/adma.201101871.
    97. F. Carosio, G. Laufer, J. Alongi, et al. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric[J]. Polym. Degrad. Stabil.:2011.96: 745-750.
    98.陈志翔.Mg(OH)2晶体在纤维素类基质上的原位生长及应用研究[D].东华大学:2012.
    99.王丹.芳砜纶纤维上片状Mg(OH)2晶体取向膜的制备[D].东华大学:2009.
    100.M. Bellotto. Hydrotalcite decomposition mechanism:a clue to the structure and reactivity of spinel-like mixed oxides[J]. J. Phys. Chem.:1996.100:8535-8542.
    101.Zhenyu Wang, et al. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progr. Org. Coat.:2005.53:29-37.
    102.任庆利,罗强,吴洪才等.镁铝摩尔比对水滑石电缆阻燃剂热性能的影响[J].绝缘材料:2001.6:22-27.
    103.贾少晋,张志成,王正洲等.γ辐射制备阻燃HDPEPDM电缆材料[J].辐射研究与辐射工艺学报:2002.20(1):61-66.
    104.王忍,狄剑锋.环保阻燃织物的生产与发展[J].纺织导报:2011.7:76-79.
    105.Xinggui Zhang, Fen Gao, Minghai Qu, et al. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites[J]. Polym. Degrad. Stabil.:2005.87:411-418.
    106.Mouzheng Fu, Baojun Qu. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends[J]. Polym. Degrad. Stabil.: 2004.85:633-639.
    107.Zhenzhong Li, Baojun Qu. Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends[J]. Polym. Degrad. Stabil.:2003.81:401-408.
    108.G. Camino. Effect of hydroxides and hydroxyl carbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer[J]. Polym. Degrad. Stabil.:2001.74:457-464.
    109.李学锋,邱华,陈绪煌.不饱和聚酯塑料阻燃体系的优化[J].塑料科技:1999.6:28-30.
    110.包永忠,王辉.水滑石改性聚氯乙烯研究进展[J].聚氯乙烯:2004.6:7-12.
    111.W.-S. Jang, I. Rawson, J. C. Grunlan. Layer-by-layer assembly of thin film oxygen barrier[J]. Thin Solid Films:2008.516:4819-4825.
    112.江畹兰.层状硅酸盐的结构及纳米复合材料的构造和制备[J].世界橡胶工业:2008.35(12):26-30.
    113.B.-X. Du, Z.-H. Guo, Ping'an Song, et al. Flame retardant mechanism of organo-bentonite in polypropylene[J]. Appl. Clay Sci.:2009.45:178-184.
    114.张先来等.纳米合成物在阻燃领域的应用[J].消防技术与产品信息:2003.1:45-50.
    115.郭仁贤,戴尚芹.涂覆蛭石耐热玻璃纤维制品及应用[J].玻璃纤维:2005.5:19-23.
    116.敖宁建,陈鹰,陈美等.粘土中金属组分对天然橡胶/粘土复合材料老化性能的影响[J].热带作物学报:1999.20(3):16-20.
    117.曾令移,刘树贻,彭世英等.从高岭土矿中精选造纸涂料用高岭土的初步探讨[J].矿产综合利用:1986.4:6-9,13.
    118.曹耀华,卫敏.难选凹凸棒石提纯工艺研究[J].IM&P化工矿物与加工:2005.7:18-20.
    119.李旭平.海泡石粘土及其用途[J].世界地质:1987.6(3):153-158.
    120.彭治汉.材料阻燃新技术新品种[M].北京:化学工业出版社:2004.
    121.张玉龙,李长德.纳米技术与纳米塑料[M].北京:中国轻工业出版社:2003.
    122.张凤涛.简述阻燃织物的应用与加工[J].山东纺织科技:2004.6:25-27.
    123.刘丽君,郭奋,陈建峰.纳米氢氧化铝阻燃剂表面改性及其在聚丙烯中的应用[J].中国塑料:2004.18(2):74-77.
    124.A. Chemicals. Flame retardants:some new developments[J]. Plastics Additives Compounding:2002.5:24-27.
    125.L. Jin, B. Dai. TiO2 activation using acid-treated vermiculite as a support: Characteristics and photoreactivity[J]. Appl. Surf. Sci.:2012.258:3386-3392.
    126.L. A. Perez-Maqueda, V. Balek, J. Poyato, et al. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA, and XRD[J]. J. Therm. Anal. Calorim.:2003.71:715-726.
    127.Herminio F. Muiambo, Walter W. Focke, Maria Atanasova. Thermal properties of sodium-exchanged palabora vermiculite[J]. Appl. Clay Sci.:2010.50:51-57.
    128.M. C. Jimenez de Haro, L. A. Perez Maqueda, E. T. Stepkowska, et al. The influence of exchangeable cation on thermal behaviour of ground vermiculite[J]. J. Therm. Anal. Calorim.:2003.71:761-771.
    129.吴平霄.粘土矿物材料与环境修复[M].北京:化学工业出版社.2004:276-277.
    130.Gordeeva L. G., Moroz E. N., Rudina N. A., et al. Formation of porous vermiculite structure in.the course of swelling[J]. Russ. J. Appl. Chem.:2002. 75(3):357-361.
    131.Chia-Chih Ou, et al. Vermiculite dispersions and method of preparing same: United States 5102464[P].1992.
    132.Meier L. P., Nueesch R., Madsen F. T.. Organic pillared clays[J]. J. Colloid Interf. Sci.:2001.238(1):24-32.
    133.吴平霄,李荣,党志.不同链长季铵盐柱撑新疆蛭石的层间结构分析[J].华南理工大学学报(自然科学版):2006.34(5):15-20.
    134.张青山,朱湛,王琦等.烷基季铵盐插层剂的合成及应用[J].化学研究与应用:2003.15(6):849-851.
    135.李雪梅,廖立兵,曾青云.蛭石的有机改性研究进展[J].矿物岩石地球化学通报:2007.26(4):410-418.
    136.黄振宇,廖立兵.蛭石的结构修饰及有机插层试验[J].矿产保护与利用:2005.2:17-21.
    137.Pavla Capkova, Jaroslav V. Burda, Zdenek Weiss, et al. Modelling of Aniline-Vermiculite and Tetramethylammonium-Vermiculite; Test of Force Fields[J]. J. Mol. Model.:1999.5:8-16.
    138.S. Williams-Daryn, R. K. Thomal. The intercalation of a vermiculite by cationic surfactants and its subsequent swelling with organic solvents[J]. J. Colloid Interf. Sci.:2002.255:303-311.
    139.Maria G. Da Fonseca, Michelle M. De Oliveira, Luiza N.H. Arakaki, et al. Natural vermiculite as an exchanger support for heavy cations in aqueous solution[J]. J. Colloid Interf. Sci.:2005.285:50-55.
    140.A. Karaipekli, A. Sari. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Sol. Energy:2009.83: 323-332.
    141.L. C. R. Machado, F. W. J. Lima, R. Paniago. Polymer coated vermiculite-iron composites:Novel floatable magnetic adsorbents for water spilled contaminants [J]. Appl. Clay Sci.:2006.31:207-215.
    142.K. Kalcher, I. Grabec, G.g Raber. The vermiculite-modified carbon paste electrode as a model system for preconcentrating mono-and divalent cations[J]. J. Electroanal. Chem.:1995.386:149-156.
    143.Q.-Q. Chen, P.-X. Wu, Z. Dang. Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN[J]. Sep. Purif. Technol.:2010.71:315-323.
    144.S. A. Suvorov, V. V. Skurikhin. High-temperature heat-insulating materials based on vermiculite[J]. Refract. Ind. Ceram.:2002.43:383-389.
    145.葛金龙,王传虎,秦英月.广丰膨润土物相分析与钠化改性研究[J].非金属矿:2009.32(6):48-50.
    146.张建乐,陈万雄,林祥辉.膨润土Ca2+-Na+阳离子交换平衡[J].非金属矿1996.1:23-26.
    147.F. Bergaya, B. Theng, G. Lagaly, Handbook of Clay Science[M]. Elsevier, Amsterdam.2006.
    148.张乃娴.粘土矿物研究方法[M].北京:科学出版社,1990,8:118-215.
    149.E. Tombacz, M. Szekeres. Colloidal behavior of aqueous montmorillonite suspensions:the specific role of pH in the presence of indifferent electrolytes[J]. Appl. Clay Sci.:2004.27:75-94.
    150.F. Salles, I. Beurroies,O. Bildstein, et al. A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite[J]. Appl. Clay Sci.: 2008.39:186-201.
    151.Robin H. A. Ras, Yasushi Umemura, Cliff T. Johnston, et al. Ultrathin hybrid films of clay minerals[J]. Phys. Chem. Chem.l Phys.:2007.9:918-932.27(1): 87-90.
    152.栾文楼,李明路.膨润土的开发应用[M].北京:地质出版社,1998.
    153.王琼,吴翠玲.改性蒙脱石复合材料在污水处理中的研究与应用[J].环境科学与技术:2004.
    154.K. Cevdet, G. Nakas, I. Nihat. Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites[J]. Appl. Clay Sci.: 2009.46:319-324.
    1.张碧勋,李卫,柯金成等.PPS/ALN/MgO导热复合材料的制备及性能研究[J].塑料工业:2008.36:61-63.
    2.余天石,黄志明,朱云新等.氯乙烯-丙烯腈共聚物二氧化硅纳米复合材料的制备[J].聚氯乙烯:2008.36(8):8-10.
    3.丁贺玮,黄朝晖,秦开明等.A12O3-MgO尖晶石-Sialon复合耐火材料的制备[J].稀有金属材料与工程:2007.36(2):83-385.
    4. Xiaohua Qin, Ya Wu, Kemin Wang, et al. In-situ synthesis of exfoliated nanocomposites by photopolymerization using a novel montmorillonite-anchored initiator[J]. Appl. Clay Sci.:2009.45:133-138.
    5. Cevdet Kaynak, G. Ipek Nakas, Nihat Ali Isitman. Mechianical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites[J]. Appl. Clay Sci.:2009.46:319-324.
    6.李雪梅,廖立兵,李瑞等.氯化铵-乙醇法测定蛭石的阳离子交换容量[J].盐矿测试:2008.27(3):204-206.
    7. 毛庆辉.有机/无机复合材料的制备及其阻燃性能研究[D].东华大学:2010.
    8. D. G. H. Ballard, G. R. Rideal. Flexible inorganic films and coatings[J]. J. Mater. Sci.:1983.18:545-561.
    9.刘福生,彭同江,张宝述等.我国工业蛭石矿床地质特征及其成因类型探讨[J].中国非金属矿工业导刊:2004.3:48-51.
    10.霍小旭,王丽娟,廖立兵.新疆尉犁蛭石的物相组成[J].硅酸盐学报:2011.39(9):1517-1522.
    11. Ke Yin, Hanlie Hong, Gordon Jock Churchman, et al. Hydroxy-interlayered vermiculite genesis in Jiujiang late-Pleistocene red earth sediments and significance to climate[J]. Appl. Clay Sci.,2012, Doi: 10.1016/j.clay.2012.09.017.
    12. Young Dong Noh, Sridhar Komarneni, Kenneth J.D. Mackenzie. Highly charged swelling micas of different charge densities:Synthesis, characterization, and selectivity for Sr and Ba[J]. Sep. Purif. Technol.,2012, Doi: 10.1016/j.seppur.2012.11.028.
    13. David A. Laird. Influence of layer charge on swelling of smectites[J]. Appl. Clay Sci.:2006.34:74-87.
    14. Ishida Y, Ogasawara T, Yokota R. Development of highly soluble addition-type imide oligomers for matrix of carbon fiber composite(I):imide oligomers based on asymmetric biphenyltetracarboxylic dianhydride and 9,9-bis(4-aminophenyl) fluorene[J]. High Perform. Polym.:2006.18:727-737.
    15.王景芹,李丹东,郑连波等.烷基季铵盐改性膨润土的膨胀性[J].辽宁石油化工大学学报:2006.26(3):27-30.
    16. M. C. Jimenez de Haro, L. A. Perez Maqueda, E. T. Stepkowska. The influence of exchangeable cation on thermal behavior of ground vermiculite[J]. J. Therm. Anal. Calorim.:2003.71:761-771.
    17. Breitmeir U. Bailey AI. Interaction forces between mica surfaces at small separations in polar and non-polar liquids[J]. Surf. Sci.:1979.89(1-3):191-195.
    18. A. I. Bailey, H. Daniels. The determination of the intermolecular forces of attraction between macroscopic bodies for separations down to the contact point[J]. J. Phys. Chem.:1973.77(4):501-515.
    19. Yu-Chin Li, Sarah Mannen, Alexander B. Morgan, et al. Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric[J]. Adv. Mater.:2011.23(34):3926-3931.
    20.任庆利,罗强,吴洪才等.镁铝摩尔比对水滑石电缆阻燃剂热性能的影响[J].绝缘材料:2001.6:22-27.
    21. S. Nihal, O. Emel, O. Serap, et al. Preparation of phase change material-montmorillonite composites suitable for thermal energy storage[J], Thermochimica Acta:2011.524:39-46.
    22.习永广,彭同江.膨胀蛭石/石膏复合保温材料的制备与表征[J].复合材料学报:2011.28(5):156-161.
    23. S. A. Suvorov, V. V. Skurikhin. A physicochemical study of properties of integrated high-temperature heat-insulating materials[J]. Refract. Ind. Cerarn.: 2004.45(3):165-171.
    24. S. Takahashi, H.A. Goldberg, C.A. Feeney, et al. Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings[J]. Polymer:2006.47:3083-3093.
    1. S. Ramakrishna, Zheng Ming Huang, H. M. Yew. Development of a novel flexible composite material[J]. J. Mater. Process. Tech.:1999.89-90:473-477.
    2. Ee H. Yii, Andrew H. Buchanan, Charles M. Fleischmann. Simulating the effects of fuel type and geometry on post-flashover fire temperatures [J]. Fire Safety J.: 2006.41:62-75.
    3. C. R. Barnett. BFD curve:a new empirical model for fire compartment temperature [J]. Fire Safety J.:2002.37:437-463.
    4. David A. Laird. Influence of layer charge on swelling of smectites[J]. Appl. Clay Sci.e:2006.34:74-87.
    5. Dongkyu Lee, Kookheon Char. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites[J]. Polym. Degrad. Stabil.: 2002.75:555-560.
    6. Nihal Sarier, Emel Onder, Serap Ozay, et al. Preparation of phase change material-montmorillonite composites suitable for thermal energy storage[J]. Thermochim. Acta:2011.524:39-46.
    7. C. Del Hoyo, V. Rives, M. A. Vicente. Thermal studies of pharmaceutical-clay systems Part I. Montmorillonite-based systems[J]. Thermochim.Acta:1996.286: 89-103.
    8. Hyun-Jeong Nam, Takeo Ebina, Ryo Ishii, et al. Influence of coexistent salt on hydrothermal synthesis of smectite and film-formability of the smectite[J]. Appl. Clay Sci.:2009.46:209-215.
    9. Kazunori Kawasaki, Takeo Ebina, Fujio Mizukami, et al. Development of flexible organo-saponite films and their transparency at high temperature [J]. Appl. Clay Sci.,2010, DOI:10.1016/j. clay.2009.12.006.
    10. Breitmeir U. Bailey AI. Interaction forces between mica surfaces at small separations in polar and non-polar liquids[J]. Surf. Sci.:1979.89(1-3):191-195.
    11. A. I. Bailey, H. Daniels. The determination of the intermolecular forces of attraction between macroscopic bodies for separations down to the contact point[J]. J. Phys. Chem.:1973.77(4):501-515.
    12. Yu-Chin Li, Sarah Mannen, Alexander B. Morgan, et al. Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric[J]. Adv. Mater.:2011.23(34):3926-3931.
    13. D. G. H. Ballard, G. R. Rideal. Flexible inorganic films and coatings[J]. J. Mater. Sci.:1983.18:545-561.
    14. Hyun-Jeong Nam, Ryo Ishii, Takeo Ebina, et al. Flexible transparent self-standing binderless clay film prepared by hydrothermally-treated synthetic clay[J]. Mater. Lett.:2009.63:54-57.
    15. Jianxi Zhu, Tong Wang, Runliang Zhu, et al. Expansion characteristics of organo montmorillonite during the intercalation, aging, drying and rehydration processes: Effect of surfactant/CEC ratio[J]. Colloids and surfaces A:Physi.:2011.384: 401-407.
    16. R. Bongiovanni, D. Mazza, S. Ronchetti, et al. The influence of water on the intercalation of epoxy monomers in Na-montmorillonite[J]. J. Colloid Interf. Sci.: 2006.296:515-519.
    17. W. Oueslati, H. Ben Rhaiem, A. Ben Haj Amara. XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations[J]. Desalination:2011.271:139-149.
    18.刘月妙,蔡美峰,王驹.高放废物处置库缓冲材料导热性能研究[J].岩石力学与工程学报:2007.26:3891-3896.
    19. A. Leszczynska, J. Njuguna, K. Pielichowski, et al. Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement[J]. Thermochim. Acta:2007.453:75-96.
    20. S.S. Han, W. K. Chow. Calculating FED and LC50 for testing toxicity of materials in beach-scale tests with a cone calorimeter[J]. Polym. Test.:2005.24:920-924.
    21. V. Babrauskas, R. Peacock, Heat release rate:the single most important variable in fire hazard[J]. Fire Safety J.:1992.18:255-272.
    22. B. Schartel, U. Braun, U. Schwarz, et al. Fire retardancy of polypropylene/flax blends[J]. Polymer:2003.44:6241-6250.
    23. T. M. Kotresh, R. Indushekar, M. S. Subbulakshmi, et al. Evaluation of foam/single and multiple layer Nomex fabric combinations in the cone calorimeter[J]. Polym. Test.:2005.24:607-612.
    24. K. P. Pramoda, T. S. Chung, S. L. Liu. Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers[J]. Polym. Degrad. Stabil.:2000.67:365-374.
    25. J. Zhu, F. M. Uhl, A. B. Morgan, C. A. Wilkie. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chem. Mater.:2001.13:4649-4654.
    26. Laia Haurie, Ana Ines Fernandez, Jose Ignacio Velasco, et al. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures[J]. Polym. Degrad. Stabil.:2007.92:1082-1087.
    27. R. Kotsilkova, V. Petkova, Y. Pelovski, et al. Thermal analysis of polymer-silicate nanocomposites[J]. J. Therm. Anal. Calorim.:2001.64:591-598.
    28. Zhang X, Guo F, Chen J, et al. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites[J]. Polym. Degrad. Stabil.:2005.87:411-418.
    29. Hull TR, Price D, Liu Y, et al. An investigation into the decomposition and burning behaviour of ethylene-vinyl acetate copolymer nanocomposite materials[J]. Polym. Degrad. Stabil.:2003.82:365-371.
    30. R. V. Petrella. The assessment of full-scale fire hazards from cone calorimeter data[J]. J. Fire Sci.:1994.12(1):14-43.
    31. Jie Feng, Jianwei Hao, Jianxin Du, et al. Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite[J]. Polym. Degrad. Stabil.:2012.97:605-614.
    32. Maosheng Xia, Yinshan Jiang, Lei Zhao, et al. Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite[J]. Colloids and Surfaces A:Physi.:2010.356:1-9.
    33. M. A. Cardenal, D. Garcia-Lopez, I. Gobernado-Mitre, et al. Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites-Effect of particle size and surface treatment of ATH filler[J]. Polym. Degrad. Stabil.:2008.93:2032-2037.
    34. O. Yilmaz, C. N. Cheaburu, D. Durraccio, et al. Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization:Effect of clay types[J]. Appl. Clay Sci.:2010.49:288-297.
    35. Fauze A. Aouada, Luiz H. C. Mattoso, Elson Longo. New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites[J]. Ind. Crop. Prod.:2011.34:1502-1508.
    36. Shaya Mahmoudian, Mat Uzir Wahit, A. F. Ismail, et al. Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids[J]. Carbohyd. Polym.:2012.88:1251-1257.
    1. Yihang Lv, Hui Ma, Dongdong Gao, et al. The synthesis and adhesive performance of the poly(N-benzyloxycarbonyl-3,4-dihydroxyphenylalanine) derived form 3,4-dihydroxyphenylalanine[J]. J. Adhes. Sci. Technol.:2013.27(1): 81-89.
    2. Bart van Duffel, Robert A. Schoonheydt. Multilayered clay films:atomic force microscopy study and modeling[J]. Langmuir:1999.15:7520-7529.
    3. S. Lantenois, R. Champallier, J.-M. Beny, et al. Hydrothermal synthesis and characterization of dioctahedral smectites:A montmorillonites series[J]. Appl. Clay Sci.:2008.38:165-178.
    4. Pingxiao Wu, Honghai Wu, Rong Li. The microstructural study of thermal treatment montmorillonite from Heping, China[J]. Spectrochimica Acta Part A: 2005.61:3020-3025.
    5. Z. Klika, P. Capkova, P. Horakova, et al. Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue[J]. J.Colloid Interf. Sci.:2007.311:14-23.
    6. Hongping He, Yuehong Ma, Jianxi Zhu, et al. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration[J]. Appl. Clay Sci.:2010.48:67-72.
    7. H. Lee, B. P. Lee, P. B. Messersmith. A reversible wet/dry adhesive inspired by mussels and geckos[J]. Nature:2007.448:338-341.
    8. H. Lee, S. M. Dellatore, W. M. Miller, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science:2007.318:426-430.
    9. O. Yilmaz, C. N. Cheaburu, D. Durraccio, et al. Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization:Effect of clay types[J]. Appl. Clay Sci.:2010.49:288-297.
    10. Fauze A. Aouada, Luiz H. C. Mattoso, Elson Longo. New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites[J]. Ind. Crop. Prod.:2011.34:1502-1508.
    11. Shaya Mahmoudian, Mat Uzir Wahit, A. F. Ismail, et al. Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids[J]. Carbohyd. Polym.:2012.88:1251-1257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700