用户名: 密码: 验证码:
电沉积Sol-gel技术及其在材料表面功能化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅烷sol-gel材料在金属腐蚀防护、光学及光催化材料、电分析和生物传感器等领域有着广泛应用。传统浸涂或旋涂法制备硅烷sol-gel薄膜过程中,受成膜动力学的限制,得到的薄膜较薄、可调控性差。基于阴极局部碱化促进硅烷sol-gel成膜的电沉积法的引入,有效地解决了这个问题。目前,电沉积硅烷sol-gel薄膜的研究主要侧重于电分析和生物传感器材料的制备。本论文中,研究了硅烷sol-gel薄膜电沉积过程中若干基础问题,在此基础上成功制备得到了具有梯度结构的sol-gel薄膜;提出采用一步电沉积技术制备金属锌掺杂的硅烷膜和硅烷掺杂的电泳漆涂层用于金属防护;提出以电沉积无机Si02为模板制备电催化活性提高的多孔薄膜材料;采用两步法或一步法实现了电沉积sol-gel薄膜的超疏水化,拓展了电沉积硅烷sol-gel薄膜的应用。
     本论文主要研究工作包括:
     (1)研究了电沉积sol-gel薄膜的若干基础问题。采用EQCM原位监测电沉积硅烷sol-gel薄膜成膜过程,提出了硅烷sol-gel成膜过程分为“诱导成膜期”——慢速生长期——快速生长期三个步骤,其中“诱导成膜期”的长短取决于施加的电极电位。理论计算发现,不同电位下,薄膜开始形成时电极表面pH均在9.8左右,而薄膜的孔隙率随沉积电位负移而增大。气体吸脱附实验表明沉积电位越负,所得薄膜的比表面积越小,而荧光染料吸附试验表明,沉积电位越负,所得sol-gel薄膜的吸附能力越强。在此基础上,提出并实现了电沉积制备具有横向梯度结构的硅烷sol-gel薄膜。
     (2)硅烷电沉积在金属防护中的应用。主要包括两个方面:一、利用阴极电位下,前驱体中锌离子发生还原生成金属锌单质;同时,H2O、O2或N03-离子还原生成的OH-可提高阴极局部pH,促进硅烷成膜,从而实现一步电化学共沉积制备金属锌掺杂的硅烷膜。EIS、开路电位、湿热试验及铁离子溶出实验均表明,掺杂金属锌可提高硅烷膜的耐蚀性能,XPS确定了复合膜中锌以金属锌单质的形态存在。二、利用阳离子环氧树脂和硅烷均可在阴极电位下成膜的共同点,一步阴极电泳沉积构建硅烷掺杂的电泳漆“超级涂层”用于镀锌钢的腐蚀防护。EIS测试表明,掺杂少量硅烷(0.3wt.%BTSE或0.5wt.%MTMS)可显著提高电泳漆涂层的耐蚀性能,降低涂层的吸水率,提高涂层的机械性能和疏水性,FTIR测试表明掺杂的硅烷组分可在金属/涂层界面优先富集,起到提高涂层与基体结合力的作用。
     (3)电沉积SiO2模板技术在纳米多孔电极材料制备中的应用。首先,一步电沉积制备SiO2/Ni或SiO2/Co3O4复合膜,然后,在KOH溶液中经过循环伏安处理,得到多孔Ni或多孔Co3O4薄膜。SEM和TEM测试表明,以SiO2为模板制备的Ni或Co3O4薄膜多孔性增大,FTIR, EDX点能谱和面能谱证明碱液中循环伏安处理可有效去除复合膜中的SiO2组分,电化学测试(LSV和CV)表明采用该法制备的多孔Ni和多孔Co3O4薄膜电极用于超级电容器及碱性和中性环境下析氧阳极时电催化活性均显著提高。
     (4)电沉积超疏水sol-gel薄膜及其性能研究。主要包括两个方面:一、利用电沉积无机SiO2薄膜高度粗糙多孔的性质,结合长链烷基硅氧烷良好疏水性的特点,采用两步法制备得到了超疏水siO2薄膜。SEM图片和表面轮廓仪测试表明改变沉积时间和施加电位,可有效调控薄膜的厚度、粗糙度及疏水性。此外,还研究了基体和表面活性剂对超疏水SiO2薄膜的影响。二、一步电沉积制备超疏水有机硅烷sol-gel薄膜和无机-有机复合硅烷sol-gel薄膜。无机SiO2组分的引入可有效提高超疏水薄膜的热稳定性、酸碱稳定性和机械强度。
Silane sol-gel materials have been widely used in corrosion protection of metal, optical and photocatalytic materials, electroanalysis and biosensors, etc. Due to the limited by the dynamics for the formation of silane films, the dip-coated and spin-coated films are very thin and poor in regulating. The novel electrodeposition method, which is based on the facilitation of silane sol-gel film by cathodic generated OH-ions, effectively solved this problem. Nowadays, the research on electrodeposited silane sol-gel films are mainly focused on electroanalysis and biosensors. In this thesis, some fundamental issues in the electrodeposition of silane sol-gel films were investigated. Based on this, gradient sol-gel films were fabricated. One-step preparation of zinc doped silane films and silane incorporated electrophoretic coating were proposed for the corrosion protection of metals. Porous functional film materials based on electrodeposited SiO2as template were proposed. And superhydrophobic sol-gel films have been fabricated via two-step or one-step, which expanded the application of electrodeposited silane sol-gel films. The main contents are listed as follows:(1) Some fundamental issues in the electrodeposition of silane sol-gel films were
     investigated. EQCM was used for in-situ monitoring the deposition process of silane sol-gel film. We divided the formation of silane sol-gel film into three stages:the introduction of film formation stage, low growing rate stage and faster gelification stage. The period of the introduction of film formation stage is dependent on the applied potentials. Theoretic calculation results show that the sol-gel films can be generated when the pH near the electrode surface reached to~9.8, and the porosity of the film increases with the deposition potential shift negatively. N2absorption and desorption test indicates that the more negative potential applied, the smaller of the specific surface area of the films. While fluorescent dye adsorption test results show that more dye would be loaded on the films prepared at more negative potentials. Based on the results, gradient silane sol-gel films were fabricated.
     (2) Silane electrodeposition for the corrosion protection of metals. Firstly, based on the doped zinc ions in the precursor would be reduced to zinc under cathodic potential, and the generated OH-ions due to the reduction of H2O, O2and/or NO3-could facilitate the formation of silane films, zinc-doped silane films were fabricated via one-step electrodeposition. EIS, open circuit potential, wet heat test and iron ions dissolving test show that the corrosion protection property would be enhanced due to the doped zinc. XPS further indicates the existence of metallic zinc in the hybrid films. Secondly, based on both cationic epoxy resin and silane film could be formed under cathodic potential, silane incorporated electrophoretic coating were fabricated via one-step for the corrosion protection of galvanized steel. EIS test results show that the incorporation of tiny amount silane (0.3wt.%BTSE or0.5wt.%MTMS) could significantly enhance the corrosion protection property, reduce water uptake, improve hydrophobicity and mechanical property of the coating. FITR further indicates the silane-enriched layer preferentially formed on the metal/coating interface could improve the adhesion between the coating and substrate.
     (3) Electrodeposition of SiO2template technology and its application in the preparation of nano-porous materials. Firstly, the preparation of electrocatalytic activity enhanced porous films based on electrodeposited SiO2as templates. At first, one-step electrodeposition of SiO2/Ni or SiO2/Co3O4hybrid films, then porous Ni or Co3O4films could be formed by consecutive CV scans in KOH solution. SEM and TEM indicate the the porosity of the obtained Ni or Co3O4films are improved. FTIR and EDX show that the silica component could be removed completely by repeated CV scans in KOH solution. Electrochemical test (CV and LSV) demonstrate that the electrocatalytic activity and specific capacity of these porous Ni or Co3O4films are obviously improved.
     (4) Electrodeposition of superhydrophobic sol-gel films and the study of its performance. Firstly, the fabrication of superhydrophobic sol-gel films based on the highly porous E-SiO2film and environmental friendly hydrophobic alkoxysilane via two-step. SEM images and profiler tests show the thickness, roughness and hydrophobicity of the sol-gel films could be regulated easily by altering the electrolysis time and applied potential. What's more, the influence of substrate and surfactant on the superhydrophobic films are also investigated. Secondly, one-step fabrication of superhydrophobic organic silane films and inorganic and organic hybrid silane films. It is found that the thermal stability, chemical stability and mechanical strength of the superhydrophobic films can be significantly improved due to the introduction of inorganic SiO2component.
引文
[1]Hench L. L., West J. K., The sol-gel process, Chem. Rev.,1990,90,33-72.
    [2]Brinker C. J., Scherer G W., Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York,1990.
    [3]黄剑锋,溶胶-凝胶原理与技术,化学工业出版社,北京,2005.
    [4]Ebelmen M., Untersuchungen fiber die Verbindung der Borsaure und Kieselsaure mit. Aether, Ann. Chim. Phys.,1845,15,319-355.
    [5]Ebelmen M., Sur les combinaisons des acides borique avec les ethers, Ann. Chim. Phys.,1846,16,129.
    [6]Ebelmen M., Sur 1'hyalite artificielle et l'hydrophane, C. R. Acad. Sci.,1847,24,854.
    [7]Graham T., On the Properties of Silicic Acid and other Analogous Colloidal Substances, Proceedings of the Royal Society of London,1863,13,335-341.
    [8]Geffcken W., Berger E., German Patent,1939, p.411.
    [9]Roy R., Aids in Hydrothermal Experimentation:II, Methods of Making Mixtures for Both "Dry" and "Wet" Phase Equilibrium Studies, J. Am. Ceram. Soc.,1956,39, 145-146.
    [10]Roy R., Gel Route to Homogeneous Glass Preparation, J. Am. Ceram. Soc.,1969,52, 344.344.
    [11]McCarthy G. J., Roy R., Gel Route to Homogeneous Glass Preparation:Ⅱ, Gelling and Desiccation, J. Am. Ceram. Soc.,1971,54,639-640.
    [12]Stober W., Fink A., Bohn E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci.,1968,26,62-69.
    [13]Dislich H., New Routes to Multicomponent Oxide Glasses, Angew. Chem. Int. Ed., 1971,10,363-370.
    [14]Dislich H., Hinz P., History and principles of the sol-gel process, and some new multicomponent oxide coatings, J. Non-cryst. Solids.,1982,48,11-16.
    [15]Corriu R. J. P., Leclercq D., Recent Developments of Molecular Chemistry for Sol-Gel Processes, Angew. Chem. Int. Ed.,1996,35,1420-1436.
    [16]Nakanishi K., Tanaka N., Sol-Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations, Accounts. Chem. Res.,2007,40,863-873.
    [17]Trewyn B. G, Slowing I. I., Giri S., Chen H.-T., Lin V. S. Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release, Accounts. Chem. Res.,2007,40,846-853.
    [18]Leventis N., Three-Dimensional Core-Shell Superstructures:Mechanically Strong Aerogels, Accounts. Chem. Res.,2007,40,874-884.
    [19]Mackenzie J. D., Bescher E. P., Chemical Routes in the Synthesis of Nanomaterials Using the Sol-Gel Process, Accounts. Chem. Res.,2007,40,810-818.
    [20]Advances in Sol-Gel Derived Materials and Technologies, Springer.
    [21]Wang J., Pamidi P. V. A., Zanette D. R., Self-Assembled Silica Gel Networks, J. Am. Chem. Soc.,1998,120,5852-5853.
    [22]Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature,1992,359,710-712.
    [23]Morris C. A., Anderson M. L., Stroud R. M., Merzbacher C. I., Rolison D. R., Silica Sol as a Nanoglue:Flexible Synthesis of Composite Aerogels, Science,1999,284, 622-624.
    [24]Templin M., Franck A., Du Chesne A., Leist H., Zhang Y., Ulrich R., Schadler V., Wiesner U., Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases, Science,1997,278,1795-1798.
    [25]Zheludkevich M. L., Salvado I. M., Ferreira M. G S., Sol-gel coatings for corrosion protection of metals, Journal Of Materials Chemistry,2005,15,5099-5111.
    [26]Brinker C. J., Scherer G W., in Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing. Chapter 3:Hydrolysis and condensation Ⅱ:Silicates Academic Press, New York,1990.
    [27]Dislich H., Hussmann E., Amorphous and crystalline dip coatings obtained from organometallic solutions:Procedures, chemical processes and products, Thin Solid Films,1981,77,129-140.
    [28]Brinker C. J., Scherer G W., in Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing. Chapter 2:Hydrolysis and condensation I:Nonsilicates, Academic Press, New York,1990.
    [29]Kang D. J., Bae B.-S., Photo-imageable Sol-Gel Hybrid Materials for Simple Fabrication of Micro-optical Elements, Accounts. Chem. Res.,2007,40,903-912.
    [30]梁发思,谢世杰,硅烷和钛酸酯偶联剂,上海科学技术文献出版社,上海,1987.
    [31]鞠熀先,电分析化学与生物传感技术,科学出版社,北京,2006.
    [32]Walcarius A., Electrochemical applications of silica-based organic-inorganic hybrid materials, Chemistry Of Materials,2001,13,3351-3372.
    [33]Walcarius A., Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials, Electroanalysis,2001,13,701-718.
    [34]Tran-Thi T.-H., Dagnelie R., Crunaire S., Nicole L., Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors, Chem. Soc. Rev.,2011,40, 621-639.
    [35]C.Warren S., Perkins M., Adams A. M., Kamperman M., Burns A., Arora H., Herz E., Suteewong T., Sai H., Li Z., JorgWerner, Song J., UlrikeWerner-Zwanziger, Zwanziger J., Gratzel M., DiSalvo F. J., UlrichWiesner, A silica sol-gel design strategy for nanostructured metallic materials, Nat. Mater.,2012,11,460-467.
    [36]van Ooij W. J., Zhu D., Stacy M., Seth A., Mugada T., Gandhi J., Puomi P., Corrosion Protection Properties of Organofunctional Silanes-An Overview, Tsinghua Science & Technology,2005,10,639-664.
    [37]van Ooij W. J., Child T., Protecting metals with silane coupling agents, Chemtech, 1998,28,26-35.
    [38]Palanivel V. M., Modified silane thin films as an alternative to chromates for corrosion protection of AA2024 alloy.[Master], Cincinnati, University of Cincinnati, 2003.
    [39]Yang L., Corrosion Inhibitor System for Superprimer Coatings on Aerospace Alloys. [Master], Cincinnati, University of Cincinnati,2005.
    [40]Zhu D., Corrosion protection of metals by silane surface treatment.[Ph. D.], Cincinnati, University of Cincinnati,2005.
    [41]Franquet A., Terryn H., Vereecken J., Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry, Thin Solid Films,2003,441,76-84.
    [42]Wang D., Bierwagen G. P., Sol-gel coatings on metals for corrosion protection, Progress In Organic Coatings,2009,64,327-338.
    [43]Balgude D., Sabnis A., Sol-gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys, Journal of Sol-Gel Science and Technology,2012,64,124-134.
    [44]Rawolle M., Niedermeier M. A., Kaune G., Perlich J., Lellig P., Memesa M., Cheng Y.-J., Gutmann J. S., Muller-Buschbaum P., Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials, Chem. Soc. Rev.,2012,41,5131-5142.
    [45]Yaacoub S., Calas S., Jabbour J., Tauk R., Zaouk D., Khoury A., Etienne P., Study of the mechanical properties of two organic-inorganic hybrid systems: GPTMS/colloidal silica and GPTMS/TEOS, J. Non-cryst. Solids.,2012,358, 3036-3041.
    [46]Lamaka S. V., Montemor M. F., Galio A. F., Zheludkevich M. L., Trindade C., Dick L. F., Ferreira M. G. S., Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochimica Acta,2008,53,4773-4783.
    [47]Li Y.-S., Vecchio N. E., Wang Y, McNutt C., Vibrational spectra of metals treated with allyltrimethoxysilane sol-gel and self-assembled monolayer of allytrichlorosilane, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,67,598-603.
    [48]Brinker C. J., Frye G. C., Hurd A. J., Ashley C. S., Fundamentals of sol-gel dip coating, Thin Solid Films,1991,201,97-108.
    [49]Ooij W. J. V., Sabata A., Characterization of films of organofunctional silanes by TOFSIMS and XPS, J. Adhes. Sci. Technol.,1991,5,843-863.
    [50]Yuan W., van Ooij W. J., Characterization of Organofunctional Silane Films on Zinc Substrates, J. Colloid Interf. Sci.,1997,185,197-209.
    [51]Subramanian V., van Ooij W. J., Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes, Corrosion,1998,54, 204-215.
    [52]Subramanian V., van Ooij W. J., Silane based metal pretreatments as alternatives to chromating, Surface Engineering,1999,15,168-172.
    [53]van Ooij W. J., Zhu D. Q., Prasad G., Jayaseelan S., Fu Y, Teredesai N., Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding, Surface Engineering,2000,16,386-396.
    [54]van Ooij W. J., Zhu D., Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 substrates, Corrosion,2001,57, 413-427.
    [55]Bexell U., Grehk T. M., A corrosion study of hot-dip galvanized steel sheet pre-treated with [gamma]-mercaptopropyltrimethoxysilane, Surf. Coat. Technol., 2007,201,4734-4742.
    [56]Palomino L. M., Suegama P. H., Aoki I. V., Montemor M. F., De Melo H. G., Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3, Corrosion Science,2009,51,1238-1250.
    [57]Palomino L. E. M., Suegama P. H., Aoki I. V., Paszti Z., de Melo H. G., Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl, Electrochimica Acta,2007,52,7496-7505.
    [58]Trabelsi W., Cecilio P., Ferreira M. G. S., Montemor M. F., Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates, Progress in Organic Coatings,2005,54, 276-284.
    [59]Trabelsi W., Cecilio P., Ferreira M. G. S., Yasakau K., Zheludkevich M. L., Montemor M. F., Surface evaluation and electrochemical behaviour of doped silane pre-treatments on galvanised steel substrates, Progress in Organic Coatings,2007,59, 214-223.
    [60]Trabelsi W., Triki E., Dhouibi L., Ferreira M. G. S., Zheludkevich M. L., Montemor M. F., The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates, Surface & Coatings Technology, 2006,200,4240-4250.
    [61]Montemor M. E., Feffeira M. G. S., Cerium salt activated nanoparticles as fillers for silane films:Evaluation of the corrosion inhibition performance on galvanised steel substrates, Electrochimica Acta,2007,52,6976-6987.
    [62]Montemor M. F., Ferreira M. G. S., Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates, Prog. Org. Coat.,2008,63,330-337.
    [63]Montemor M. F., Trabelsi W., Lamaka S. V., Yasakau K. A., Zheludkevich M. L., Bastos A. C., Ferreira M. G S., The synergistic combination of bis-silane and CeO2-ZrO2 nanoparticles on the electrochemical behavior of galvanized steel in NaCl solutions, Electrochimica Acta,2008,53,5913-5922.
    [64]Montemor M. F., Pinto R., Ferreira M. G S., Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles, Electrochimica Acta, 2009,54,5179-5189.
    [65]Montemor M. F., Ferreira M. G. S., Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy, Electrochim. Acta,2007,52,7486-7495.
    [66]Montemor M. F., Simoes A. M., Carmezim M. J., Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection, Appl. Surf. Sci.,2007,253,6922-6931.
    [67]Shchukin D. G, Zheludkevich M., Yasakau K., Lamaka S., Ferreira M. G. S., Mohwald H., Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Advanced Materials,2006,18,1672-1678.
    [68]Paussa L., Rosero-Navarro N. C., Andreatta F., Castro Y, Duran A., Aparicio M., Fedrizzi L., Inhibition effect of cerium in hybrid sol-gel films on aluminium alloy AA2024, Surface and Interface Analysis,2010,42,299-305.
    [69]Rosero-Navarro N. C., Pellice S. A., Duran A., Aparicio M., Effects of Ce-containing sol-gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024, Corrosion Science,2008,50,1283-1291.
    [70]Zheludkevich M. L., Serra R., Montemor M. F., Yasakau K. A., Salvado I. M. M., Ferreira M. G. S., Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3-Corrosion protection performance, Electrochimica Acta,2005,51,208-217.
    [71]Deepa P. N., Kanungo M., Claycomb G., Sherwood P. M. A., Collinson M. M., Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design, Anal. Chem.,2003,75,5399-5405.
    [72]Shapiro L., Marx S., Mandler D., Preparation and characterization of ultra-thin sol-gel films, Thin Solid Films,2007,515,4624-4628.
    [73]Bexell U., Olsson M., Time-of-flight SIMS characterization of hydrolysed organofunctional and non-organofunctional silanes deposited on Al, Zn and Al-43.4Zn-1.6Si alloy-coated steel, Surf. Interface. Anal.,2003,35,880-887.
    [74]刘惊,硅烷sol-gel薄膜及含硅烷的聚合物涂层的电沉积研究.[博士],杭州,浙江大学,2010.
    [75]刘惊,胡吉明,金属表面硅烷化防护处理及其研究现状,中国腐蚀与防护学报,2006,26,59-64.
    [76]Walcarius A., Sibottier E., Electrochemically-induced deposition of amine-functionalized silica films on gold electrodes and application to Cu(II) detection in (hydro)alcoholic medium, Electroanalysis,2005,17,1716-1726.
    [77]Gandhi J. S., Metroke T. L., Eastman M. A., van Ooij W. J., Apblett A., Effect of the degree of hydrolysis and condensation of bis-[triethoxysilylpropyl]tetrasulfide on the corrosion protection of coated aluminum Alloy 2024-T3, Corrosion,2006,62, 612-623.
    [78]Zhu D. Q., van Ooij W. J., Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine, Electrochim. Acta,2004,49,1113-1125.
    [79]Franquet A., Terryn H., Vereecken J., Study of the effect of different aluminium surface pretreatments on the deposition of thin non-functional silane coatings, Surf. Interface. Anal.,2004,36,681-684.
    [80]Shacham R., Avnir D., Mandler D., Electrodeposition of methylated sol-gel films on conducting surfaces, Advanced Materials,1999,11,384-388.
    [81]Woo H., Reucroft P. J., Jacob R. J., Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding.J. Adhes. Sci. Technol.,1993,7,17.
    [82]Walcarius A., Sibottier E., Etienne M., Ghanbaja J., Electrochemically assisted self-assembly of mesoporous silica thin films, Nature Materials,2007,6,602-608.
    [83]Sayen S., Walcarius A., Electro-assisted generation of functionalized silica films on gold, Electrochemistry Communications,2003,5,341-348.
    [84]Goux A., Etienne M., Aubert E., Lecomte C., Ghanbaja J., Walcarius A., Oriented Mesoporous Silica Films Obtained by Electro-Assisted Self-Assembly (EASA), Chemistry Of Materials,2009,21,731-741.
    [85]Ding S. Z., Liu L. A., Hu J. M., Zhang J. Q., Cao C. N., Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films, Scripta Materialia,2008,59,297-300.
    [86]张卫民,胡吉明,硅烷膜的阴极电化学辅助沉积及其防护性能,金属学报,2006,42,295-298.
    [87]Niedziolka J., Opallo M., Electrochemically assisted sol-gel process at a three phase junction, Electrochem. Commun.,2008,10,1445-1447.
    [88]Herzog G, Sibottier E., Etienne M., Walcarius A., Electrochemically assisted self-assembly of ordered and functionalized mesoporous silica films:impact of the electrode geometry and size on film formation and properties, Faraday Discuss,2013, 164,259-273.
    [89]Shacham R., Avnir D., Mandler D., Electrodeposition of dye-doped titania thin films, Journal Of Sol-gel Science and Technology,2004,31,329-334.
    [90]Collinson M. M., Higgins D. A., Kommidi R., Campbell-Rance D., Electrodeposited silicate films:Importance of supporting electrolyte, Anal. Chem.,2008,80,651-656.
    [91]Liu L., Hu J. M., Zhang J.-Q., Cao C.-N., Comment on Electrodeposited Silicate Films:Importance of Supporting Electrolyte, Analytical Chemistry,2009,81, 3199-3200.
    [92]胡吉明,杨亚琴,张鉴清,曹楚南,电沉积防护性硅烷薄膜的研究现状与展望, 中国腐蚀与防护学报,2011,31,1-8.
    [93]Collinson M. M., Moore N., Deepa P. N., Kanungo M., Electrodeposition of porous silicate films from ludox colloidal silicae, Langmuir,2003,19,7669-7672.
    [94]Collinson M. M., Electrochemistry:An Important Tool To Study and Create New Sol-Gel-Derived Materials, Accounts. Chem. Res.,2007,40,777-783.
    [95]Gandhi J. S., Singh S., Van Ooij W. J., Puomi P., Evidence for formation of metallo-siloxane bonds by comparison of dip-coated and electrodeposited silane films, J. Adhes. Sci. Technol.,2006,20,1741-1768.
    [96]Batan A., Mine N., Douhard B., Brusciotti F., De Graeve I., Vereecken J., Wenkin M., Piens M., Terryn H., Pireaux J. J., Reniers F., Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium, Chem. Phys. Lett.,2010,493, 107-112.
    [97]Hu J. M., Liu L., Zhang J. Q., Cao C. N., Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy, ElectrochimicaActa,2006,51,3944-3949.
    [98]胡吉明,刘惊,张鉴清,曹楚南,LY12铝合金表面电化学沉积制备DTMS硅烷膜及其耐蚀性研究,高等学校化学学报,2006,27,1121-1125.
    [99]Liu L., Hu J. M., Zhang J. Q., Cao C. N., Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation, ElectrochimicaActa,2006,52,538-545.
    [100]Hu J. M., Liu L., Zhang J. Q., Cao C. N., Electrodeposition of silane films on aluminum alloys for corrosion protection, Progress in Organic Coatings,2007,58, 265-271.
    [101]Liu L., Hu J. M., Leng W. H., Zhang J. Q., Cao C. N., Novel bis-silane/TiO2 bifunctional hybrid films for metal corrosion protection both under ultraviolet irradiation and in the dark, Scripta Materialia,2007,57,549-552.
    [102]Li M., Yang Y. Q., Liu L., Hu J. M., Zhang J. Q., Electro-assisted preparation of dodecyltrimethoxysilane/Ti02 composite films for corrosion protection of AA2024-T3 (aluminum alloy), Electrochim. Acta,2010,55,3008-3014.
    [103]Wu L. K., Liu L., Li J., Hu J. M., Zhang J. Q., Cao C. N., Electrodeposition of cerium (Ⅲ)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection, Surf. Coat. Technol.,2010,204,3920-3926.
    [104]Jiang L.-L., Wu L.-K., Hu J.-M., Zhang J.-Q., Cao C.-N., Electrodeposition of protective organosilane films from a thin layer of precursor solution, Corros. Sci., 2012,60,309-313.
    [105]Sheffer M., Groysman A., Mandler D., Electrodeposition of sol-gel films on Al for corrosion protection, Corrosion Science,2003,45,2893-2904.
    [106]Gandhi J. S., Ooij W. J. v., Improved corrosion protection of aluminum alloys by electrodepositied silanes, J. Mater. Eng. Perform.,2004,13,475-480.
    [107]Wang J., Wu L.-K., Zhou J.-H., Hu J.-M., Zhang J.-Q., Cao C.-N., Construction of a novel painting system using electrodeposited SiO2 film as the pretreatment layer, Corrosion Science,2013,68,57-65.
    [108]Chovelon J. M., Aarch L. E., Charbonnier M., Romand M., Silanization of stainless steel surfaces:Influence of application parameters, J. Adhesion.,1995,50,43-58.
    [109]Chigane M., Ishikawa M., Izaki M., Preparation of Silica Thin Films by Electrolyses of Aqueous Solution, Electrochemical and Solid-State Letters,2002,5, D9-D12.
    [110]Rozhanchuk T., Tananaiko O., Mazurenko I., Etienne M., Walcarius A., Zaitsev V., Electroanalytical properties of haemoglobin in silica-nanocomposite films electrogenerated on pyrolitic graphite electrode, J. Electroanal. Chem.,2009,625, 33-39.
    [111]Nadzhafova O., Etienne M., Walcarius A., Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol-gel silica thin films on glassy carbon, Electrochemistry Communications,2007,9,1189-1195.
    [112]Jia W.-Z., Wang K., Zhu Z.-J., Song H.-T., Xia X.-H., One-Step Immobilization of Glucose Oxidase in a Silica Matrix on a Pt Electrode by an Electrochemically Induced Sol-Gel Process, Langmuir,2007,23,11896-11900.
    [113]Yang S., Jia W.-Z., Qian Q.-Y., Zhou Y.-G, Xia X.-H., Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity, Anal. Chem., 2009,81,3478-3484.
    [114]Li J., Xiao F.-N., Xia X.-H., One-step immobilization of Ru(bpy)32+in a silica matrix for the construction of a solid-state electrochemiluminescent sensor with high performance, Analyst.,2012,137,5245-5250.
    [115]Wu L. K., Hu J. M., Zhang J. Q., Cao C. N., Superhydrophobic surface constructed on electrodeposited sol-gel silica film, Electrochemistry Communications,2013,26, 85-88.
    [116]杨亚琴,改性硅烷溶液的水解及成膜性能研究.[硕士],杭州,浙江大学,2010.
    [117]Ji J., Cooper W. C., Dreisinger D. B., Peters E., Surface pH measurements during nickel electrodeposition, J. Appl. Electrochem.,1995,25,642-650.
    [118]胡吉明,刘惊,铝合金表面BTSE硅烷化处理研究,金属学报,2004,40,1189-1194.
    [119]Luna-Vera R, Dong D., Hamze R., Liu S., Collinson M. M., Electroassisted Fabrication of Free-Standing Silica Structures of Micrometer Size, Chem. Mater., 2012,24,2265-2273.
    [120]Toledano R., Shacham R., Avnir D., Mandler D., Electrochemical co-deposition of sol-gel/metal thin nanocomposite films, Chemistry Of Materials,2008,20, 4276-4283.
    [121]Toledano R., Mandler D., Electrochemical Codeposition of Thin Gold Nanoparticles/Sol-Gel Nanocomposite Films, Chemistry Of Materials,2010,22, 3943-3951.
    [122]Wu L.-K., Hu J.-M., Zhang J.-Q., One step sol-gel electrochemistry for the fabrication of superhydrophobic surfaces, Journal of Materials Chemistry A,2013,1, 14471-14475.
    [123]Kanungo M., Isaacs H. S., Wong S. S., Quantitative Control over Electrodeposition of Silica Films onto Single-Walled Carbon Nanotube Surfaces, J. Phys. Chem. C,2007, 111,17730-17742.
    [124]Okner R., Favaro G., Radko A., Domb A. J., Mandler D., Electrochemical codeposition of sol?gel films on stainless steel:controlling the chemical and physical coating properties of biomedical implants, Physical Chemistry Chemical Physics, 2010,12,15265-15273.
    [125]Xu D., Yu Y, Zheng M., Guo G., Tang Y, Electrochemical fabrication of one-dimensional silica nanostructures, Electrochem. Commun.,2003,5,673-676.
    [126]Poltorak L., Herzog G, Walcarius A., In-situ formation of mesoporous silica films controlled by ion transfer voltammetry at the polarized liquid-liquid interface, Electrochemistry Communications,2013,37,76-79.
    [127]Wu L.-K., Hu J.-M., Zhang J.-Q., Cao C.-N., A silica co-electrodeposition route to highly active Ni-based film electrodes, Journal of Materials Chemistry A,2013,1, 12885-12892.
    [128]Pierre A., Rigacci A., in Aerogels Handbook (Eds.:M. A. Aegerter, N. Leventis, M. M. Koebel), Springer, New York,2011, pp.21-45.
    [129]Shacham R., Mandler D., Avnir D., Electrochemically induced sol-gel deposition of zirconia thin films, Chemistry-a European Journal,2004,10,1936-1943.
    [130]Rance D. C., Electrodeposited silica thin films.[Master], Virginia, Virginia Commonwealth University,2010.
    [131]Wandstrat M. M., Spendel W. U., Pacey G E., Cox J. A., Oxidation of a Phospholipid at an Electrode Modified with an Electrochemically Formed Sol-Gel Film Doped with Cyclodextrin, Electroanal.,2007,19,139-143.
    [132]Wang Z., Etienne M., Poller S., Schuhmann W., Kohring G-W., Mamane V., Walcarius A., Dehydrogenase-Based Reagentless Biosensors:Electrochemically Assisted Deposition of Sol-Gel Thin Films on Functionalized Carbon Nanotubes, Electroanalysis,2012,24,376-385.
    [133]Harrell T. M., Hosticka B., Power M. E., Cemke L., Hull R., Norris P. M., Selective Deposition of Biocompatible Sol-Gel Materials, J. Sol-gel. Sci. Techn.,2004,31, 349-352.
    [134]Gdor E., Mandler D., Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol-gel thin films, Journal Of Materials Chemistry,2011,21,12145.
    [135]Ghach W., Etienne M., Billard P., Jorand F. P. A., Walcarius A., Electrochemically assisted bacteria encapsulation in thin hybrid sol-gel films, Journal of Materials Chemistry B,2013,1,1052-1059.
    [136]Qu F., Nasraoui R., Etienne M., Come Y B. S., Kuhn A., Lenz J., Gajdzik J., Hempelmann R., Walcarius A., Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes, Electrochemistry Communications,2011, 13,138-142.
    [137]Mazurenko I., Etienne M., Ostermann R., Smarsly B. M., Tananaiko O., Zaitsev V., Walcarius A., Controlled electrochemically-assisted deposition of sol-gel biocomposite on electrospun platinum nanofibers, Langmuir,2011,27,7140-7147.
    [138]Lalo H., Bon-Saint-Come Y., Plano B., Etienne M., Walcarius A., Kuhn A., Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures, Langmuir,2012,28,2323-2326.
    [139]Liu L., Mandler D., Electro-assist deposition of binary sol-gel films with graded structure, Electrochimica Acta,2013,102,212-218.
    [140]Salinas-Torres D., Montilla F., Huerta F., Morallon E., All electrochemical synthesis of polyaniline/silica sol-gel materials, Electrochim. Acta,2011,56,3620-3625.
    [141]王钾,利用电沉积SiO2薄膜构建新型防护体系.[硕士],杭州,浙江大学,2012.
    [142]Palmisano G, Mandler D., Ciriminna R., Pagliaro M., Structural insight on organosilica electrodes for waste-free alcohol oxidations, Catalysis Letters,2007,114, 55-58.
    [143]Herlem G, Segut O., Antoniou A., Achilleos C., Dupont D., Blondeau-Patissier V., Gharbi T., Electrodeposition and characterization of silane thin films from 3-(aminopropyl)triethoxysilane, Surf. Coat. Technol.,2008,202,1437-1442.
    [144]Zhang Z., Nie L., Yao S., Electrodeposited sol-gel-imprinted sensing film for cytidine recognition on Au-electrode surface, Talanta,2006,69,435-442.
    [145]Chandrasekaran S., Electrodeposition of bis-silane for the pretreatment of aluminum alloys. [Master], Cincinnati, University of Cincinnati,2006.
    [146]李美,纳米粒子掺杂硅烷薄膜的电化学辅助沉积及其防护性能.[硕士],杭州,浙江大学,2010.
    [147]Mrad M., Montemor M. F., Dhouibi L., Triki E., Deposition of hybrid 3-GPTMS's film on AA2024-T3:Dependence of film morphology and protectiveness performance on coating conditions, Prog. Org. Coat.,2012,73,264-271.
    [148]Seth A., van Ooij W. J., Novel, water-based high-performance primers that can replace metal pretreatments and chromate-containing primers, Journal Of Materials Engineering and Performance,2004,13,468-474.
    [149]Seth A., van Ooij W. J., Puomi P., Yin Z., Ashirgade A., Bafna S., Shivane C., Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals-An overview and mechanistic study, Prog. Org. Coat.,2007,58,136-145.
    [150]Wu L.-K., Zhang J.-T., Hu J.-M., Zhang J.-Q., Improved corrosion performance of electrophoretic coatings by silane addition, Corrosion Science,2012,56,58-66.
    [151]Xue D., Van Ooij W. J., Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings, Prog. Org. Coat.,2013,76,1095-1102.
    [152]Okner R., Domb A. J., Mandler D., Electrochemically deposited poly(ethylene glycol)-based sol-gel thin films on stainless steel stents, New Journal Of Chemistry, 2009,33,1596-1604.
    [153]Sayen S., Walcarius A., Electrochemical modulation of the ligand properties of organically modified mesoporous silicas, Journal Of Electroanalytical Chemistry, 2005,581,70-78.
    [154]Carrington N. A., Yong L., Xue Z.-L., Electrochemical deposition of sol-gel films for enhanced chromium(VI) determination in aqueous solutions, Anal. Chim. Acta,2006, 572,17-24.
    [155]王桂林,王荣,吴霞琴,章宗穰,电沉积硅烷分子印迹膜修饰电极的制备及其应用,电化学,2008,14,130-134.
    [156]Mandler; D., Avnir; D., Shacham R.,2010.
    [157]Wu L.-K., Hu J.-M., A silica co-electrodeposition route to nanoporous Co3O4 film electrode for oxygen evolution reaction, Electrochimica Acta,2014,116,158-163.
    [158]Raveh M., Liu L., Mandler D., Electrochemical co-deposition of conductive polymer-silica hybrid thin films, Phys Chem Chem Phys,2013.
    [159]Lu Y, Ganguli R., Drewien C. A., Anderson M. T., Brinker C. J., Gong W., Guo Y, Soyez H., Dunn B., Huang M. H., Zink J. I., Continuous formation of supported cubic and hexagonalmesoporous films by sol-gel dip-coating, Nature,1997,389,364-368.
    [160]Brinker C. J., Lu Y, Sellinger A., Fan H., Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Adv. Mater.,1999,11,579-585.
    [161]Soler-Illia G. J. A. A., Innocenzi P., Mesoporous Hybrid Thin Films:The Physics and Chemistry Beneath, Chemistry-A European Journal,2006,12,4478-4494.
    [162]Lu Q., Gao F., Komarneni S., Mallouk T. E., Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane, J. Am. Chem. Soc.,2004,126,8650-8651.
    [163]Yamaguchi A., Uejo R, Yoda T., Uchida T., Tanamura Y., Yamashita T., Teramae N., Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane, Nat. Mater.,2004,3,337-341.
    [164]Brinker C. J., Dunphy D. R., Morphological control of surfactant-templated metal oxide films, Curr. Opin. Colloid In,2006,11,126-132.
    [165]Guillemin Y., Ghanbaja J., Aubert E., Etienne M., Walcarius A., Electro-Assisted Self-Assembly of Cetyltrimethylammonium-Templated Silica Films in Aqueous Media:Critical Effect of Counteranions on the Morphology and Mesostructure Type, Chemistry of Materials,2014,26,1848-1858.
    [166]Etienne M., Sallard S., Schroder M., Guillemin Y., Mascotto S., Smarsly B. M., Walcarius A., Electrochemical Generation of Thin Silica Films with Hierarchical Porosity, Chemistry Of Materials,2010,22,3426-3432.
    [167]Etienne M., Goux A., Sibottier E., Walcarius A., Oriented Mesoporous Organosilica Films on Electrode:A New Class of Nanomaterials for Sensing, Journal of Nanoscience and Nanotechnology,2009,9,2398-2406.
    [168]Herzog G., Vodolazkaya N. A., Walcarius A., Platinum Ultramicroelectrodes Modified with Electrogenerated Surfactant-Templated Mesoporous Organosilica Films:Effect of Film Formation Conditions on Its Performance in Preconcentration Electroanalysis, Electroanalysis,2013,25,2595-2603.
    [169]Guillemin Y., Etienne M., Aubert E., Walcarius A., Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues, Journal Of Materials Chemistry, 2010,20,6799.
    [170]Vila N., Ghanbaja J., Aubert E., Walcarius A., Electrochemically Assisted Generation of Highly Ordered Azide-Functionalized Mesoporous Silica for Oriented Hybrid Films, Angewandte Chemie-International Edition,2014,53,2945-2950.
    [171]Etienne M., Guillemin Y., Grosso D., Walcarius A., Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films:a review, Anal Bioanal Chem,2013,405,1497-1512.
    [172]Walcarius A., Mesoporous materials and electrochemistry, Chem Soc Rev,2013,42, 4098-4140.
    [173]Goux A., Ghanbaja J., Walcarius A., Prussian Blue electrodeposition within an oriented mesoporous silica film:preliminary observations, Journal Of Materials Science,2009,44,6601-6607.
    [174]del Valle M. A., Gacitua M., Diaz F. R., Armijo F., Rio R. d., Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates, Electrochem. Commun.,2009,11,2117-2120.
    [175]del Valle M. A., Gacitua M., Diaz F. R., Armijo F., Soto J. P., Electro-synthesis and characterization of polythiophene nano-wires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation, Electrochim. Acta,2012, 71,277-282.
    [176]Kang H.-S., Lee H.-C., Kwak J.-H., Electrodeposition of Polypyrrole Nanowires within Vertically Oriented Mesoporous Silica Template, Journal of the Korean Electrochemical Society,2011,14,22-26.
    [177]Cordes N. L., Bakker M. G, Formation of Micro and Nanostructured Nickel/Silica and Nickel/Metal Composites by Electrodeposition of Mesoporous Silica onto Nickel Foam, MRS Online Proceedings Library,2011,1304,1389.
    [178]Ding L., Li W., Wang Q., Sun Q., He Y., Su B., Vertically Oriented Silica Mesochannels as the Template for Electrodeposition of Polyaniline Nanostructures and Their Electrocatalytic and Electroanalytical Applications, Chemistry-A European Journal,2014,20,1829-1833.
    [179]Qu F., Sun H., Zhang Y, Lu H., Yang M., Electrochemically deposited Pd nanorod array/sol-gel silica thin film for the fabrication of electrochemical sensors, Sensor Actuat. B-chem,2012,166,837-841.
    [180]江亮亮,薄层液膜下及光照辐射条件下电化学调控制备Sol-gel薄膜.[硕士],杭 州,浙江大学,2012.
    [181]Liu L., Toledano R., Danieli T., Zhang J.-Q., Hu J.-M., Mandler D., Electrochemically patterning sol-gel structures on conducting and insulating surfaces, Chem. Commun.,2011,47,6909-6911.
    [182]Guillemin Y., Etienne M., Sibottier E., Walcarius A., Microscale Controlled Electrogeneration of Patterned Mesoporous Silica Thin Films, Chemistry Of Materials,2011,23,5313-5322.
    [183]Wang X., Xiong R., Wei G, Preparation of mesoporous silica thin films on polystyrene substrate by electrochemically induced sol-gel technique, Surf. Coat. Technol.,2010,204,2187-2192.
    [1]Shacham R., Avnir D., Mandler D., Electrodeposition of methylated sol-gel films on conducting surfaces, Adv. Mater.,1999,11,384-388.
    [2]Deepa P. N., Kanungo M., Claycomb G, Sherwood P. M. A., Collinson M. M., Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design, Anal. Chem.,2003,75,5399-5405.
    [3]Sibottier E., Sayen S., Gaboriaud F., Walcarius A., Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups, Langmuir,2006,22,8366-8373.
    [4]Walcarius A., Sibottier E., Etienne M., Ghanbaja J., Electrochemically assisted self-assembly of mesoporous silica thin films, Nat. Mater.,2007,6,602-608.
    [5]Sauerbrey G, The Use of Quartz Crystal Oscillators for Weighing Thin Layers and for Microweighing Applications,1959.
    [6]Bruckenstein S., Swathirajan S., Potential dependence of lead and silver underpotential coverages in acetonitrile using a piezoelectric crystal oscillator method, Electrochim. Acta,1985,30,851-855.
    [7]陈国良,EQCM在若干电化学体系研究中的应用.[厦门],厦门大学,2008.
    [8]Collins B. E., Dancil K. P. S., Abbi G, Sailor M. J., Determining Protein Size Using an Electrochemically Machined Pore Gradient in Silicon, Adv. Funct. Mater.,2002, 12,187-191.
    [9]Khung Y. L., Barritt G, Voelcker N. H., Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells, Exp. Cell Res.,2008,314,789-800.
    [10]Wang P.-Y, Clements L. R., Thissen H., Jane A., Tsai W.-B., Voelcker N. H., Screening Mesenchymal Stem Cell Attachment and Differentiation on Porous Silicon Gradients, Adv. Funct. Mater.,2012,22,3414-3423.
    [11]Monti M., Benito P., Basile F., Fornasari G., Gazzano M., Scavetta E., Tonelli D., Vaccari A., Electrosynthesis of Ni/Al and Mg/Al Layered Double Hydroxides on Pt and FeCrAlloy supports:Study and control of the pH near the electrode surface, Electrochim. Acta,2013,108,596-604.
    [12]Wu L. K., Hu J. M., Zhang J. Q., Cao C. N., Superhydrophobic surface constructed on electrodeposited sol-gel silica film, Electrochem. Commun.,2013,26,85-88.
    [13]Wu L.-K., Hu J.-M., Zhang J.-Q., One step sol-gel electrochemistry for the fabrication of superhydrophobic surfaces, J. Mater. Chem. A,2013,1,14471-14475.
    [1]Yuan W., van Ooij W. J., Characterization of Organofunctional Silane Films on Zinc Substrates, J. Colloid Interf. Sci.,1997,185,197-209.
    [2]Cabral A. M., Trabelsi W., Serra R., Montemor M. R, Zheludkevich M. L., Ferreira M. G. S., The corrosion resistance of hot dip galvanised steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl] tetrasulfide solutions doped with Ce(NO3)3, Corros. Sci.,2006,48,3740-3758.
    [3]Subramanian V., van Ooij W. J., Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes, Corrosion,1998,54, 204-215.
    [4]Deflorian F., Rossi S., Fedrizzi L., Silane pre-treatments on copper and aluminium, Electrochim. Acta,2006,51,6097-6103.
    [5]Bajat J. B., Miskovic-Stankovic V. B., Kacarevic-Popovic Z., Corrosion stability of epoxy coatings on aluminum pretreated by vinyltriethoxysilane, Corros. Sci.,2008, 50,2078-2084.
    [6]Bajat J. B., Milosev I., Jovanovic Z., Miskovic-Stankovic V. B., Studies on adhesion characteristics and corrosion behaviour of vinyltriethoxysilane/epoxy coating protective system on aluminium, Appl. Surf. Sci.,2010,256,3508-3517.
    [7]Shacham R., Avnir D., Mandler D., Electrodeposition of methylated sol-gel films on conducting surfaces, Adv. Mater.,1999,11,384-388.
    [8]Sheffer M., Groysman A., Mandler D., Electrodeposition of sol-gel films on Al for corrosion protection, Corros. Sci.,2003,45,2893-2904.
    [9]Gandhi J. S., Ooij W. J. v., Improved corrosion protection of aluminum alloys by electrodepositied silanes, J. Mater. Eng. Perform.,2004,13,475-480.
    [10]Hu J. M., Liu L., Zhang J. Q., Cao C. N., Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy, Electrochim. Acta,2006,51,3944-3949.
    [11]Liu L., Hu J. M., Zhang J. Q., Cao C. N., Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation, Electrochim. Acta,2006,52,538-545.
    [12]Li M., Yang Y. Q., Liu L., Hu J. M., Zhang J. Q., Electro-assisted preparation of dodecyltrimethoxysilane/Ti02 composite films for corrosion protection of AA2024-T3 (aluminum alloy), Electrochim. Acta,2010,55,3008-3014.
    [13]Hu J. M., Liu L., Zhang J. Q., Cao C. N., Electrodeposition of silane films on aluminum alloys for corrosion protection, Prog. Org. Coat.,2007,58,265-271.
    [14]Wu L. K., Liu L., Li J., Hu J. M., Zhang J. Q., Cao C. N., Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection, Surf. Coat. Technol.,2010,204,3920-3926.
    [15]Toledano R., Shacham R., Avnir D., Mandler D., Electrochemical co-deposition of sol-gel/metal thin nanocomposite films, Chem. Mater.,2008,20,4276-4283.
    [16]Ding S. Z., Liu L. A., Hu J. M., Zhang J. Q., Cao C. N., Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films, Scripta Mater.,2008,59,297-300.
    [17]Vesely C. J., Langer D. W., Electronic Core Levels of the IIB-VIA Compounds, Phys. Rev. B,1971,4,451-462.
    [18]Zhu D. Q., van Ooij W. J., Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution. Part 2: mechanism for corrosion protection, Corros. Sci.,2003,45,2177-2197.
    [19]Ferreira M. G S., Duarte R. G, Montemor M. F., Simoes A. M. P., Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel, Electrochim. Acta,2004,49,2927-2935.
    [20]Cabral A., Duarte R. G., Montemor M. F., Zheludkevich M. L., Ferreira M. G S., Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3, Corros. Sci.,2005,47, 869-881.
    [21]Palomino L. M., Suegama P. H., Aoki I. V., Montemor M. F., De Melo H. G, Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3, Corros. Sci.,2009,51,1238-1250.
    [22]Seth A., van Ooij W. J., Puomi P., Metroke T., Apblett A., Characterization of one-step, chromate-free, primer systems using liquid-state Si-29 and C-13 NMR, Prog. Org. Coat.,2007,60,170-177.
    [23]Seth A., van Ooij W. J., Puomi P., Yin Z., Ashirgade A., Bafna S., Shivane C., Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals-An overview and mechanistic study, Prog. Org. Coat.,2007,58,136-145.
    [24]Wang P., Schaefer D. W., Why does Silane Enhance the Protective Properties of Epoxy Films?, Langmuir,2008,24,13496-13501.
    [25]Ji W. G, Hu J. M., Liu L., Zhang J. Q., Cao C. N., Water uptake of epoxy coatings modified with gamma-APS silane monomer, Prog. Org. Coat.,2006,57,439-443.
    [26]Ji W. G., Hu J. M., Zhang J. Q., Cao C. N., Reducing the water absorption in epoxy coatings by silane monomer incorporation, Corros. Sci.,2006,48,3731-3739.
    [27]Ji W. G, Hu J. M., Liu L., Zhang J. Q., Cao C. N., Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers, Surf. Coat. Tech.,2007,201,4789-4795.
    [28]Ji W. G, Hu J. M., Liu L., Zhang J. Q., Cao C. N., Enhancement of corrosion performance of epoxy coatings by chemical modification with GPTMS silane monomer, J. Adhes. Sci. Technol.,2008,22,77-92.
    [29]Poelman M., Olivier M., Gayarre N., Petitjean J., Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium, Prog. Org. Coat.,2005,54,55-62.
    [30]Olivier M. G, Romano A. P., Vandermiers C., Mathieu X., Poelman M., Influence of the stress generated during an ageing cycle on the barrier properties of cataphoretic coatings, Prog. Org. Coat.,2008,63,323-329.
    [31]Bonora P. L., Deflorian F., Fedrizzi L., Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta,1996,41,1073-1082.
    [32]Hu J. M., Zhang J. T, Zhang J. Q., Cao C. N., Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloys, Corros. Sci.,2005,47,2607-2618.
    [33]Mahdavian M., Attar M. M., Investigation on zinc phosphate effectiveness at different pigment volume concentrations via electrochemical impedance spectroscopy, Electrochim. Acta,2005,50,4645-4648.
    [34]Nikravesh B., Ramezanzadeh B., Sarabi A. A., Kasiriha S. M., Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments, Corros. Sci.,2011,53,1592-1603.
    [35]Behzadnasab M., Mirabedini S. M., Kabiri K., Jamali S., Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution, Corros. Sci.,2011,53,89-98.
    [36]Zhang J. T., Hu J. M., Zhang J. Q., Cao C. N., Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS, Prog. Org. Coat., 2004,51,145-151.
    [37]Lavaert V., De Cock M., Moors M., Wettinck E., Influence of pores on the quality of a silicon polyester coated galvanised steel system, Prog. Org. Coat.,2000,38, 213-221.
    [38]Rammelt U., Reinhard G, Application of electrochemical impedance spectroscopy (EIS) for characterizing the corrosion-protective performance of organic coatings on metals, Prog. Org. Coat.,1992,21,205-226.
    [39]Brasher D. M., Kingsbury A. H., Electrical measurements in the study of immersed paint coatings on matal. I Comparison between capacitance and gravimetric methods of estimating water uptake, Journal of Applied Chemistry,1954,4,62-72.
    [40]Hu J. M., Zhang J. Q., Cao C. N., Determination of water uptake and diffusion of Cl-ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy, Prog. Org. Coat.,2003,46,273-279.
    [41]Miskovic-Stankovic V. B., Zotovic J. B., Kacarevic-Popovic Z., Maksimovic M. D., Corrosion behaviour of epoxy coatings electrodeposited on steel electrochemically modified by Zn-Ni alloy, Electrochim. Acta,1999,44,4269-4277.
    [42]Zhu D. Q., van Ooij W. J., Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane, Prog. Org. Coat.,2004,49,42-53.
    [43]Mijovic J., Lin K. F., The effect of hygrothermal fatigue on physical/mechanical properties and morphology of neat epoxy resin and graphite/epoxy composite, J. Appl. Polym. Sci.,1985,30,2527-2549.
    [44]Zhou J., Lucas J. P., Hygrothermal effects of epoxy resin. Part Ⅱ:variations of glass transition temperature, Polymer,1999,40,5513-5522.
    [45]Lin L. L., Ho T. H., Wang C. S., Synthesis of novel trifunctional epoxy resins and their modification with polydimethylsiloxane for electronic application, Polymer, 1997,38,1997-2003.
    [46]Zhang J. T., Hu J. M., Zhang J. Q., Cao C. N., Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution, Prog. Org. Coat.,2004,49,293-301.
    [47]Bierwagen G P., He L., Li J., Ellingson L., Tallman D. E., Studies of a new accelerated evaluation method for coating corrosion resistance--thermal cycling testing, Prog. Org. Coat.,2000,39,67-78.
    [48]Zhang W. M., Hu J. M., Cathodically electrochemical-assisted deposition and protective properties of silane films, Acta Metall. Sin.,2006,42,295-298.
    [49]Fedel M., Druart M. E., Olivier M., Poelman M., Deflorian F., Rossi S., Compatibility between cataphoretic electro-coating and silane surface layer for the corrosion protection of galvanized steel, Prog. Org. Coat.,2010,69,118-125.
    [50]Marsh J., Scantlebury J. D., Lyon S. B., The effect of surface/primer treatments on the performance of alkyd coated steel, Corros. Sci.,2001,43,829-852.
    [51]van Ooij W. J., Zhu D., Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 substrates, Corrosion,2001,57, 413-427.
    [1]Walcarius A., Template-directed porous electrodes in electroanalysis, Anal. Bioanal. Chem.,2010,396,261-272.
    [2]Xiang Y., Lu S., Jiang S. P., Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors, Chem. Soc. Rev.,2012,41,7291-7321.
    [3]Chen S., Xing W., Duan J., Hu X., Qiao S. Z., Nanostructured morphology control for efficient supercapacitor electrodes, J. Mater. Chem. A,2013,1,2941-2954.
    [4]Duan B. R., Cao Q., Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochim. Acta,2012,64,154-161.
    [5]Liang Y, Schwab M. G, Zhi L., Mugnaioli E., Kolb U., Feng X., Mullen K., Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage, J. Am. Chem. Soc.,2010, 132,15030-15037.
    [6]Tian B., Liu X., Yang H., Xie S., Yu C., Tu B., Zhao D., General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica, Adv. Mater.,2003,15,1370-1374.
    [7]Rumplecker A., Kleitz F., Salabas E.-L., Schuth F., Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4, Chem. Mater.,2007,19,485-496.
    [8]Tuysuz H., Lehmann C. W., Bongard H., Tesche B., Schmidt R., Schuth F., Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy, J. Am. Chem. Soc.,2008,130,11510-11517.
    [9]Yuan Y. F., Xia X. H., Wu J. B., Huang X. H., Pei Y. B., Yang J. L., Guo S. Y., Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application, Electrochem. Commun.,2011,13, 1123-1126.
    [10]Wang X., Sumboja A., Khoo E., Yan C., Lee P. S., Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage, J. Phys. Chem. C,2012,116,4930-4935.
    [11]Trotochaud L., Ranney J. K., Williams K. N., Boettcher S. W., Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, J. Am. Chem. Soc.,2012,134, 17253-17261.
    [12]Dahal N., Ibarra I. A., Humphrey S. M., High surface area mesoporous Co3O4 from a direct soft template route, J. Mater. Chem.,2012,22,12675-12681.
    [13]Lee C. W., Nam K. W., Cho B. W., Kim K. B., Electrochemical synthesis of meso-structured lamellar manganese oxide thin film, Micropor. Mesopor. Mat,2010, 130,208-214.
    [14]Toledano R., Shacham R., Avnir D., Mandler D., Electrochemical co-deposition of sol-gel/metal thin nanocomposite films, Chem. Mater.,2008,20,4276-4283.
    [15]Toledano R., Mandler D., Electrochemical Codeposition of Thin Gold Nanoparticles/Sol-Gel Nanocomposite Films, Chem. Mater.,2010,22,3943-3951.
    [16]Shacham R., Avnir D., Mandler D., Electrodeposition of methylated sol-gel films on conducting surfaces, Adv. Mater.,1999,11,384-388.
    [17]Esswein A. J., McMurdo M. J., Ross P. N., Bell A. T., Tilley T. D., Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis, J. Phys. Chem. C,2009,113,15068-15072.
    [18]Singh R. N., Koenig J. F., Poillerat G., Chartier P., Electrochemical Studies on Protective Thin Co3O4 and NiCo2O4 Films Prepared on Titanium by Spray Pyrolysis for Oxygen Evolution, J. Electrochem. Soc.,1990,137,1408-1413.
    [19]Simon P., Gogotsi Y., Materials for electrochemical capacitors, Nat. Mater.,2008,7, 845-854.
    [20]Winter M., Brodd R. J., What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev.,2004,104,4245-4270.
    [21]Gu M., Genc A., Belharouak I., Wang D., Amine K., Thevuthasan S., Baer D. R., Zhang J.-G, Browning N. D., Liu J., Wang C., Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mno.6O2 for Li-Ion Batteries, Chem. Mater.,2013,25,2319-2326.
    [22]Wu Z.-S., Wang D.-W., Ren W., Zhao J., Zhou G, Li F., Cheng H.-M., Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors, Adv. Funct. Mater.,2010,20,3595-3602.
    [23]McDaniel N. D., Coughlin F. J., Tinker L. L., Bernhard S., Cyclometalated Iridium(Ⅲ) Aquo Complexes:Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water, J. Am. Chem. Soc.,2007,130,210-217.
    [24]Bediako D. K., Lassalle-Kaiser B., Surendranath Y., Yano J., Yachandra V. K., Nocera D. G, Structure-activity correlations in a nickel-borate oxygen evolution catalyst J. Am. Chem. Soc.,2012,134,6801-6809.
    [25]Dinca M., Surendranath Y, Nocera D. G, Nickel-borate oxygen-evolving catalyst that functions under benign conditions, Proc. Natl. Acad. Sci. USA,2010,107, 10337-10343.
    [26]Singh A., Chang S. L. Y, Hocking R. K., Bach U., Spiccia L., Highly active nickel oxide water oxidation catalysts deposited from molecular complexes, Energy Environ. Science,2013,6,579.
    [27]Wei W., Cui X., Chen W., Ivey D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev.,2011,40,1697-1721.
    [28]Kanan M. W., Nocera D. G, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science,2008,321,1072-1075.
    [29]Xia X.-h., Tu J.-p., Wang X.-1., Gu C.-d., Zhao X.-b., Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem.,2011,21,671-679.
    [30]Lu Z., Chang Z., Zhu W., Sun X., Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chem. Commun.,2011,47, 9651-9653.
    [31]Wu M.-S., Lin K.-H., One-step Electrophoretic Deposition of Ni-Decorated Activated-Carbon Film as an Electrode Material for Supercapacitors, J. Phys. Chem. C,2010,114,6190-6196.
    [32]Luna-Vera F., Dong D., Hamze R., Liu S., Collinson M. M., Electroassisted Fabrication of Free-Standing Silica Structures of Micrometer Size, Chem. Mater., 2012,24,2265-2273.
    [33]Liu L., Toledano R., Danieli T., Zhang J.-Q., Hu J.-M., Mandler D., Electrochemically patterning sol-gel structures on conducting and insulating surfaces, Chem. Commun.,2011,47,6909-6911.
    [34]Guillemin Y., Etienne M., Sibottier E., Walcarius A., Microscale Controlled Electrogeneration of Patterned Mesoporous Silica Thin Films, Chem. Mater.,2011,23, 5313-5322.
    [35]Walcarius A., Sibottier E., Etienne M., Ghanbaja J., Electrochemically assisted self-assembly of mesoporous silica thin films, Nat. Mater.,2007,6,602-608.
    [36]Collinson M. M., Higgins D. A., Kommidi R., Campbell-Rance D., Electrodeposited silicate films:Importance of supporting electrolyte, Anal. Chem.,2008,80,651-656.
    [37]Nobial M., Devos O., Mattos O. R., Tribollet B., The nitrate reduction process:A way for increasing interfacial pH, J. Electroanal. Chem.,2007,600,87-94.
    [38]Adekunle A. S., Ozoemena K. I., Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers, Electrochim. Acta, 2008,53,5774-5782.
    [39]Wu M. S., Huang K. C., Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chem. Commun., 2011,47,12122-12124.
    [40]Fu G R., Hu Z. A., Xie L. J., Jin X. Q., Xie Y. L., Wang Y. X., Z. Y. Zhang, Yang Y. Y, Wu H. Y, Electrodeposition of Nickel Hydroxide Films on Nickel Foil and Its Electrochemical Performances for Supercapacitor, Int. J. Electrochem. Sci.,2009,4, 1052-1062.
    [41]van Ooij W. J., Zhu D., Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 substrates, Corrosion,2001,57, 413-427.
    [42]Surendranath Y., Dinca M., Nocera D. G, Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts, J. Am. Chem. Soc.,2009,131, 2615-2620.
    [43]Kanan M. W., Surendranath Y., Nocera D. G, Cobalt-phosphate oxygen-evolving compound, Chem. Soc. Rev.,2009,38,109.
    [44]Aghazadeh M., Golikand A. N., Ghaemi M., Synthesis, characterization, and electrochemical properties of ultrafine beta-Ni(OH)2 nanoparticles, Int. J. Hydrogen. Energy,2011,36,8674-8679.
    [45]Dubal D. P., Fulari V. J., Lokhande C. D., Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films, Micropor. Mesopor. Mat,2012, 151,511-516.
    [46]Gund G S., Dubal D. P., Jambure S. B., Shinde S. S., Lokhande C. D., Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties, J. Mater. Chem. A,2013,1, 4793-4803.
    [47]Lee J. W., Ko J. M., Kim J.-D., Hierarchical Microspheres Based on α-Ni(OH)2 Nanosheets Intercalated with Different Anions:Synthesis, Anion Exchange, and Effect of Intercalated Anions on Electrochemical Capacitance, J. Phys. Chem. C, 2011,115,19445-19454.
    [48]Toupin M., Brousse T., Belanger D., Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide, Chem. Mater., 2002,14,3946-3952.
    [49]Lyons M. E. G, Brandon M. P., A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base, J. Electroanal. Chem.,2010, 641,119-130.
    [50]Godwin I. J., Lyons M. E. G, Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution, Electrochem. Commun., 2013,32,39-42.
    [51]Kumar M., Awasthi R., Pramanick A. K., Singh R. N., New ternary mixed oxides of Fe, Ni and Mo for enhanced oxygen evolution, Int. J. Hydrogen. Energy,2011,36, 12698-12705.
    [52]Singh S. P., Samuels S., Tiwari S. K., Singh R. N., Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution, Int. J. Hydrogen. Energy,1996,21,171-178.
    [53]Laouini E., Hamdani M., Pereira M. I. S., Douch J., Mendonca M. H., Berghoute Y, Singh R. N., Preparation and electrochemical characterization of spinel type Fe-Co3O4 thin film electrodes in alkaline medium, Int. J. Hydrogen. Energy,2008,33, 4936-4944.
    [54]Lu B., Cao D., Wang P., Wang G., Gao Y., Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes, Int. J. Hydrogen. Energy,2011,36, 72-78.
    [55]Rios E., Chartier P., Gautier J. L., Oxygen evolution electrocatalysis in alkaline medium at thin MnxCo3-xO4 (0≤x≤1) spinel films on glass/SnO2:F prepared by spray pyrolysis, Solid State Sci.,1999,1,267-277.
    [56]Svegl F., Orel B., Grabec-Svegl I., Kaucic V., Characterization of spinel Co3O4 and Li-doped C03O4 thin film electrocatalysts prepared by the sol-gel route, Electrochim. Acta,2000,45,4359-4371.
    [57]Singh R. N., Pandey J. P., Singh N. K., Lal B., Chartier P., Koenig J. F., Sol-gel derived spinel MxCo3-xO4 (M=Ni, Cu; 0≤x≤1) films and oxygen evolution, Electrochim. Acta,2000,45,1911-1919.
    [58]Donders M. E., Knoops H. C. M., van M. C. M., Kessels W. M. M., Notten P. H. L., Remote Plasma Atomic Layer Deposition of Co3O4 Thin Films, J. Electrochem. Soc., 2011,158, G92-G96.
    [59]Estrada W., Fantini M. C. A., de Castro S. C., Polo da Fonseca C. N., Gorenstein A., Radio frequency sputtered cobalt oxide coating:Structural, optical, and electrochemical characterization, J. Appl. Phys.,1993,74,5835-5841.
    [60]Barakat N. A. M., Khil M. S., Sheikh F. A., Kim H. Y., Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process, J. Phys. Chem. C,2008,112,12225-12233.
    [61]Musiani M., Guerriero P., Oxygen evolution reaction at composite anodes containing Co3O4 particles-Comparison of metal-matrix and oxide-matrix composites, Electrochim. Acta,1998,44,1499-1507.
    [62]Castro E. B., Gervasi C. A., Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction, Int. J. Hydrogen. Energy,2000,25,1163-1170.
    [63]Meher S. K., Rao G R., Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4, J. Phys. Chem. C,2011,115, 25543-25556.
    [64]Nkeng P., Poillerat G, Koenig J. F., Chartier P., Lefez B., Lopitaux J., Lenglet M., Characterization of Spinel-Type Cobalt and Nickel Oxide Thin Films by X-Ray Near Grazing Diffraction, Transmission and Reflectance Spectroscopies, and Cyclic Voltammetry, J. Electrochem. Soc.,1995,142,1777-1783.
    [65]Spinolo G., Ardizzone S., Trasatti S., Surface characterization of Co3O4 electrodes prepared by the sol-gel method, J. Electroanal. Chem.,1997,423,49-57.
    [66]Levine S., Smith A. L., Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discussions of the Faraday Society,1971,52,290-301.
    [67]Cui B., Lin H., Li J.-B., Li X., Yang J., Tao J., Core-Ring Structured NiCo2O4 Nanoplatelets:Synthesis, Characterization, and Electrocatalytic Applications, Adv. Funct. Mater.,2008,18,1440-1447.
    [68]Li Y, Zhao J., Dan Y, Ma D., Zhao Y, Hou S., Lin H., Wang Z., Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies, Chem. Eng. J.,2011,166,428-434.
    [69]Singh J. P., Singh R. N., New active spinel-type MxCo3-xO4 films for electro-catalysis of oxygen evolution, J. New Mat. Electr. Sys,2000,3,137-145.
    [1]Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T., Light-induced amphiphilic surfaces, Nature,1997, 388,431-432.
    [2]Nakajima A., Fujishima A., Hashimoto K., Watanabe T., Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate, Adv. Mater.,1999,11,1365-1368.
    [3]Genzer J., Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers, Science,2000,290,2130-2133.
    [4]Erbil H. Y., Demirel A. L., Avci Y., Mert O., Transformation of a Simple Plastic into a Superhydrophobic Surface, Science,2003,299,1377-1380.
    [5]Li X. M., Reinhoudt D., Crego Calama M., What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chem. Soc. Rev.,2007,36,1350-1368.
    [6]Barthlott W., Neinhuis C., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta,1997,202,1-8.
    [7]Liu M., Zheng Y., Zhai J., Jiang L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion, Accounts. Chem. Res.,2010,43,368-377.
    [8]Sun T, Feng L., Gao X., Jiang L., Bioinspired Surfaces with Special Wettability, Accounts. Chem. Res.,2005,38,644-652.
    [9]Feng X. J., Jiang L., Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater.,2006,18,3063-3078.
    [10]Zhang X., Shi F., Niu J., Jiang Y., Wang Z., Superhydrophobic surfaces:from structural control to functional application, J. Mater. Chem.,2008,18,621-633.
    [11]Wang S., Feng L., Jiang L., One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater.,2006,18,767-770.
    [12]Chen S., Hu C., Chen L., Xu N., Facile fabrication of superhydrophobic surface from micro/nanostructure metal alkanethiolate based films, Chem. Commun.,2007, 1919-1921.
    [13]Song X., Zhai J., Wang Y., Jiang L., Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties,J. Phys. Chem. B,2005,109, 4048-4052.
    [14]Thieme M., Frenzel R., Schmidt S., Simon F., Hennig A., Worch H., Lunkwitz K., Scharnweber D., Generation of Ultrahydrophobic Properties of Aluminium-A first Step to Self-cleaning Transparently Coated Metal Surfaces, Adv. Eng. Mater.,2001,3, 691-695.
    [15]Feng L., Li S., Li H., Zhai J., Song Y., Jiang L., Zhu D., Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew. Chem. Int. Ed.,2002,41,1221-1223.
    [16]Deng X., Mammen L., Butt H.-J., Vollmer D., Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating, Science,2012,335,67-70.
    [17]Jiang L., Zhao Y, Zhai J., A Lotus-Leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics, Angew. Chem. Int. Ed.,2004,43,4338-4341.
    [18]Ma M. L., Hill R. M., Lowery J. L., Fridrikh S. V., Rutledge G C., Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity, Langmuir,2005,21,5549-5554.
    [19]Privett B. J., Youn J., Hong S. A., Lee J., Han J., Shin J. H., Schoenfisch M. H., Antibacterial fluorinated silica colloid superhydrophobic surfaces, Langmuir,2011, 27,9597-9601.
    [20]Chang K. C., Chen Y. K., Chen H., Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors, Surf. Coat. Tech.,2007,201,9579-9586.
    [21]Du X., He J., A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings, ACS Appl Mater Interfaces,2011,3,1269-1276.
    [22]Ming W., Wu D., Benthem R. v., With G. d., Superhydrophobic Films from Raspberry-like Particles, Nano Lett.,2005,5,2298-2301.
    [23]Bravo J., Zhai L., Wu Z., Cohen R. E., Rubner M. F., Transparent Superhydrophobic Films Based on Silica Nanoparticles, Langmuir,2007,23,7293-7298.
    [24]Zhang L., Chen H., Sun J., Shen J., Layer-by-Layer Deposition of Poly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate;Facile Method to Prepare a Superhydrophobic Surface, Chem. Mater.,2007,19,948-953.
    [25]Deepa P. N., Kanungo M., Claycomb G, Sherwood P. M. A., Collinson M. M., Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design, Anal. Chem.,2003,75,5399-5405.
    [26]Wang J., Wu L.-K., Zhou J.-H., Hu J.-M., Zhang J.-Q., Cao C.-N., Construction of a novel painting system using electrodeposited SiO2 film as the pretreatment layer, Corros. Sci.,2013,68,57-65.
    [27]Shacham R., Avnir D., Mandler D., Electrodeposition of methylated sol-gel films on conducting surfaces, Adv. Mater.,1999,11,384-388.
    [28]Shacham R., Mandler D., Avnir D., Electrochemically induced sol-gel deposition of zirconia thin films, Chem-eur. J.,2004,10,1936-1943.
    [29]Walcarius A., Mandler D., Cox J. A., Collinson M., Lev O., Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry, J. Mater. Chem.,2005,15,3663-3689.
    [30]Martines E., Seunarine K., Morgan H., Gadegaard N., Wilkinson C. D. W., Riehle M. O., Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns, Nano Lett.,2005,5,2097-2103.
    [31]Gao L., McCarthy T. J., A Perfectly Hydrophobic Surface (θA/θR=180°/180°), J. Am. Chem. Soc.,2006,128,9052-9053.
    [32]Camargo K. C., Michels A. F., Rodembusch F. S., Horowitz F., Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region, Chem. Commun.,2012,4992-4994.
    [33]Pan S., Kota A. K., Mabry J. M., Tuteja A., Superomniphobic surfaces for effective chemical shielding, J. Am. Chem. Soc.,2013,135,578-581.
    [34]Zhou H., Wang H., Niu H., Gestos A., Lin T., Robust, Self-Healing Superamphiphobic Fabrics Prepared by Two-Step Coating of Fluoro-Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles, Adv. Funct. Mater., 2013,23,1664-1670.
    [35]Zhou H., Wang H., Niu H., Gestos A., Wang X., Lin T., Fluoroalkyl silane modified silicone rubber/nanoparticle composite:a super durable, robust superhydrophobic fabric coating, Adv. Mater.,2012,24,2409-2412.
    [36]Deng X., Mammen L., Zhao Y., Lellig P., Mullen K., Li C., Butt H.-J., Vollmer D., Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules, Adv. Mater.,2011,23,2962-2965.
    [37]Okada K., Tokudome Y, Falcaro P., Takamatsu Y, Nakahira A., Takahashi M., Titanate nanofunnel brushes:toward functional interfacial applications, Chem. Commun.,2012,48,6130-6132.
    [38]Ma W, Wu H., Higaki Y, Otsuka H., Takahara A., A "non-sticky" superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film, Chem. Commun.,2012,48,6824-6826.
    [39]Zhai L., Cebeci F. C., Cohen R. E., Rubner M. F., Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers, Nano Lett.,2004,4,1349-1353.
    [40]Wu L. K., Hu J. M., Zhang J. Q., Cao C. N., Superhydrophobic surface constructed on electrodeposited sol-gel silica film, Electrochem. Commun.,2013,26,85-88.
    [41]Bae W. G., Song K. Y, Rahmawan Y, Chu C. N., Kim D., Chung D. K., Suh K. Y, One-Step Process for Superhydrophobic Metallic Surfaces by Wire Electrical Discharge Machining, ACS Applied Materials & Interfaces,2012,4,3685-3691.
    [42]Yabu H., Shimomura M., Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films, Chem. Mater.,2005,17,5231-5234.
    [43]Hikita M., Tanaka K., Nakamura T., Kajiyama T., Takahara A., Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups, Langmuir,2005,21,7299-7302.
    [44]Wang H., Fang J., Cheng T., Ding J., Qu L., Dai L., Wang X., Lin T., One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity, Chem. Commun.,2008,877-879.
    [45]Yoon M., Kim Y., Cho J., Multifunctional Colloids with Optical, Magnetic, and Superhydrophobic Properties Derived from Nucleophilic Substitution-Induced Layer-by-Layer Assembly in Organic Media, ACS Nano,2011,3,5417-5426.
    [46]Facio D. S., Mosquera M. J., Simple Strategy for Producing Superhydrophobic Nanocomposite Coatings In Situ on a Building Substrate, ACS Applied Materials & Interfaces,2013,5,7517-7526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700