用户名: 密码: 验证码:
导电聚苯胺纳米复合材料的制备、性能及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究论文主要致力于导电聚苯胺胶态纳米粒子的合成与应用研究。在论文开始部分,综述了聚苯胺的化学结构、合成方法、掺杂机制和导电聚苯胺的性能特征,阐述了导电聚苯胺纳米复合材料的应用研究现状与导电聚苯胺复合材料在工业应用中普遍存在的问题——如何提高聚苯胺的可容性与可加工性。论文的研究部分主要包括以下四个方面:
     首先,制备了可加工型的聚苯胺胶态纳米粒子。以磷酸酯化聚乙烯醇为稳定剂和共掺杂剂制备了具有良好导电性能和水相分散稳定性的聚苯胺/磷酸酯化聚乙烯醇(PANI/P-PVA)胶态纳米粒子。以过硫酸铵为氧化剂,磷酸酯化聚乙烯醇为表面活性剂(聚合物稳定剂),在0.5M的HC1水溶液中,通过化学氧化聚合制备了聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子及其水相分散液。通过透射电子显微镜、红外谱图、X-ray粉末衍射、热失重分析和电导率测试等分析与测试方法,研究了聚苯胺/磷酸酯化聚乙烯醇纳米粒子的形貌、微观结构、热性能和导电性能。结果表明,在该体系中,磷酸酯化聚乙烯醇不仅作为聚合物稳定剂影响聚苯胺纳米粒子的形貌和粒子的水相分散性能,而且作为共掺杂剂对掺杂聚苯胺的导电性能有明显作用。当磷酸酯化聚乙烯醇用量为40wt%时,可得到球状聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子,其干态粉末的电导率为6.94S/cm,且胶态纳米粒子在水相的再分散稳定性能良好。
     其次,通过无皂乳液聚合将丙烯酸类单体聚合生成聚丙烯酸酯,对聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子进行囊化包覆,制得聚苯胺/聚丙烯酸酯复合粒子及其导电薄膜。采用透射电子显微镜和扫描电镜分析了复合粒子和复合膜的表面形貌,用X射线光电子能谱对复合粒子进行了表面元素分析,结果表明:聚丙烯酸酯已经被引入聚苯胺纳米复合粒子的表面,但是聚丙烯酸酯并未将聚苯胺纳米复合粒子完全包覆。聚丙烯酸酯又具有良好的成膜性能和机械性能,对提高聚苯胺复合材料的机型性能起到决定性作用,当丙烯酸酯的含量为50.93wt%时,制得的聚苯胺纳米复合材料的片状颗粒的电导率0.41S/cm,薄膜的电导率为0.05S/cm,杨氏模量为1.6MPa,拉伸强度为17.6MPa,断裂伸长率为125%。该复合材料可用于电磁屏蔽材料和静电消除材料。
     再次,以导电聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子为功能填料,以水性环氧树脂为涂料基质,配制了聚苯胺水性防腐涂料。对涂层的机械性能进行评价之后,通过浸泡试验和盐雾试验评估了涂层对低碳钢的腐蚀防护效果,并通过电化学交流阻抗法量化分析评价了该水性防腐涂料的碳钢腐蚀防护性能。当导电聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子的含量为2.5wt%时,涂层具有最佳的机械性能和最好的腐蚀防护作用(试样经过30天的盐雾试验后,试样表面的低频阻抗依旧高于107Ω cm2,涂层依旧保持较好外观)。用X射线光电子能谱和扫描电子显微镜对涂层-碳钢基体界面进行分析研究,探讨了可能的腐蚀防护机理:导电聚苯胺粒子与基体界面相互作用,形成三氧化二铁钝化膜和铁-磷酸盐二次钝化膜,导电聚苯胺/磷酸酯化聚乙烯醇胶态纳米粒子的良好水相分散性有助于涂层的内部结构更为紧密,从而提高涂层的机械性能,同时,磷酸盐的存在也有利于提高涂层与基材的附着力。
     最后,制备了具有高比电容和电化学稳定性的石墨烯/聚苯胺复合材料。采用原位聚合,将苯胺氧化聚合到氧化石墨烯表面,得到氧化石墨烯/聚苯胺复合材料,再用水合肼同时还原氧化石墨烯和聚苯胺,得到具有大比表面积,高电导率和稳定电化学特性的石墨烯/聚苯胺复合材料。透射电子显微镜、拉曼光谱、热失重分析和电导率测试分析了复合材料的形貌、微观结构、热性能与导电性能;采用循环伏安法与恒电流充放电技术测试了复合材料的电化学性质。结构表明,聚苯胺成功的附着到氧化石墨烯表面,被水合肼还原后,依旧有足量的聚苯胺存留在石墨烯表面。热失重分析与循环伏安法测试表明经还原后的石墨烯/聚苯胺复合材料具有良好的热稳定性和电化学活性。从微观角度来看,经水合肼还原后的石墨烯作为电子接受体的同时,又作为平衡离子对聚苯胺的中间氧化态起到稳定作用。循环伏安法和恒电流充放电测试结构表明该复合材料具有较高的比电容和良好的电化学稳定性,可用于超级电容器电极材料。
Among the available intrinsically conducting polymers, polyaniline is found to be the most promising because of its ease of synthesis, low cost monomer, tunable properties, and better stability compared to other intrinsically conducting polymer. However, the main problem associated with the effective utilization of polyaniline is inherent in their lower level of conductivity compared to metal, and their infusibility and poor solubility in all available solvents. In order to overcome these shortcomings, we proposed a novel idea in the preparation of the colloidal PANI nanoparticles, employing partially phosphorylated poly(vinyl alcohol) as both the stabilizer and co-dopant for the first time. And the applications of the prepared PANI nanoparticles were explored:
     Firstly, the polyaniline/partially phosphorylated poly(vinyl alcohol) nanoparticles were prepared by the chemical oxidative dispersion polymerization of aniline monomer in0.5M HC1aqueous media with the partially phosphorylated poly(vinyl alcohol) as the stabilizer and co-dopant. The prepared nanoparticles were characterized by transmission electron microscopy, Fourier transform infrared, thermal gravimetric analysis, electrical conductivity measurement, and re-dispersion stability testing. All the results were compared with the properties of the conventional polyaniline in the emeraldine salt form. It was found that the feeding ratio of partially phosphorylated poly(vinyl alcohol) obviously affected the morphology, re-dispersion stability and electrical conductivity of the prepared nanoparticles. When the feeding ratio of phosphorylated poly(vinyl alcohol) is40wt%, the polyaniline/partially phosphorylated poly(vinyl alcohol) nanoparticles showed spherical shape with good uniformity, significant re-dispersion stability in aqueous media, and good electrical conductivity (6.94S/cm).
     Next, conducting polyaniline/partially phosphorylated poly(vinyl alcohol)/polyacrylate composite nanoparticles were prepared by the encapsulation of the polyaniline/partially phosphorylated poly(vinyl alcohol) nanoparticles with polyacrylate via the emulsifier-free seeded emulsion polymerization. Transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectra analysis of the prepared composite nanoparticles showed that the polyaniline/partially phosphorylated poly(vinyl alcohol) nanoparticles were successfully encapsulated with the polyacrylate. With the increasing of the feeding ratio of acrylate monomers, the diameter of the polyaniline/partially phosphorylated poly(vinyl alcohol)/polyacrylate composite nanoparticles increased and their electrical conductivity decreased. Cyclic voltammogram revealed that the composite nanoparticles were electroactive. When the content of polyacrylate is50.93wt%, the prepared composite shows a electrical conductivity of0.41S/cm in pellet and0.05S/cm in powder. And good quality films with appreciable Young's modulus (1.6MPa), tensile strength (17.6MPa), and elongation at break (125%) could be obtained from the prepared composite nanoparticles
     Thirdly, the waterborne corrosion protection polyaniline contained coatings was developed. The conducting polyaniline/partially phosphorylated poly(vinyl alcohol) spherical nanoparticles with significant dispersibility in aqueous media were prepared by the chemical oxidative dispersion polymerization in the presence of the partially phosphorylated poly(vinyl alcohol). Then the polyaniline contained coatings with different polyaniline/partially phosphorylated poly(vinyl alcohol) contents were prepared, employing waterborne epoxy resin as the matrix. The corrosion protection property of the polyaniline/partially phosphorylated poly(vinyl alcohol) contained coatings on mild steel was investigated by the salt spray test and electrochemical impedance spectroscopy technique in3.0wt%NaCl aqueous solution. The results indicated that the waterborne polyaniline/partially phosphorylated poly(vinyl alcohol) contained coatings could offer the high protection since the impedance values are remained at higher than107Ωcm2after30days of the salt spray tests. All the results were compared with these of the waterborne coatings containing the polyaniline nanoparticles in the emeraldine salt form and the protection mechanism was also proposed.
     Finally, a simultaneous reduction of graphene oxide/polyaniline flake composites by coating polyaniline onto graphene oxide sheets was developed to prepare the novel electrode materials for the high performance supercapacvitors. The graphene oxide/polyaniline composites were prepared by the chemical oxidation polymerization of aniline in the aqueous dispersion of graphene oxide. Then the reduced graphene oxide/Polyaniline composite flakes were obtained by the chemical reduction of the graphene oxide/polyaniline composites, with hydrazine hydrate as the reducing agent. Transmission electron microscopy, thermal gravimetric analysis and cyclic voltammogram were employed to investigate the surface, thermal property, and electroactivity of the samples. The results revealed that polyaniline was polymerized on the surface of graphene oxide sheets and after reduction there was still thin polyaniline coating on reduced graphene oxide sheets. The results also indicated that both the thermal stability and the electroactivity of the reduced graphene oxide/polyaniline flakes were distinctly enhanced than those of the graphene oxide/polyaniline composites. In the reduced graphene oxide/Polyaniline flakes, reduced graphene oxide played a dual role:as electron acceptor and also as a counterion to stabilize an atypical intermediate oxidation state of polyaniline. When hydrazine hydrate was introduced in to the system, the reduction of graphene oxide to reduced graphene oxide was taken place accompanied by the reduction of the polyaniline emeraldine salt to polyaniline leucosalt, and reduced graphene oxide subsequently played a role as a redoping agent and doped the polyaniline leucosalt to polyaniline emeraldine salt, which resulted in the high electroactivity of the reduced graphene oxide/polyaniline flakes. Cyclic voltammograms and galvanostatic charge-discharge technique indicated that the prepared graphene/polyaniline composites have high specific capacitances and good cycling stability, which are advantageous for their applications as electrode materials for supercapacitors.
引文
[1]Heeger A.J. Semiconducting and metallic polymers:The fourth generation of polymeric materials[J]. Angewandte Chemie International Edition,2001,40:2591-2611.
    [2]Imgartinger H, Fettel P.W., Escher T. Substituent effects on redox properties andphotoinduced electron transfer in isoxazolo-fullerenes[J]. European journal of organicchemistry,2000,3: 455-465.
    [3]Wan M.X. Absorption spectra of thin film of polyaniline[J]. Journal of Polymer Science Part A: Polymer Chemistry,1992,30 (4):543-549.
    [4]Wang D. P and Zeng H. C. Multifunctional roles of TiO2 nanoparticles for architecture of complex core-shells and hollow spheres of SiO2-TiO2-polyaniline[J]. Chemistry of Materials, 2009,21:4811-4823.
    [5]Feng X., Mao C., Yang G., and Zhu J. Polyaniline/Au composite hollow spheres:Synthesis, characterization, and application to the detection of dopamine[J]. Langmuir,2006,22: 4384-4389.
    [6]Stejskal J., Sapurina I., Trchova M. Oxidation of aniline:Polyaniline granules, nanotubes, and oligoaniline microspheres [J]. Macromolecules,2008,41 (10):3530-3536.
    [7]Macdiarmid A.G., Chiang J.C. andRichter A.F. Polyaniline:A new concept in conduction polymers[J]. Synthetic Metals,1987,18:285-290.
    [8]Desurville R., Jozefowicz M., Yu L.T. Electrochemical chains using protolytic organic semiconductors[J]. Electrochimica Acta,1968,13:1451-1458.
    [9]Diaz A.F., Logan J.A. Electroactive polyaniline films[J]. Journal of Electroanalytical Chemistry,1980,111(1):111-114.
    [10]MacDiarmid A.G., Chiang J.C., Halpern M., Somasiri N.L.D, Wu W., Mol S.I. A new concept in conduction polymers[J]. Molecular Crystals and Liquid Crystals,1985,121:173-181.
    [11]Uvdal K., Lgdlund M., Dannetun P., MacDiarmid A. G. Vapor deposited polyaniline[J]. Synthetic Metals,1989,29(1):451-456.
    [12]Hernadaz R., Diaz A. F., Waltman R., Bargon J. Surface characteristics of thin films prepared by plasma and electrochemical polymerizations[J]. The Journal of Physical Chemistry A, 1984,88(15):3333-3337.
    [13]Angelopoulos M., Lee K. L. Coducting Polymers as lithograaphic materials[J]. Polymer Engineering & Science,1992,32:1535-1538
    [14]Chiang J.C., MacDiarmid A. G. Polyaniline:Protonic acid doping of theemeraldine form to the metallic regime[J]. Synthetic Metals,1986,13(1-3):193-205.
    [15]Shirakawa H. Nobel Lecture:The discovery of polyacetylene film-the dawning of an era of conducting polymers[J]. Reviews of Modern Physics,2001,73(3):713-718.
    [16]Hand R. L., Melson R F. The anodic decomposition pathways of ortho-andmeta-substituted anilines[J]. Journal of The Electrochemical Society,1978,125(7):1059-1069.
    [17]Yan H., Toshima N.Chemical preparation of polyaniline and its derivatives byusing cerium(Ⅳ)sulfate[J]. Synthetic Metals,1995,69(1-3):151-152.
    [18]Bingham A., Ellis B.Polymerization of aromation amines with ferricchloride to produce thermally stable polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1969, 7(11):3229-3244.
    [19]Toshima N., Yan H., Ishiwatari M. Catalytic E.R., Pomfret S.J., Adams P.N., Monkman A.P.. Polymerization of aromation amines by using copper(Ⅱ) salts and oxygen[J]. Bulletin of the Chemical Society of Japan,1994,67(7):947-1953.
    [20]Moon D. K., Maruyama T., Osakada K., Yamamoto T.Chemical oxidation of polyaniline by radical generating reagents and dibenzoyl peroxide[J]. Chemistry Letters,1991,20(9): 1633-1636.
    [21]Cao Y., Andreatta A., Heeger A. J., Smith P. Influence of chemical polymerization conditions on the properties of polyaniline[J]. Polymer,1989,30 (12):2305-2311.
    [22]Armers S., Aldissi M. Potassium iodate oxidation route to polyaniline:an optimization study[J]. Polymer,1991,32(11):2043-2048.
    [23]MacDiarmid A G, Chiang J C, Halpern M, Huang W S,S L Mu, Somasiri N L D. Polyaniline:Interconversion of metallic and insulated forms[J]. Molecular Crystals and Liquid Crystals,1985,121:173-180.
    [24]Tsutsumi H, Fukuzawa S., Ishikawa M., Morita M., Matsuda Y. Layered polyaniline composites with cation-exchanging properties for positive electrodes of rechargeable lithium batteries[J]. Journal of The Electrochemical Society,1995,142(1):3-5.
    [25]Chiang J.C., MacDiarmd A.G.. Photoinduced conversion of polyaniline from an insulating state to a conducting state [J]. Synthetic Metals,1986,13:193-197.
    [26]MacDiarmid A.G., Epstein A.J. Conduction polymers [J]. Synthetic Metals,1994, 65:103-107.
    [27]Holland E.R., Pomfret S.J., Adams P.N., Abell L., Monkman A.P. preparation of polyaniline and its derivatives[J]. Synthetic Metals,1997,84:777-781.
    [28]Huang J., Wan M., Optimiation of Preparation Techniques and Dielectric Study of Polyanilines[J]. Journal of Polymer Science Part A:Polymer Chemistry,1999,37:151-154.
    [29]Ahmed S.M., Ahmed S.A. Geometrical stability and energy storage of some conducting large aromatic sulfonate-doped Polyaniline[J]. European Polymer Journal,2002,38:25-31.
    [30]Laska J., Widlarz J. Water soluble polyaniline. Synthetic Metals,2003,135:261-262.
    [31]Stejskisla J., Riede A., Helmstedt M., Holler P., The effect of polymerization temperature on molecular weight,crystallinity, and electrical conductivity of Polyaniline[J]. Synthetic Metals, 1998,96:55-61.
    [32]Mattoso L.H.C., MacDiarmid A.G., Epstein A.J. Iron doping effects on the high-resolution 13C NMR spectra of solid poly(para-phenylene)[J]. Synthetic Metals,1994,68:103-108.
    [33]Joubert M., Bouhadid M., Begue D., Iratcaba P.1, Redon N., Desbrieres J., Reynaud S., Conducting polyaniline composite:from syntheses in waterborne systems to chemical sensor devices [J]. Polymer,2010,51:1716-1722.
    [34]Han M.G., Sperry J., Gupta A., Huebner C.F., Ingram S.T., Foulger S.H. Polyaniline coated poly(butyl methacrylate) core-shell particles:roll-to-roll printing of templated electrically conductive structures[J] Journal of Materials Chemistry,2007,17:1347-1352.
    [35]Lee I.S., Cho M.S., Choi H.J. Preparation of polyaniline coated poly(methyl methacrylate) microsphere by graft polymerization and its electrorheology[J]. Polymer,2005,46: 1317-1321.
    [36]Huang W.S., Humphrey B.D., MacDiarmid A.G.. Physical chemistry in condensed phases[J]. Journal of the Chemical Society, Faraday Transactions,1986,1(82):3535-3529.
    [37]Simoes, A. M.; Torres, J.; Picciochi, R., Fernandes J.C.S.Corrosion inhibition at galvanized steel cut edges by phosphate pigments[J]. Electrochimica Acta,2009,54:3857-3865.
    [38]Ginder J.M., Epstein A.J., MacDiarmid A.G. Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency [J]. Synthetic Metals, 1989,29:395-398.
    [39]Chiang JC., MacDiarmid A. G. Polyaniline:Protonic acid doping of the emeraldine form to the metallic regime[J]. Synthetic Metals,1986,13(1-3):193-205.
    [40]Parthasarathy R., Martin C.R. Template synthesis of graphitic nanotubules[J]. Nature,1994, 369:298-301.
    [41]Wu C.G., Bein T.. Conducting polyaniline filaments in a mesoporous channel host[J]. Science, 1994,264:1757-1759.
    [42]Parthasarathy R.V., Martin C.R. Template-synthesized polyaniline microtubules[J].Chemistry of Materials,1994,6:1627-1632
    [43]Hong D., Sudhindra P., Verrad N., and Jones W. E., Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates[J]. Chemistry of Materials,2004,16:371-373.
    [44]Pra L. D., Demoustier C. S. A comparative study of the electronic structure and spectroelectrochemical properties of electrosynthesized polyaniline films and nanotubes[J]. Thin Solid Films 2005,479?:321-328.
    [45]Kim B.H., Park D.H., Joo J., Lee S.H. Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires[J]. Synthetic Metals,2005,150:279-284.
    [46]Gao Y., Li X., Gong J., Fan B., Su Z. Qu L Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior[J]. The Journal of Physical Chemistry C,2008,112 (22):8215-8222.
    [47]Huan G H., Feng X. and Zhu J. Synthesis, characterization and application in electrocatalysis of polyaniline/Au composite nanotubes[J]. Nanotechnology,2008,19:145607-145613.
    [48]Wu T., Lin Y. Synthesis and characterization of hollow Polyaniline microtubes and microbelts with nanostructured walls in sodium dodecyl sulfate micellar solutions[J]. Polymer Engineering & Science,2008,48:823-828.
    [49]Madathil R., Parkesh R., Ponrathnam S., Large M.C.J.Polystyrene-and poly (3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization[J]. Macromolecules,2004,37:2002-2005
    [50]Haba Y., Segal E., Narki M.s, Titelma G.I., Siegmann A., Polyaniline-DBS A polymer blends prepared via aqueous dispersions[J]. Synthetic Metals,2000,110:189-193.
    [51]Ghanbari K, Mousavi M.F., Shamsipur M. Preparation of polyaniline nanofibersand their use as a cathode of aqueous rechargeable batteries[J]. Electrochimica Acta,2006,52:1514-1522.
    [52]Stejskisla J., Riede A., Hlavata D., Proke J., Helmstedt M., Holler P. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline[J]. Synthetic Metals,1998,96:55-61.
    [53]Michaelson J., McEvoy A. J. Interfacial Polymerization of Aniline[J].Chemical Communications,1994:79-80.
    [54]Manoha X., Chan R., Jose A.Nanofibers of polyaniline synthesized by interfacial polymerization[J]. Synthetic Metals,2004,145:23-29.
    [55]Dallas P., Stamopoulos D., Boukos N. Characterization,magnetic and transport properties of polyaniline synthesized through interfacial polymerization[J]. Polymer,2007,48:3162-3169.
    [56]Zhang L., Liu, P Wang T. Preparation of superparamagnetic polyaniline hybrid hollow microspheres inoil/water emulsion with magnetic nanoparticles as cosurfactant[J]. Chemical Engineering Journal,2011,11:711-716.
    [57]Lu X. F., Mao H., Chao D. M.Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles[J]. Journal of Solid State Chemistry,2006,179:2609-2615.
    [58]Li D., Wang Y., Xia Y.,Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters,2003,3:1167-1171.
    [59]Xiao Q., Tan X., J Li L., Xue J. Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel pickering emulsion route[J]. Synthetic Metals,2007,157:18-20.
    [60]Deng J., Ding Zhang X.,W, Peng Y., Wang J., Long X., Chan.C. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. European Polymer Journal,2002,38:2497-2501.
    [61]Pillalamarri S., Blum F.,.Tokuhiro A,.Bertino M. Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semi-Heterogeneous Catalyst in Water[J]. Chemistry of Materials,2005,17:5941-5944.
    [62]Olliveira M.M., Castro E.G., Canestraro C.D, anchet D.Z.,.Ugarte D, Roman L.S. A simple two-phase route to silver nanoparticles/polyaniline structures [J]. The Journal of Physical Chemistry B,2006,110:17063-17069.
    [63]Wu Q, Wang Z. and Xue Gi. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles[J]. Advanced Functional Materials,2007,17: 1784-1789.
    [64]Hsu C.H.; Mansfeld F. Technical note:concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion,2001,57:747-748.
    [65]Samui A.B.; Phadnis S.M. Polyaniline-dioctyl phosphate salt for corrosion protection of iron[J]. Progress in Organic Coatings,2005,54:263-267.
    [66]Yong D., Anne B. P., Hall H. K.Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerization of aniline[J] Journal of polymer science, Part A:Polymer Chemistry,1999,37:2569-2579.
    [67]Tan C.K., Blackwood D.J. Corrosion protection by multilayered conducting polymer coatings[J]. Corrosion Science,2003,45:545-557.
    [68]Armelin E., Aleman C., Iribarren J. I. Anticorrosion performances of epoxy coatings modified with polyaniline:A comparison between the emeraldine base and salt forms[J]. Progress in Organic Coatings,2009,65:88-93.
    [69]Sathiyanarayanan S., Syed Azim, S. Venkatachari G. A new corrosion protection coating withpolyaniline-Ti02 composite for steel[J]. Electrochirnica Acta,2007,52:2068-2074.
    [70]McAndrew T. P., Miller S. A., Gilicinski A.G, Robeson L. M. Polyaniline in corrosion resistant coatings[J]. Polymeric Materials Science and Engineering, Spring Meeting 1996, 74:204-206.
    [71]Wessling B. Corrosion prevention with organic metal(polyaniline):surface ennobling, passivation, corrosion test results[J]. Materials and Corrosion,1996,47:439-445.
    [72]Simoes A.M., Torres J., Picciochi R., Fernandes J. Corrosion inhibition at galvanized steel cut edges by phosphate pigments[J]. Electrochimica Acta,2009,54:3857-3865.
    [73]Talo A., Passiniemi P., Forsen O., Ylasaai S. Polyaniline/epoxy coating with good anti-corrosion properties[J]. Synthetic Metals,1997,85:1333-1337.
    [74]Wessling, B.; Posdofer, J. Corrosion prevention with an organic metal (polyaniline):corrosion test results[J]. Electrochimica Acta,1999,44:2139-2147.
    [75]Deberry D.W. Modification of the electrochemical and corrosion behavior of stainless steelswith an electroactive[J]. Journal of The Electrochemical Society,1985,5:1022-1026.
    [76]Thompson K.G. Los Alamos National Laboratory Report LA-UR-92-360 Los Alamos. NM, USA,1991.
    [77]Sathiyanarayanan S., Syed Azim S., Venkatachari G. A new corrosion protection coating with polyaniline-Ti02 composite for steel[J]. Electrochimica Acta,2007,52:2068-2074.
    [78]Sathiyanarayanan S., Syed Azim S., Venkatachari G. Corrosion protection coating containing polyaniline glass flake composite for steel[J]. Electrochimica Acta,2008,53:2087-2094
    [79]Adhikari A., Claesson P., Pan J., Leygraf C. Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel[J]. Electrochimica Acta,2008,53:4239-4247.
    [80]Armelin E., Aleman C, Iribarren J.I. Anticorrosion performances of epoxy coatings modified with polyaniline:A comparison between the emeraldine base and salt forms[J]. Progress in Organic Coatings,2009,65:88-93.
    [81]Gustavsson J.M., Innis P.C., Heb J., Wallace G.G., Tallman D.E. Processable polyaniline-HCSA/poly(vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3:A SVET and Raman study [J]. Electrochimica Acta,2009,54: 1483-1490.
    [82]Fang J., Xu K., Zhu L., Zhou Z., Tang H. A study on mechanism of corrosion protection of polyaniline coating and its failure[J]. Corrosion Science,2007,49:4232-4242.
    [83]Zhang K., Zhang L., Zhao X. S., Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials,2010,22:1392-1401.
    [84]Kuilla T. Bhadra S., Yao D., Kim N.H., Bos S., Lee J. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science,2010,35:350-1375.
    [85]Zhang Y., He S., Chen S., Guo Q., Hou Q. Preparation and electrochemical properties of polyaniline/carbon nanofiber composite[J]. Acta Physico-Chimica Sinica,2010,26(12): 3181-3186.
    [86]Mao D., Tian Y. Use of pOlyaniline/activated carbon doped with lithium as an electrode material in supercapacitors[J]. Journal of Beijing University of Chemical Technology,2007 34:612-615
    [87]戴晓军,王凯,周小沫,吴海平,魏志祥基于石墨烯/聚苯胺纳米线阵列复合薄膜的柔性超级电容器[J].中国科学:物理学,力学,天文学,2011,41(9):1046-1051.
    [88]Wang H., Hao Q. Yang X., Lu L., Wan X. Graphene oxide doped polyaniline for supercapacitors[J]. Electrochemistry Communications,2009,11:1158-1161.
    [89]Yan, J., Wei T., Fan Z., Qian W., Zhang M., Shen X. Wei F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors [J]. Journal of Power Sources,2010,195 3041-3045.
    [1]Bhadra S., Khastgir D., Singha N.K., Lee J.H., Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science,2009,34:783-810.
    [2]Tahir Z.M., Alocilia E.C., Grooms D.L., Polyaniline synthesis and its biosensor application[J]. Biosensors and Bioelectronics,2005,20:1690-1695.
    [3]Lchung D.D. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon,2001,39:279-285.
    [4]Krishna M., Karunasagar D., Rao S.V. Preconcentration and speciation of inorganic and methyl mercury in waters using polyaniline and gold trap-CVAAS[J]. Talanta,2005, 68:329-335.
    [5]Laco JII, Villota F.C., Mestres.FL. Corrosion protection of carbon steel with thermoplastic coatings and alkyd resins containing polyaniline as conductive polymer[J]. Progress in Organic Coatings,2005,52:151-160.
    [6]Radhakrishnan S., Siju C.R., Mahanta D., Patil S., Madras G. Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings[J]. Electrochimica Acta,2009,54:1249-1254.
    [7]Lin H.K., Chen S.A. Synthesis of new water-soluble self-doped polyaniline[J]. Macromolecules,2000,33:8117-8118.
    [8]Li X.G., Huang M.R., Feng W., Zhu M.F., Chen Y.M. Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine[J]. Polymer,2004,45:101-115.
    [9]Ahmed S.M., Ahmed S.A. Geometrical stability and energy storage of some conducting large aromatic sulfonate-doped polyaniline[J]. European Polymer Journal,2002,38:25-31.
    [10]Laska J., Widlarz J. Water soluble polyaniline[J]. Synthetic Metals,2003,135:261-262.
    [11]Gill M., Armes S.P. Particle size distributions of polyaniline-silica colloidal composites[J]. Langmuir,1992,8:2178-2182.
    [12]Somani P.R. Synthesis and characterization of polyaniline dispersions[J]. Materials Chemistry and Physics,2002,77:81-85.
    [13]Riede A., Stejskal J., Helmstedt M.. In-situ prepared composite polyaniline films[J]. Synthetic Metals,2001,121:1365-1366.
    [14]Banerjee P., Mandal B.M. Conducting polyaniline nanoparticle blends with extremely low percolation thresholds[J]. Macromolecules,1995,28:3940-3943.
    [15]Mirmohseni A., Wallaceb G.G. Preparation and characterization of processable electroactive polyaniline-polyvinyl alcohol composite[J]. Polymer,2003,44:3523-3528.
    [16]Gime'nez V., Reina J.A., Manteco'n A., Ca'diz V. Unsaturated modified poly(vinyl alcohol)crosslinking through double bonds[J]. Polymer,1999,40:2759-2767.
    [17]An Y., Koyama T., Hanabusa K., Shirai H., Ikeda J., Yoneno H., Itoh T. Preparation and properties of highly phosphorylated poly(vinyl alcohol) hydrogels chemically crosslinked by glutaraldehyde[J]. Polymer,1995,36:2297-2301.
    [18]Suzuki M., Yoshida T., Koyama T., Kobayashi S., Kimura M., Hanabusa K., Shirai H. Ionic conduction in partially phosphorylated poly(vinyl alcohol) as polymer electrolytes[J]. Polymer,2000,41:4531-4536.
    [19]Li X.H., Wang L.F., Zhuang L.Q., Luo Z.H. Pervaporation separation of ethanol-water mixtures theough phospatic poly(vinyl alcohol) membranes[J]. Journal of Natural Gas Chemistry,1998,7:273-278.
    [20]Riede A, Stejskal J, Helmstedt M. In-situ prepared composite Polyaniline films[J]. Synthetic Metals,2001,121:1365-1366.
    [21]Chattopadhyay D., Manda B.M. Methyl cellulose stabilized polyaniline dispersions[J]. Langmuir,1996,12:1585-1588.
    [22]Chin B.D., Park O.O. Dispersion stability and electrorheological properties of polyaniline particle suspensions stabilized by poly(vinyl methyl ether). [J]. Journal of Colloid and Interface Science,2001,234:344-350.
    [23]Hino T., Namiki T., Kuramoto N. Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers[J]. Synthetic Metals,2006,156:1327-1332.
    [24]Palaniappan S., Amarnath C.A. A novel polyaniline-maleicacid-dodecyl-hydrogensulfate salt:Soluble polyaniline powder[J]. Reactive and Functional Polymers,2006,66:1741-1748.
    [25]Bartholome C., Miaudet P., Derre A., Maugey M., Roubeau O., Zakri C., Poulin P. Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites[J]. Composites Science and Technology,2008,68:2568-2573.
    [26]Wu T.M., Lin Y.W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties[J]. Polymer,2006,47:3576-3579.
    [27]Paul R. K, Pillai C.K.S. Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends[J]. Synthetic Metals,2000,114:27-35.
    [28]Sudha J.D., Sivakala S., Prasanth R., Reena V.L., Radhakrishnan Nair P. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA:Preparation and properties[J]. Composites Science and Technology,2009,69:358-364.
    [1]Bhadra S., Khastgir D., N Singha.K., Lee J.H., Progress in preparation, processing and applications of Polyaniline[J]. Progress in Polymer Science,2009,34:783-810.
    [2]Ruotolo L., Gubulin J.C. A factorial-design study of the variables affecting the electrochemical reduction of Cr Ⅵ:at polyaniline-modified electrodes[J]. Chemical Engineering Journal, 2005,110:113-121.
    [3]K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU-PANI composite[J]. Acta Materialia,2009,57:371-375.
    [4]Armelin E., Aleman J., Iribarre I. Anticorrosion performances of epoxy coatings modified with polyaniline:a comparison between the emeraldine base and salt forms[J]. Progress in Organic Coatings,2009,65:88-93.
    [5]McGover S.T.n, Spinks G.M, Wallace G.G. Micro-humidity sensors based on a processable polyaniline blend[J]. Sensors and Actuators B:Chemical,2005,107:657-665.
    [6]Gemeay A.H., E1-Sharkawy, R.G. Mansour, Zaki A.B. Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity[J]. Journal of Colloid and Interface Science,2007,308:385-394.
    [7]Sahooa N.G., Ranab S., Chob J.W., Li L., Chan S.H. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Progress in Polymer Science,2010,35:837-867.
    [8]Neelgund G.M., Bliznyuk V.N., Pud A.A., Fatyeyeva K.Y., Hrehorova E., Joyce M. Formation of nanostructured composites with environmentally dependent electrical properties based on poly(vinylidene fluoride:-polyaniline core-shell latex system[J]. Polymer,2010,51: 2000-2006.
    [9]Li C., Chiu W., Don T. Polyurethane/polyaniline and polyurethane-poly(methyl methacrylate:/polyaniline conductive core-shell particles:preparation, morphology and conductivity [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45: 3902-3911.
    [10]Bremer L., Verbong M., Webers M., Van D.M..Preparation of core-shell dispersions with a low Tg polymer core and a polyaniline shell[J]. Synthetic Metals,1997,84:355-356.
    [11]Joubert M., Bouhadid M., Begue, D. Iratcabal P., Redon N., Desbrieres J., Reynaud S. Conducting polyaniline composite:from syntheses in waterborne systems to chemical sensor devices[J]. Polymer,2010,51:1716-1722.
    [12]Han M.G., Sperry J., Gupta A., Huebner C.F., Ingram S.T., Foulger S.H. Polyaniline coated poly(butyl methacrylate:core-shell particles:roll-to-roll printing of templated electrically conductive structures[J]. Journal of Materials Chemistry,2007,17:1347-1352.
    [13]Lee I.S., Cho M.S., Choi H.J. Preparation of polyaniline coated poly(methyl methacrylate: microsphere by graft polymerization and its electrorheology[J]. Polymer,2005,46: 1317-1321.
    [14]Kim B.J., Oh G., Han M., Im S. Preparation of PANI-coated polystyreneco-anoparticles[J]. Polymer,2001,43:111-116.
    [15]Barra G., Matins R., Kafer K., Paniago R., Vasques, C. Thermoplastic elastomer/polyaniline blends:evaluation of mechanical and electromechanical properties[J]. Polymer Testing,2008,27:886-892.
    [16]Del Castillo-Castro T., Castillo-Ortega M., Herrera-Franco P. Electrical, mechanical and piezo-resistive behavior of a polyaniline/polyn-butyl methacrylate:composite[J]. Composites Part A:Applied Science and Manufacturing,2009,4:1573-1579.
    [17]Chen F., Liu P. Preparation of polyaniline/phosphorylated poly(vinyl alcohol:nanoparticles and their aqueous re-dispersion stability[J]. AIChE Journal,2011,57:299-605.
    [18]Suzuki M., Yoshida T., Koyama T., Kobayashi S., Kimura M., Hanabusa K., Shirai H. Ionic conduction in partially phosphorylated poly(vinyl alcohol:as polymer electrolytes[J]. Polymer,2000,41:4531-4536.
    [19]Hino T., Namiki T., Kuramoto N. Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers[J]. Synthetic Metals,2006,156:327-1332.
    [20]Zhang Z., Wei Z., Wan M. Nanostructures of polyaniline doped with inorganic acids[J]. Macromolecules,2002,35:5937-5942.
    [21]Kolodynska D. Polyacrylate anion exchangers in sorption of heavy metal ions with the biodegradable complexing agent[J]. Chemical Engineering Journal,2009,150:280-288.
    [22]Rodrigues P.C., Muraro, M., Schreiner W.H. Gomes M.A.B. Polyaniline/lignin blends: thermal analysis and XPS[J]. European Polymer Journal,2001,37:2217-2223.
    [23]Zhang Z., Wan, M. Wei Y.,\ Highly crystalline polyaniline nanostructures doped with dicarboxylic acids[J]. Advanced Functional Materials,2006,26:1100-1104.
    [24]Bartholome C., Miaudet P., Derre A., Maugey M., Roubeau O., Poulin P. Influence of surface functionalization on the thermal and electricalproperties of nanotube-PVA composites[J]. Composites Science and Technology,2008,25:2568-2573.
    [25]Bourdo S., Li, Z.. Biris A.S, Watanabe F., Viswanathan T., Pavel I.,Structural, electrical, and thermal behavior of graphite-polyaniline composites with increased crystallinity[J]. Advanced Functional Materials,2008,18:432-440.
    [26]Chen C.F., Lee K.H., Chiu, W.Y. Synthesis and characterization of poly(butyl acrylate-methyl methacrylate:/polyaniline core-shell latexes[J]. Journal of Applied Polymer Science,2007,104:823-830.
    [1]Bhadra S., Khastgir D., Singha N.K., Lee J.H. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science,2009,34:783-810.
    [2]Xiong S., Wei J., Jia P., Yang L., Ma Jan., Lu X. Water-processable polyaniline with covalently bonded single-walled carbon nanotubes:enhanced electrochromic properties and impedance analysis[J]. ACS Applied Materials & Interfaces,2011,3:782-788.
    [3]Mengoli G., Munari M.T., Bianco P., Musiani M.M. Anodic synthesis of polyaniline coatings onto Fe sheets[J].Journal of Applied Polymer Science,1981,26:4247-4257.
    [4]Deberry D.W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. Journal of The Electrochemical Society,1985,132: 1022-1026.
    [5]Meroufel A., Deslouis C., Touzain S. Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings[J]. Electrochimica Acta,2008,53:2331-2338.
    [6]Plesu N., Ilia G., Pascariu A., Vlase G.. Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends[J].Synthetic Metals,2006,156:230-238.
    [7]Kamaraj K., Sathiyanarayanan S., Muthukrishnan S., Venkatachari G. Corrosion protection of iron by benzoate doped polyaniline containing coatings [J]. Progress in Organic Coatings, 2009,64:460-465.
    [8]Williams G., McMurray H. N. Polyaniline inhibition of filiform corrosion on organic coated AA2024-T3[J]. Electrochimica Acta,2009,54:4245-4252.
    [9]Fang J., Xu K., Zhu L., Zhou Z., Tang H. A study on mechanism of corrosion protection of polyaniline coating and its failure[J]. Corrosion Science,2007,49:4232-4242.
    [10]Spinks GM., Dominis A.J., Wallace G.G., Tallman D.E. Electroactive conducting polymers for corrosion control[J]. Journal of Solid State Electrochemistry,2002,6:85-100.
    [11]Adhikari A., Claesson P., Pan J., Leygraf C., Deidinaite A., Blomberg E. Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel[J]. Electrochimica Acta,2008,53:4239-4247.
    [12]Wessling B., Posdofer J. Corrosion prevention with an organic metal (polyaniline):corrosion test results[J]. J. Electrochimica Acta,1999,44:2139-2147.
    [13]Wessling B. Scientific and commercial breakthrough for organic metals[J]. Synthetic Metals, 1997,85:1313-1318.
    [14]Beard B. C., Spellane P. XPS evidence of redox chemistry between cold rolled steel and polyaniline[J]. Chemistry of Materials,1997,9:1949-1953.
    [15]Kinlen P.J., Silverman D.C., Jeffreys C.R. Polyaniline acrylic coatings for corrosion inhibition:the role played by counter-ions [J]. Synthetic Metals,1997,85:1327-1332.
    [16]Torresi R.M., Souza S., Pereira da Silva J.E., Cordoba de Torresi S.I. Galvanic coupling between metal substrate and polyaniline acrylic blends:corrosion protection mechanism [J]. Electrochimica Acta,2005,50:2213-2218.
    [17]Lai M., Chang K., Yeh J., Liou S., Hsieh M., Chang H. Advanced environmentally friendly anticorrosive materials prepared from water-based polyacrylate MMT clay nanocomposite latexes[J]. European Polymer Journal,2007,43:4219-4228.
    [18]Chen F., Ye F.Y., Chu G.C., Guo J.S., Huo L.X. Synthesis of acrylate modified vinyl chloride and vinyl isobutyl ether copolymers and their properties[J]. Progress in Organic Coatings, 2010,67:60-65.
    [19]Kalendova A., Sapurina I., Stejskal J., Vesely D. Anticorrosion properties of polyaniline-coated pigments in organic coatings[J]. Corrosion Science,2008,50:3549-3560.
    [20]Jafarzadeh S., Thormann E., Ronnevall T., Adhikari A., Sundell P.E., Pan J., Claesson P. M. Toward Homogeneous Nanostructured Polyaniline/Resin Blends[J]. ACS Applied Materials & Interfaces,2011,3:1681-1691.
    [21]Koo CM., Jeon B.H., Chung I.J. Recent advances in the electric double layer in colloid science[J]. Journal of Colloid and Interface Science,2000,227:316-321.
    [22]Rhim J.W., Park H.B., Lee C.S., Jun J.H., Kim D.S., Lee Y.M. Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group:proton and methanol transport through membranes[J]. Journal of Membrane Science,2004,238:143-151.
    [23]Suzuki M., Yoshida T., Koyama T., Kobayashi S., Kimura M., Hanabusa K., Shirai H. Ionic conduction in partially phosphorylated poly (vinyl alcohol) as polymer electrolytes[J]. Polymer,2000,41:4531-4536.
    [24]Simoes A.M., Torres J., Picciochi R., Fernandes J. Corrosion inhibition at galvanized steel cut edges by phosphate pigments[J]. Electrochimica Acta,2009,54:3857-3865.
    [25]Samui A.B., Phadnis S.M. Polyaniline-dioctyl phosphate salt for corrosion protection of iron[J]. Progress in Organic Coatings,2005,54:263-267.
    [26]Moraes S.R., Vilca D.H., Motheo A.J. Characteristics of polyaniline synthesized in phosphate buffer solution[J]. European Polymer Journal,2004,40:2033-2041.
    [27]Sathiyanarayanan S., Muthkrishnan S., Venkatachari G. Corrosion protection of steel by polyaniline blended coating[J]. Electrochimica Acta,2006,51:6313-6319.
    [28]Chen F., Liu P. Preparation of polyaniline/phosphorylated poly (vinyl alcohol) nanoparticles and their aqueous redispersion stability[J]. AIChE Journal,2011,57:599-605.
    [29]Gimenez V., Reina J.A., Mantecon A., Cadiz V. Unsaturated modified poly (vinyl alcohol). Crosslinking through double bonds[J]. Polymer,1999,40:2759-2767.
    [30]Chang K.C., Lai M.C., Peng C.W., Chen Y.T., Yeh J.M., Lin C.L., Yang J.C. Comparative studies on the corrosion protection effect of DBSA-doped polyaniline prepared from in situ emulsion polymerization in the presence of hydrophilic Na+-MMT and organophilic organo-MMT clay platelets[J]. Electrochimica Acta,2006,51:645-5653.
    [31]Yeh J.M., Liou S.J., Lai C.Y., Wu P.C., Tsai T.Y. Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline-clay nanocomposite materials[J]. Chemistry of Materials,2001,31:1131-1134.
    [32]Hsu C.H., Mansfeld F. Technical note:concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion,2001,57:747-748.
    [33]Zhang Z., Wei Y., Wan M. Nanostructures of polyaniline doped with inorganic acids[J]. Macromolecules,2002,35:5937-5942.[34] Zhang Z., Wan M., Wei Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids[J]. Advanced Functional Materials, 2006,16; 1100-1104.
    [35]Schauer T., Joos A., Dulog L., Eisenbach C.D. Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint[J]. Prog. Org. Coat.,1998,33,20-27.
    [36]Moraes S.R., Huerta-Vilca D., Motheo A.J. Sol-gel coatings for corrosion protection of metals[J]. Progress in Organic Coatings,2003,48:28-33.
    [37]Sedenkova I., Prokes J., Trochova M. Conformational transition in polyaniline films-Spectroscopic and conductivity studies of ageing[J]. Polymer Degradation and Stability,2007, 93:428-435.
    [38]Wei Y, Wang J., Jia X., Yeh J.M., Spellane P. Polyaniline as corrosion protection coatings on cold rolled steel[J]. Polymer,1995,36:4535-4537.
    [39]Stejskal J. Polyaniline and polypyrrole prepared in the presence of surfactants:a comparative conductivity study[J]. Journal of Polymer Materials,2001,18:225-258.
    [40]Talo A., Forsen O., Ylasaari S. Preparation, Characterization, and Anticorrosive Properties of Polyaniline Nanotubes [J]. Synthetic Metals,1999,102:1394-1395.
    [1]Tarascon J.M., Armand M. Review article Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [2]Kang K., Meng Y., Breger J., Grey C.P., Ceder G. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries[J]. Science,2006,311:977-980.
    [3]Liu Y., Pan H., Gao M., Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries[J]. Journal of Materials Chemistry,2011,21:4743-4755.
    [4]Yoshimoto, N. Matsumoto M., Egashia M., Morita M. Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode[J]. Journal of Power Sources,2010,195:2096-2098.
    [5]Yan, J. Wei T., Fan Z., Qian W., Zhang M., Shen X., Wei F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors[J]. Journal of Power Sources,2010:195:3041-3045.
    [6]Gomez H., Ram M.K., Alvi F., Villalba P., Stefanakos E., Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors[J]. Journal of Power Sources, 2011,196:4102-4108.
    [7]Xu F., Cai R., Zeng, Q. Zou C., Wu D., Li, F. Lu X., Liang Y., Fu R. Nanostructured carbon for energy storage and conversion[J]. Journal of Materials Chemistry,2011,21:1970-1975.
    [8]Zhang K., Zhang L., Zhao X. S., Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrode[J]. Chemistry of Materials,2010,22:1392-1401.
    [9]Zhu Y., Murali S., Stoller M.D, Ganesh K.J., Cai W., Ferreira P. J., Pirkle A., Wallace R.M., Cychosz K.A., Thommes M., Su D., Stach, E. A. Ruoffl R.S. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332:1537-1541.
    [10]Li Q., Li Z., Lin L., Wang X.Y., Wang Y., Zhang C., Wang H. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction[J]. Chemical Engineering Journal,2010,156:500-504.
    [11]Liu H., Wang X., Cui W., Dou Y, Zhao D., Xia Y. J. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells[J]. Journal of Materials Chemistry,2010,20:4223-4230.
    [12]Chen Q.I., Xue K., Shen W., Tao F., Yin S., Xu W. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors [J]. Electrochimica Acta,2004,49: 4157-4161.
    [13]Qiu Y., Zhang X., Yang S. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Physical Chemistry Chemical Physics,2011,13: 12554-12558.
    [14]Zhang X., Li H., Cui X.i and Lin Y. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry,2010,20:2801-2806
    [15]Dai T., Jia Y. Supramolecular hydrogels of polyaniline-poly (styrene sulfonate) prepared in concentrated solutions[J]. Polymer,2011,52:2550-2558.
    [16]Yang, C. Liu P., Zhao Y. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage[J]. Electrochimica Acta,2010,55: 6857-6864.
    [17]Lu Q., Zhou Y. Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties [J]. Journal of Power Sources,2011,196:4088-4094.
    [18]Kovalenko I., Bucknall D., Yushin G. Nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors[J]. Advanced Functional Materials,2010,20:3979-3986.
    [19]Mikhaylova A.A., Tusseeva E.K., Mayorova N.A., Krestinin A.V., Khazova O.A. Single-walled carbon nanotubes and their composites with polyaniline. Structure, catalytic and capacitive properties as applied to fuel cells and supercapacitors[J]. Electrochimica Acta, 2011,56:3656-3565.
    [20]Yan Y., Cheng Q., Wang G., Li C. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. Journal of Power Sources,2011,196:7835-7840.
    [21]Yan X., Tai Z., Chen J., Xue Q. Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor[J]. Nanoscale,2011,3:212-216.
    [22]Zhang D., Zhang X., Chen Y., Yu P., Wang C., Ma Y. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors [J]. Journal of Power Sources,2011,196:5990-5994.
    [23]Novoselov K.S., Geim A.K., Morozov S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [24]Stankovich. S., Dikin D.A., Domm G. Graphene-based composite materials[J]. Nature,2006, 442:282-286.
    [25]Wu Q., Xu Y., Yao Z., Liu A., Shi G Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano,2010,4:1963-1970.
    [26]Kim H., Abdala A.A., Macosko C.W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010,43:6515-6530.
    [27]Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-based ultracapacitors[J]. Nano Letters,2008,8:3498-3502.
    [28]Chen Y., Zhang X., Yu P., Ma Y.W. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors[J]. Journal of Power Sources,2010,195: 3031-3035.
    [29]Wang H., Hao Q., Yang X., Lu, L. Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. ACS Applied Materials & Interfaces,2010,2:821-828.
    [30]Yan J., We T. i, Shao B., Fan Z., Qian W., Zhang M., Wei F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon,2010,48: 487-493.
    [31]Kumar N. A., Choi H., Shin Y, Chang D. W, Dai L., and Jong-Beom Baek J.B. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano,2012,6 (2):1715-1723.
    [32]Chen F., Liu P. Preparation of polyaniline/phosphorylated poly(vinyl alcohol) nanoparticles and their aqueous redispersion stability [J]. AIChE Journal,2011,57:599-605.
    [33]Wang H., Hao Q., Yang X., Lu L., Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale,2010,2:2164-2170.
    [34]Pumera, M. Electrochemistry of graphene:new horizons for sensing and energy storage[J]. The Chemical Record,2009,9:211-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700