用户名: 密码: 验证码:
外场作用对钛表面磷酸锌转化膜形成及结构和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四水磷酸锌(Zn3(PO4)2·4H2O, Hopeite,简称为HP)因具有良好的耐蚀性与防护性,广泛应用于金属表面的防腐、提高涂装结合力及表面润滑等方面。近来被发现具有良好的生物相容性且在一定条件下能够转化为羟基磷灰石(HA),可以作为一种潜在的生物医用材料。另一方面,钛因具有重量轻、强度大以及良好耐蚀性等优良特性而广泛应用在国防航空航天、造船等工业领域。同时,因其与骨相近的弹性模量、良好的生物相容性等特点在临床上也得到了广泛的应用。在钛表面制备一层HP转化膜,既可以提高其表面防护性能,应用于工业军事等领域,也可以作为生物金属植入体材料表面改性应用于医学领域。但钛表面由于存在稳定的氧化膜难以进行转化膜的制备而限制了其应用。
     本研究首先优化出适合钛金属的化学转化液配方,并在此基础上利用不同的自制辅助外场,以场效应与化学转化法相结合的方式,成功在钛基体表面制备出HP转化涂层。根据试验需要,设计了四种不同的外场辅助手段:超声场、匀磁场、静电场以及电流场。通过调整转化时间、转化液的pH、转化温度以及各场参数,对其作用下形成转化膜的结构和性能进行研究。同时,对四种不同辅助场效应的机理进行了讨论。分别利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、红外光谱分析仪(FTIR)、高分辨透射电镜(HRTEM)、X射线光电子能谱仪(xPS)、扫描探针显微镜(SPM)以及三电极系统电化学工作站等手段对转化膜的相组成、形貌、原子团、微观结构、表面成分、表面粗糙度以及耐蚀性进行了系统的表征和分析。在此基础上,选取了60℃超声处理的转化膜,对人的成纤维细胞进行细胞培养,初步探讨了HP转化膜作为生物材料的生物相容性。
     结果表明,转化膜主要有HP组成,在不改变转化膜相组成和晶粒形状的基础上,超声作用能提高成膜形核率和结晶度,明显地减小晶粒尺寸至未经外场处理晶粒尺寸的1/5-1/10。此外,超声处理后膜厚膜重以及粗糙度都有所降低,但是致密度增加。而且超声处理使转化膜具有更加优异的耐蚀性能,250W超声功率下处理60min转化膜自腐蚀电流(Icorr)为0.06μA/cm2,相比于纯钛的17.5μA/cm2,明显降低,对应的EIS也表现出高的阻抗值。另外化学转化开始阶段超声功率能够影响转化膜的形核率,50W,100W和250W功率下,相同转化时间内形核数目随功率升高依次增多。
     磁场作用能够提高HP的形核率,生成的转化膜更加均匀致密,颗粒细小。随着转化时间的增加到60min,经过长时间溶解及再结品平衡过程转化膜颗粒表面呈现出层状结构,这种结构的表面积明显增大,粗糙度增加。此外,化学转化时间越长,膜的耐蚀性越好,与无磁场作用相比,相同转化时间下磁场作用下形成的转化膜表现出较好的耐蚀性能。
     电流场阴极电化学沉积过程中转化膜的组成随处理温度的不同发生变化,温度为60℃时,转化膜主要为HP,温度为30℃时,转化膜的主要有单质Zn组成。两者的耐蚀性表现出明显的差别,60℃下HP转化膜的自腐蚀电流比30℃的锌转化膜几乎低100倍,而阻抗值高出2-3个数量级。转化液经过铁粉熟化处理后,Fe2+的存在能够改变转化膜的形态和性能。未进行铁粉熟化的溶液中,60℃下电沉积的转化膜有蘑菇状HP和Zn组成,30℃下转化膜主要是致密板状结构的Zn组成;而铁粉熟化后的溶液中形成的转化膜在60℃时主要为板条状HP晶体,在30℃时,为空心泡状结构的单质Zn。同时,电流密度对转化膜的形成形态起到关键作用,电流密度越大,转化速度越快,在铁粉熟化后的溶液中电流密度能够改变转化膜的择优取向生长方向;随着转化膜的生长,局部电流密度的增高和不均匀性分布导致形成小片状晶体(厚度小于1μm、直径为10-30μm)的球形团簇。
     电场辅助化学转化过程中,生成的HP转化膜沿着(020)和(040)晶面方向发生明显的择优生长。在转化初期,电场能影响转化膜在基体上的铺展程度,无电场时形成转化膜平面铺展较阔,板条厚度较大,呈纵横交错状态。随电场强度升高,板条状的转化膜出现分散现象,铺展和交错程度降低。同时对于刚形成的转化膜,无电场时表现为不规则的小块状颗粒,而电场作用下形成的则相对圆滑、规则。
Hopeite (Zn3(PO4)2·4H2O, HP for short) has been widely used for anticorrosion of metal surface, improving paint adhesion and surface lubrication due to its good corrosion resistance and protection. It has been found that HP has good biocompatibility, Recently. And under certain condition it can be transformed into hydroxyapatite (HA) which can be used as potential biomedical material. On the other hand, titanium (Ti) has been found wide application in the aerospace, shipbuilding and other industries because of its light-weight, high-strength and good corrosion resistance. Meanwhile, Ti owns the elastic modulus similar to that of bone, good biocompatibility and easy processing characteristics, which leads to widespread application in clinical of Ti. The preparation of HP coating on Ti can enhance the protection characteristics of metal surface used in industrial and military field. In addition, the preparation of HP coating on Ti can also be used as implant materials used in medical applications. Because of the presence of a passive oxide layer at its surface, Ti is difficult to get a phosphate coating by the PCC method, which has greatly limited its application.
     Based on the optimization of conversion solution which can be obtained by chemical conversion on titanium surface this research aimed to utilize different means of self-made auxiliary field with the combination of field effect and chemical conversion and achieved success in the preparation of zinc phosphate on the titanium substrate surface. According to the requirements of the test, four different auxiliary field methods are designed including ultrasonic field, magnetic field, electrostatic field and the cathode electrochemical deposition. At the same time, the mechanism of the four different auxiliary field effect are discussed and also the structure and properties of conversion film formed under the influence of were characterized. In addition, the properties such as phase composition, microstructure, surface composition, morphology, radicals, surface roughness, and the corrosion resistance of the conversion coating were evidenced by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), infrared spectrometer (FTIR), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrometer (XPS), scanning probe microscope (SPM) and three electrode electrochemical workstation system by way of adjusting parameters like the PH of conversion liquid, the conversion time and temperature. And on this basis, we choose conversion coating by ultrasonic processing at60℃and make cell culture experiment of human fibroblasts to discuss the biocompatibility of zinc phosphate conversion coating as biomaterial preliminarily.
     The results show that the conversion coating is mainly composed of Zn3(PO4)2·4H2O. Furthermore, ultrasonic action can significantly reduce the grain size to1/5~1/10of the grain size formed without ultrasonic. Besides, ultrasonic increase the degree of crystallinity on the premise of not changing the phase composition and grain shape of the conversion coating. Besides, ultrasound can increase the nucleation rate of the conversion film. The thickness, weight and roughness of that are reduced but the density increased. And the coating has more excellent corrosion resistant performance after ultrasonic processing. The conversion coating with ultrasonic processing under250W for60min has the much lower corrosion current of0.06μA/cm2than that of the pure titanium of17.5μA/cm2. The corresponding EIS also showed high impedance values. Moreover, ultrasonic power can influence the nucleation rate of conversion coating at the start of the chemical conversion and the nucleation number increases as the power increases from50W to250W.
     Magnetic field can increase the nucleation of zinc phosphate, the coatings is more uniform and compact, also the particle is smaller. The conversion coating particles' surface present a layered structure after dissolution for a long time and recrystallization process with increasing time to60min. As a consequence, the surface area of the structure and roughness increases. Also we can conclude that the longer time chemical conversion takes, the better the corrosion resistance of membrane will be. The conversion film formed under the effect of magnetic field shows more excellent corrosion resistance than that without magnetic field at the same conversion time.
     The composition of conversion coating in cathodic electrochemical deposition process changes with treatment temperature, when the temperature is60℃, the conversion coatings are mainly zinc phosphate, however when the temperature is30℃, the main composition of conversion coating is pure metal Zinc. There are clear differences between the two on the corrosion resistance, the corrosion current of60℃zinc phosphate conversion coating is almost100times lower than that of zinc conversion coating30℃, as well as2to3orders of magnitude higher than that of the impedance values. In addition, after aging process of iron powder, the presence of Fe2+in the conversion of liquid can change the shape and properties of conversion coatings. For the solution without iron powder aging process, the conversion coating of electrodeposition at60℃is composed of mushroom-shaped HP crystal and zinc, and the coatings formed at30℃mostly consists of a very thin layer of simple substance zinc. The conversion coating formed in solution with iron powder aging at60℃is mainly composed of dense lath zinc crystals, while at30℃for simple substance zinc with hollow vesicular structures.
     Moreover, in the process of electrochemical deposition, current density play a key role in the formation of conversion coating, the greater the current density, the faster the transformation. In the solution with iron powder aging, current density can change the preferred orientation growth direction of conversion coating. With the growth of the conversion coating, high and uneven distribution of the local current density results in the submicron level of platelet crystal clusters into spherical distribution on the previous coating.
     In the process of field-assisted chemical conversion, the diffraction intensity of the peaks along the (020) and (040) planes obviously increases which implies the preferred epitaxial growth of HP along the planes. In the early stages of the transformation, the electric field can affect the degree of spreading of conversion coating on the substrate, without electric field, the conversion coatings spread widely and show criss-cross, with a larger strip thickness. As the electric field intensity increases, plate strip conversion coating appears dispersion phenomenon, the degree of spreading and interleaving is reduced. Meanwhile the newly formed conversion coating is characterized by irregular small block particles without electric field, while the particles formed with electric field are relatively smooth and rules.
引文
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science,2009,54(3):397-425.
    2 Addison O, Davenport A J, Newport R J, et al. Do 'passive' medical titanium surfaces deteriorate in service in the absence of wear?[J]. Journal of The Royal Society Interface,2012, 9(76):3161-3164.
    3 Liu X, Chu P K, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science and Engineering:R:Reports,2004, 47(3):49-121.
    4 Albrektsson T. Hydroxyapatite-coated implants:a case against their use[J]. Journal of oral and maxillofacial surgery,1998,56(11):1312-1326.
    5 Lee J J, Rouhfar L, Beirne O R. Survival of hydroxyapatite-coated implants:a meta-analytic review[J]. Journal of Oral and Maxillofacial Surgery,2000,58(12):1372-1379.
    6 Mohseni E, Zalnezhad E, Bushroa A R. Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6A1-4V implant:A review paper[J]. International Journal of Adhesion and Adhesives,2014,48:238-257.
    7 Narayanan T S N S. Surface Pretreatment by Phosphate Conversion Coatings a Review[J]. Rev. Adv. Mater. Sci,2005,9:130-177.
    8 Shibli S M A, Jayalekshmi A C. Development of phosphate inter layered hydroxyapatite coating for stainless steel implants[J]. Applied Surface Science,2008,254(13):4103-4110.
    9 Herschke L, Rottstegge J, Lieberwirth I, et al. Zinc phosphate as versatile material for potential biomedical applications Part 1[J]. Journal of Materials Science:Materials in Medicine,2006,17(1):81-94.
    10 Horiuchi S, Asaoka K, Tanaka E. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite[J]. Bio-Medical Materials and Engineering,2009,19(2):121-131.
    11 Gittens R A, Olivares-Navarrete R, Cheng A, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta biomaterialia,2013,9(4):6268-6277.
    12 Davies J E, Ajami E, Moineddin R, et al. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface[J]. Biomaterials,2013, 34(14):3535-3546.
    13 Davies J E, Mendes V C, Ko J C H, et al. Topographic scale-range synergy at the functional bone/implant interface[J]. Biomaterials,2014,35(1):25-35.
    14 Valanezhad A, Tsuru K, Maruta M, et al. Novel Ceramic Coating on Titanium with High Mechanical Properties Bioceram[J]. Dev. Appl,2011,1:1-3.
    15 Valanezhad A, Tsuru K, Maruta M, et al. A new biocompatible coating layer applied on titanium substrates using a modified zinc phosphatizing method[J]. Surface and Coatings Technology,2012,206(8):2207-2212.
    16 黄永光.外科植入用钛合金材料及其标准化[J].金属学报,2002,38(S):530-532.
    17 贡长生,张克立.新型功能材料[M].北京:北京化学工业出版社,2004.
    18 石淑先.生物材料制备与加工[M].北京:化学工业出版社,2009,404-405.
    19浦素云.金属植入材料及其腐蚀[M].北京:北京航空航天大学出版社,1989.
    20 Folkman J, Moscona A. Role of cell shape in growth control[J]. Nature,1978,273:345-349.
    21 Chou L, Firth J D, Uitto V J, et al. Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts[J]. Journal of biomedical materials research,1998,39(3):437-445.
    22 迪伊KC,普莱奥DA,比齐奥斯R,著.黄楠,译.组织生物材料相互作用导论[M].北京:化学工业出版社,2005.
    23 Gorynin I V. Titanium alloys for marine application[J]. Materials Science and Engineering:A, 1999,263(2):112-116.
    24 Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering:A,1996,213(1):103-114.
    25 Boyer R R. Titanium for aerospace:rationale and applications[J]. Advanced Performance Materials,1995,2(4):349-368.
    26 Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering:A,1998,243(1):305-315.
    27刘宣勇.生物医用钛材料及其表面改性[M].北京:化学工业出版社:2008,3-7.
    28张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2004.
    29 张新平,于思荣,夏连杰等.钛及钛合金在牙科领域中的研究现状{.稀有金属材料与工程2002,31(4):246-271.
    30崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版,2004.
    31 Chou L, Firth J D, Uitto V J, et al. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts[J]. Journal of Cell Science,1995,108(4):1563-1573.
    32钱捷,杨策尧,盛迅,等.钛种植体表面微形态对成骨细胞生长影响的体外研究[J].临床口腔医学杂志,2005,21(6):348-350.
    33 张其翼,陈继镛.在静态和动态下等离子喷涂涂层在模拟体液(SBF)中形成类骨磷灰石的比较研究[J].四川大学学报:自然科学版,2002,39(6):1085-1088.
    34童伟东,陈继镜,张兴栋.等离子喷涂轻基磷灰石涂层的非晶化和再结晶过程.生物医学工程通报,1994(特刊),6:20-22.
    35 丁传贤,薛卫昌,刘宣勇,等.等离子啃涂人工骨涂层材料[J].中国有色金属学报,2004,14,S1:306-309.
    36李志安.牙科钛种植体表面改性.中国实用口腔科杂志.2010,3(8):457-461.
    37郑美华,庾尧炜,阮毅,等.酸蚀面螺纹状牙种植体的表面分析[J].实用医学杂志,2006,22(18):2107-2108.
    38蔡玉荣.用化学处理法制备具有梯度表面结构的生物活性钛[J].稀有金属快报,2000,6:15-16.
    39 Nishiguchi S, Nakamura T, Kobayashi M, et al. The effect of heat treatment on bone-bonding ability of alkali-treated titanium[J]. Biomaterials,1999,20(5):491-500.
    40 Piveteau L D, Girona M I, Schlapbach L, et al. Thin films of calcium phosphate and titanium dioxide by a sol-gel route:a new method for coating medical implants[J]. Journal of Materials Science:Materials in Medicine,1999,10(3):161-167.
    41 Royer P, Rey C. Calcium phosphate coatings for orthopaedic prosthesis[J]. Surface and coatings technology,1991,45(1):171-177.
    42 Ban S, Maruno S. Effect of pH buffer on electrochemical deposition of calcium phosphate[J]. Japanese Journal of Applied Physics,1994; 33,1545-1548.
    43 Ban S, Maruno S, Harada A. et al. Effect of temperature on morphology of electrochemically-deposited calcium phosphates[J]. Dental materials journal,1996,15(1): 31-38.
    44 Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes[J]. Journal of Materials Science:Materials in Medicine,1998,9(2):67-72.
    45 Ishizawa H, Fujino M, Ogino M. Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment[J]. Journal of biomedical materials research,1997,35(2):199-206.
    46 Simka W. Preliminary investigations on the anodic oxidation of Ti-13Nb-13Zr alloy in a solution containing calcium and phosphorus[J]. Electrochimica Acta,2011,56(27): 9831-9837.
    47 Varghese O K, Gong D, Paulose M, et al. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B:Chemical,2003,93(1):338-344.
    48 Lukiyanchuk I V, Rudnev V S, Kuryavyi V G, et al. Surface morphology, composition and thermal behavior of tungsten-containing anodic spark coatings on aluminium alloy[J]. Thin Solid Films,2004,446(1):54-60.
    49 Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al. Composition and adhesion of protective coatings on aluminum[J]. Surface and Coatings Technology,2001,145(1): 146-151.
    50 Li L H, Kong Y M, Kim H W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J]. Biomaterials,2004,25(14):2867-2875.
    51 Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P[J]. Journal of biomedical materials research,1995,29(1):65-72.
    52 Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment[J]. Journal of biomedical materials research,1995,29(9):1071-1079.
    53黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报,2003,31(6):591-597.
    54 Shao Y, Jia C, Meng G, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel[J]. Corrosion Science,2009,51(2):371-379.
    55 Mahdavian A M, Attar M M. Investigation on zinc phosphate effectiveness at different pigment volume concentrations via electrochemical impedance spectroscopy[J]. Electrochimica Acta,2005,50(24):4645-4648.
    56 Zubielewicz M, Gnot W. Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings[J]. Progress in organic coatings,2004,49(4):358-371.
    57 Caprari J J, Di Sarli A R, Del Amo B. Zinc phosphate as corrosion inhibitive pigment of waterborne epoxy paints used for steel protection[J]. Pigment & Resin Technology,2000, 29(1):16-22.
    58 Shao Y, Jia C, Meng G, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel[J]. Corrosion Science,2009,51(2):371-379.
    59 Palraj S, Selvaraj M, Jayakrishnan P. Effect of phosphate coatings on the performance of epoxy polyamide red oxide primer on galvanized steel[J]. Progress in organic coatings,2005, 54(1):5-9.
    60 LIN B, Lu J T, Kong G, et al. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel [J]. Transactions of Nonferrous Metals Society of China,2007,17(4):755-761.
    61 Smith A L. Luminescence of three forms of zinc orthophosphate:Mn[J]. Journal of the Electrochemical Society,1951,98(9):363-368.
    62 Maurel C, Cardinal T, Bellec M, et al. Luminescence properties of silver zinc phosphate glasses following different irradiations[J]. Journal of Luminescence,2009,129(12): 1514-1518.
    63 Bourhis K, Royon A, Bellec M, et al. Femtosecond laser structuring and optical properties of a silver and zinc phosphate glass[J]. Journal of Non-Crystalline Solids,2010,356(44): 2658-2665.
    64 Liu Y, Zou Z, Liang X, et al. Energy Transfer and Photoluminescence of Zinc Phosphate Glasses Co-Doped with Tb3+ and Mn2+[J]. Journal of the American Ceramic Society,2010, 93(7):1891-1893.
    65 Green W H, Le K P, Grey J, et al. White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions[J]. Science,1997,276(5320):1826-1828.
    66 Zhang C, Yang J, Quan Z, et al. Hydroxyapatite nano-and microcrystals with multiform morphologies:controllable synthesis and luminescence properties[J]. Crystal Growth and Design,2009,9(6):2725-2733.
    67 Zhang C, Li C, Huang S, et al. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery[J]. Biomaterials,2010,31(12):3374-3383.
    68 Ning Z, Li W, Sun C, et al. Synthesis and optical properties of zinc phosphate microspheres[J]. Transactions of Nonferrous Metals Society of China,2013,23(3):718-724.
    69 Chou AHK, LeGeros RZ, Chen Z, et al. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes [J]. Implant Dent,2007,16:89-100.
    70 李娟,廖旭辉,陈卓凡.磷酸锌矿化处理胶原膜抗牙龈卟啉单胞菌的实验研究[J].临床口腔医学杂志,2012,8(5):262-264.
    71 陈馥淳,黄宝鑫,李志鹏,张汉卿,陈卓凡.磷酸锌矿化胶原膜对MG63细胞生物学行为的影响[J].临床口腔医学杂志2013,6(29):323-326.
    72 Moreno L C, Garcia-Pineros J, Delgado-Mejia E. Triple alkaline treatment of titanium surfaces for calcium phosphates growth [J]. Brazilian journal of physics,2006,36(3B): 997-999.
    73 Zheng C Y, Li S J, Tao X J, et al. Calcium phosphate coating of Ti-Nb-Zr-Sn titanium alloy[J]. Materials Science and Engineering:C,2007,27(4):824-831.
    74 Wen H B, Wolke J G C, De Wijn J R, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments [J]. Biomaterials,1997,18(22):1471-1478.
    75 White L D, Tripp C P. Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces [J]. Journal of colloid and interface science,2000,232(2): 400-407.
    76张林,谭帼馨,宁成云,等.钛表面自组装硅烷化对仿生矿化性能和细胞增殖的影响[J].稀有金属材料与工程,2012,41(11):1985-1989.
    77 Zhao X, Xiao G, Zhang X, et al. Ultrasonic Induced Rapid Formation and Crystal Refinement of Chemical Conversed Hopeite Coating on Titanium[J]. The Journal of Physical Chemistry C,2014,118(4):1910-1918.
    78崔建国,韦云隆,王洪.超声治疗学在生物医学工程中的应用[J].重庆工学院学报(自然科学版),2007,5:126-131.
    79冯若.超声手册[M].南京:南京大学出版社,1999,09.
    80 Leveque J M, Luche J L, Petrier C, et al. An improved preparation of ionic liquids by ultrasound[J]. Green chemistry,2002,4(4):357-360.
    81 Gholap A R, Venkatesan K, Daniel T, et al. Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation[J]. Green Chemistry,2004,6(3):147-150.
    82 Richards W T, Loomis A L. The chemical effects of high frequency sound waves I. A preliminary survey[J]. Journal of the American Chemical Society,1927,49(12):3086-3100.
    83 张德俊,汪承灏.单一空化气泡运动的高速摄影的实验研究[J].声学学报.1996,3(1):14-20.
    84 Ooi S K, Biggs S. Ultrasonic initiation of polystyrene latex synthesis[J]. Ultrasonics sonochemistry,2000,7(3):125-133.
    85 Suslick KS, Hammerton DA, Cline RE. Sonochemical hot spot[J]. Journal of the American Chemical Society.1986,108(18):5641-5642
    86 Gaitan D F, Crum L A, Church C C, et al. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble[J]. The Journal of the Acoustical Society of America,1992, 91(6):3166-3183.
    87 Barber B P, Putterman S J. Observation of synchronous picosecond sonoluminescence[J]. Nature,1991,352:318-320.
    88 Yang J K, Kim J G, Chun J S. A study of the effect of ultrasonics on manganese phosphating of steel[J].Thin solid films,1983,101(3):193-200.
    89 Sheng M, Wang C, Zhong Q, et al. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys[J]. Ultrasonics sonochemistry,2010,17(1):21-25.
    90 Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation[J]. Nature,2006,439(7079):957-960.
    91 Wakayama N I, Ataka M, Abe H. Effect of a magnetic field gradient on the crystallization of hen lysozyme[J]. Journal of crystal growth,1997,178(4):653-656.
    92 Mikelson A E, Karklin Y K. Control of crystallization processes by means of magnetic fields[J]. Journal of Crystal Growth,1981,52:524-529.
    93 Asai S, Sassa K, Tahashi M. Crystal orientation of non-magnetic materials by imposition of a high magnetic field[J]. Science and Technology of Advanced Materials,2003,4(5):455-460.
    94 Sugiyama T, Tahashi M, Sassa K, et al. The control of crystal orientation in non-magnetic metals by imposition of a high magnetic field[J]. IS IJ international,2003,43(6):855-861.
    95 Ambashta R D, Sillanpaa M. Water purification using magnetic assistance:a review[J]. Journal of hazardous materials,2010.180(1):38-49.
    96 Kozic V, Hamler A, Ban I, et al. Magnetic water treatment for scale control in heating and alkaline conditions[J]. Desalination and Water Treatment,2010,22(1-3):65-71.
    97 Fathi A, Mohamed T, Claude G, et al. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate[J]. Water Research,2006,40(10): 1941-1950.
    98 Coey J M D, Cass S. Magnetic water treatment[J]. Journal of Magnetism and Magnetic Materials,2000,209(1):71-74.
    99 Jiang L, Zhang J, Li D. Effects of permanent magnetic field on calcium carbonate scaling of circulating water[J]. Desalination and Water Treatment,2013 (ahead-of-print):1-11.
    100 Gabrielli C, Jaouhari R, Maurin G, et al. Magnetic water treatment for scale prevention[J]. Water Research,2001,35(13):3249-3259.
    101 Ambashta R D, Sillanpaa M. Water purification using magnetic assistance:a review[J]. Journal of hazardous materials,2010,180(1):38-49.
    102柴诚敬,贾绍义,李宗堂等.磁化技术在化工领域中的应用[J].化学工业与工程,1999,4(16):245-246.
    103 Botello-Zubiate M.E, Alvarez A, Martinez-Villafane, et al. Influence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon steel [J]. Journal of Alloys and Compounds,2004,369(1-2):256-259.
    104 Kobe S, Drazic G., A.C. Nucleation and crystallization of CaCO3in applied magnetic fields[J]. Crystal Engineering,2002,5(3-4):243-253.
    105吴松海.磁场作用下乙酸——水体系分离过程的研究[D].天津大学博士研究生学位论文,2007.
    106 Luo J W, Singh R, Zunger A, et al. Influence of the atomic-scale structure on the exciton fine-structure splitting in InGaAs and GaAs quantum dots in a vertical electric field[J]. Physical Review B,2012,86(16):161302.
    107 Yang J P, Xiao Y, Deng Y H, et al. Electric-Field-Assisted Charge Generation and Separation Process in Transition Metal Oxide-Based Interconnectors for Tandem Organic Light-Emitting Diodes[J]. Advanced Functional Materials,2012,22(3):600-608.
    108 Ben Ammar J, Lanoiselle J L, Lebovka N I, et al. Impact of a pulsed electric field on damage of plant tissues:effects of cell size and tissue electrical conductivity[J]. Journal of food science,2011,76(1):E90-E97.
    109 Ganeva V, Galutzov B, Teissie J. Evidence that Pulsed Electric Field Treatment Enhances the Cell Wall Porosity of Yeast Cells[J]. Applied biochemistry and biotechnology,2013: 1-13.
    110田裕鑫.静电场对碳酸钙溶液结晶影响的分子动力学研究[D].中国石油大学硕士学位论文.2008.
    111 李海花,刘振法,高玉华等.静电场对CaCO3结晶过程的影响及与绿色阻垢剂的协同阻垢性能[J].化工学报,2013,64(5):1736-1742.
    112刘兵.静电场对铝合金的作用效应与机制[D].西北工业大学博士学位论文,2002.
    113 刘天旭.电场对材料表面硬度的影响[D].大连理工大学硕士学位论文,2007.
    114 Blackwood D J, Seah K. H W. Electrochemical cathodic deposition of hydroxyapatite: improvements in adhesion and crystallinity[J]. Materials Science and Engineering:C,2009. 29(4):1233-1238.
    115 Kuo M C, Yen S K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature[J]. Materials Science and Engineering:C,2002, 20(1):153-160.
    116 Zhitomirsky I. Cathodic electrophoretic deposition of diamond particles[J]. Materials Letters,1998,37(1):72-78.
    117 Hu C C, Huang C C, Chang K H. A novel solution for cathodic deposition of porous TiO2 films[J]. Electrochemistry Communications,2009,11(2):434-437.
    118 Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J]. Chemical Physics Letters,2002,363(1):123-128.
    119刘晓辉.钢铁黑膜磷化工艺的研究[D].辽宁师范大学硕十学位论文,2012.
    120王春明.金属磷化处理(二)[J].电镀与环保,2000,20(6):23-28.
    121 胡国辉,郝庆义,李晓卫.金属磷化技术[M].国防工业出版社,2009-1-1:292.
    122 Van Phuong N, Moon S, Chang D, et al. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91[J]. Applied Surface Science,2013,264: 70-78.
    123 Parhi P, Manivannan V, Kohli S, et al. Room temperature metathetic synthesis and characterization of a-hopeite, Zn3(PO4)2·4H2O. [J]. Materials Research Bulletin,2008, 43(7):1836-1841.
    124 Valanezhad A, Tsuru K, Maruta M, et al. A new biocompatible coating layer applied on titanium substrates using a modified zinc phosphatizing method[J]. Surface and Coatings Technology,2012,206(8):2207-2212.
    125 Abdalla K, Rahmat A, Azizan A. Influence of activation treatment with nickel acetate on the zinc phosphate coating formation and corrosion resistance[J]. Materials and Corrosion,2013, DOI:10.1002/maco.201307009.
    126 Yang J K, Kim J G, Chun J S. A study of the effect of ultrasonics on manganese phosphating of steel[J]. Thin solid films,1983,101(3):193-200.
    127 Nair U B. Calcium as a phosphating additive:An overview[J]. Metal finishing,1995,93(3): 40-41.
    128 Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J]. Biomaterials,2011,32(13):3395-3403.
    129 Osathanon T, Bespinyowong K, Arksornnukit M, et al. Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness[J]. Journal of oral science, 2011,53(1).
    130 Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805:65-87.
    131 Adamson A W, Gast A P. Physical Chemistry of Srufaces(6th ed) [M]. New York:John Wiley & Sons,1997.
    132 Yao Z Q, Yang P, Huang N, et al. Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PⅢ-D)[J]. Applied surface science,2004,230(1):172-178.
    133李光玉.镁合金表面有机涂层和化学镀层的研究[D].吉林大学博士学位论文.2006.
    134 Attar F, Johannesson T. Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique[J]. Surface and Coatings Technology,1996,78(1):87-102.
    135 Laugier M T. Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides[J]. Journal of materials science,1986,21(7):2269-2272.
    136华敏奇,袁振海.划痕试验法对特殊薄膜系结合力的检测与评价[J].分析测试技术与仪器,2002,8(4):218-225.
    137 Assis, S. L.; Assis S L, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques[J]. Electrochimica Acta,2006,51(8):1815-1819.
    138 Chen G, Wen X, Zhang N. Corrosion resistance and ion dissolution of titanium with different surface microroughness[J]. Bio-medical materials and engineering,1998,8(2): 61-74.
    139 Sheng M, Wang C, Zhong Q, et al. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys[J], Ultrasonics sonochemistry,2010,17(1):21-25.
    140 Mahdavian M, Attar M M. Another approach in analysis of paint coatings with EIS measurement:phase angle at high frequencies[J]. Corrosion Science,2006,48(12): 4152-4157.
    141 Amini R, Sarabi A A. The corrosion properties of phosphate coating on AZ31 magnesium alloy:The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent[J]. Applied Surface Science,2011,257(16):7134-7139.
    142 Mahdavian M, Attar M M. Another approach in analysis of paint coatings with EIS measurement:phase angle at high frequencies[J]. Corrosion Science,2006,48(12): 4152-4157.
    143 Amini R, Sarabi A A. The corrosion properties of phosphate coating on AZ31 magnesium alloy:The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent[J]. Applied Surface Science,2011,257(16):7134-7139.
    144 Abdalla K, Rahmat A, Azizan A. Effect of copper (11) acetate pretreatment on zinc phosphate coating morphology and corrosion resistance[J]. Journal of Coatings Technology and Research,2013,10(1):133-139.
    145 Shibli S M A, Chacko F. Development of nano TiO< sub> 2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance[J]. Applied Surface Science,2011,257(7):3111-3117.
    146 Mason T J, Cobley A J, Graves J E, et al. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound [J]. Ultrasonics sonochemistry,2011,18(1):226-230.
    147 Bacakova L, Filova E, Parizek M, et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants[J]. Biotechnology advances,2011, 29(6):739-767.
    148 Ponsonnet L, Reybier K, Jaffrezic N, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour[J]. Materials Science and Engineering:C,2003,23(4):551-560.
    149赵昕Ti6A14V生物材料表面粗糙度对成骨细胞黏附的影响机制研究.哈尔滨工业大学硕士学位论文,2010.
    150 Oshida Y, Hashem A, Nishihara T, et al. Fractal dimension analysis of mandibular bones: toward a morphological compatibility of implants[J]. Bio-medical materials and engineering,1994,4(5):397-407.
    151 Hallab N J, Bundy K J, O'Connor K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion[J]. Tissue Engineering,2001,7(1):55-71.
    152 Ruardy T G, Schakenraad J M, Van der Mei H C, et al. Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces[J]. Journal of biomedical materials research,1995,29(11):1415-1423.
    153 Smith B S, Yoriya S, Johnson T, et al. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays[J]. Acta biomaterialia,2011,7(6):2686-2696.
    154 Herschke L, Lieberwirth Ⅰ, Wegner G. Zinc phosphate as versatile material for potential biomedical applications Part Ⅱ[J]. Journal of Materials Science:Materials in Medicine, 2006,17(1):95-104.
    155 Cau C, Guari Y, Chave T, et al. Sonohydrothermal Synthesis of Nanostructured (Ce, Zr) O2 Mixed Oxides with Enhanced Catalytic Performance[J]. The Journal of Physical Chemistry C,2013,117(44):22827-22833.
    156 Virot M, Pflieger R, Skorb E V, et al. Crystalline Silicon under Acoustic Cavitation:From Mechanoluminescence to Amorphization[J]. The Journal of Physical Chemistry C,2012, 116(29):15493-15499.
    157 Sesis A, Hodnett M, Memoli G, et al. Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes[J]. The Journal of Physical Chemistry B,2013, 117(48):15141-15150.
    158 Luque de Castro M D, Priego-Capote F. Ultrasound-assisted crystallization (sonocrystallization)[J]. Ultrasonics sonochemistry,2007,14(6):717-724.
    159 Ruecroft G, Hipkiss D, Ly T, et al. Sonocrystallization:the use of ultrasound for improved industrial crystallization[J]. Organic Process Research & Development,2005,9(6): 923-932.
    160 Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. Nature,1991,353(6343):414-416.
    161 Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (H2O2yield) and bubble dynamics:Frequency and power effects[J]. Ultrasonics sonochemistry,2008,15(2): 143-150.
    162 Guo Z, Jones A G, Li N. The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization[J]. Chemical Engineering Science,2006,61(5):1617-1626.
    163周万松,杨远滨.磁场生物效应的研究进展[J].生物磁学,2003,3(1):6-9.
    164 Saiyed Z M, Telang S D, Ramchand C N. Application of magnetic techniques in the field of drug discovery and biomedicine[J]. BioMagnetic Research and Technology,2003,1(1):2.
    165 Hou C H, Hou S M, Hsueh Y S, et al. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy[J]. Biomaterials,2009,30(23): 3956-3960.
    166 Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021.
    167 Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magnetic nanoparticles in biomedicine[J]. Journal of physics D:Applied physics,2003,36(13):R167.
    168 Babincova M, Cicmanec P, Altanerova V, et al. AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy[J]. Bioelectrochemistry,2002,55(1):17-19.
    169 Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magnetic nanoparticles[J]. Journal of bioscience and bioengineering,2005,100(1):1-11.
    170 Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes[J]. Journal of Magnetism and Magnetic Materials,1999, 194(1):176-184.
    171 Tanaka Y, Hirata Y, Yoshinaka R. Synthesis and characteristics of ultrafine hydroxyapatite particles[J]. Journal of Ceramic Processing & Research,2003,4(4):197-201.
    172 Aoki H. What is hydroxyapatite? Medical applications of hydroxyapatite.Tokyo:Takayama Press; 1994. p.1-12.
    173 Monzon L, Coey J M D. Magnetic fields in electrochemistry:The Lorentz force. A mini-review[J]. Electrochemistry Communications,2014,42:38-41.
    174 Monzon L M A, Klodt L, Coey J M D. Nucleation and Electrochemical Growth of Zinc Crystals on Polyaniline Films[J]. The Journal of Physical Chemistry C,2012,116(34): 18308-18317.
    175 Ispas A, Matsushima H, Bund A, et al. Nucleation and growth of thin nickel layers under the influence of a magnetic field[J]. Journal of Electroanalytical Chemistry,2009,626(1): 174-182.
    176 Zhao M, Li J, He G, et al. An investigation of the effect of a magnetic field on the phosphate conversion coating formed on magnesium alloy[J]. Applied Surface Science,2013,282: 499-505.
    177 Krause A, Uhlemann M, Gebert A, et al. The effect of magnetic fields on the electrodeposition of cobalt [J]. Electrochimica Acta,2004,49(24):4127-4134.
    178 Bund A, Koehler S, Kuehnlein H H, et al. Magnetic field effects in electrochemical reactions[J]. Electrochimica Acta,2003,49(1):147-152.
    179 Dirksen J A, Ring T A. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology [J]. Chemical Engineering Science,1991,46(10):2389-2427.
    180 Narayanan T S N S. Surface Pretreatment by Phosphate Conversion Coatings a Review[J]. Rev. Adv. Mater. Sci,2005,9:130-177.
    181 Song Y, Shan D, Chen R, et al. A novel phosphate conversion film on Mg-8.8 Li alloy[J]. Surface and Coatings Technology,2009,203(9):1107-1113.
    182 曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004.
    183刘晓兰.镁合金化学转化膜成膜机理及其载波改性的研究[D].哈尔滨工程大学博士位论文,2010.
    184蒋秉植,杨健美.蒋乘植,杨健美.磁场对某些化学反应的影响[J].化学通报,1991,10:11-15.
    185 Lundager Madsen H E. Theory of long induction periods[J]. Journal of crystal growth,1987, 80(2):371-377.
    186 Ohring M. The Material science of Thin films[M]. New York:Academic Press,1992:115, 123,125,126.
    187 Peipmann R, Lange R, Kubeil C, et al. Magnetic field effects on the mass transport at small electrodes studied by voltammetry and magnetohydrodynamic impedance measurements[J]. Electrochimica Acta,2010,56(1):133-138.
    188 Iida T, Matsushima H, Fukunaka Y. Water electrolysis under a magnetic field[J]. Journal of the electrochemical society,2007,154(8):E112-E115.
    189 Jegannathan S, Sankara Narayanan T S N, Ravichandran K, et al. Formation of zinc-zinc phosphate composite coatings by cathodic electrochemical treatment[J]. Surface and Coatings Technology,2006,200(12):4117-4126.
    190 Jegannathan S, Arumugam T K, Narayanan T S N, et al. Formation and characteristics of zinc phosphate coatings obtained by electrochemical treatment:Cathodic vs. anodic[J]. Progress in Organic Coatings,2009,65(2):229-236.
    191 Jegannathan S, Sankara Narayanan T S N, Ravichandran K, et al. Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests[J]. Electrochimica acta,2005,51(2):247-256.
    192 Jegannathan S, Sankara Narayanan T S N, Ravichandran K, et al. Formation of zinc phosphate coating by anodic electrochemical treatment[J]. Surface and Coatings Technology, 2006,200(20):6014-6021.
    193 Sankara Narayanan T S N, Jegannathan S, Ravichandran K. Corrosion resistance of phosphate coatings obtained by cathodic electrochemical treatment:Role of anode-graphite versus steel[J]. Progress in organic coatings,2006,55(4):355-362.
    194 Jegannathan S, Sankara Narayanan T S N, Ravichandran K, et al. Evaluation of the corrosion resistance of phosphate coatings obtained by anodic electrochemical treatment[J]. Progress in Organic coatings,2006,57(4):392-399.
    195谢德明,胡吉明,童少平.多道环氧涂层在NaCl溶液中的电化学阻抗谱[J].材料研究学报,2009,18(1):96.
    196 De Groot K, Klein C, Wolke J G C, et al. Chemistry of calcium phosphate bioceramics[J]. Handbook of bioactive ceramics,1990,2:3-16.
    197 Prado Da Silva M H, Lima J H C, Soares G A, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium[J]. Surface and Coatings Technology,2001, 137(2):270-276.
    198牛丽媛.镁合金锌系复合磷化膜成膜机理、微观结构及性能的研究[D].吉林大学博士学位论文,2006.
    199 Satoh N, Minami T. Relationship between the formation of zinc phosphate crystals and their electrochemical properties[J]. Surface and Coatings Technology,1988,34(3):331-343.
    200 Sato N, Minami T, Kono H. Analysis of metallic components in zinc phosphate films using electron spin resonance and X-ray fluorescence[J]. Surface and Coatings Technology,1989, 37(1):23-30.
    201 Fernandes K S, Alvarenga E A, Brandao P R G, et al. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel[J]. Rem:Revista Escola de Minas,2011,64(1):45-49.
    202 Jiang L, Wang R, Yang B, et al. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and applied chemistry,2000,72(1):73-81.
    203 张龙.超疏水表面的制备、结构与性能研究[D].华南理工大学硕士研究生学位论文,2013.
    204 Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials,2003,2:301-306.
    205 Cassie A.B.D., Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40(5):546-551.
    206 Dahms H, Croll I M. The Anomalous Codeposition of Iron-Nickel Alloys[J]. Journal of The Electrochemical Society,1965,112(8):771-775.
    207郑筱梅,李自林.酸性溶液中的铁锌共沉积[J].重庆师范学院学报(自然科学版),1989.2:007.
    208 王云燕,柴立元.碱性锌酸盐体系Zn-Fe合金电镀异常共沉积研究[J].材料保护,2008,41(1):4-8.
    209 Gomez E, Pelaez E, Valles E. Electrodeposition of zinc+ iron alloys:Ⅰ. Analysis of the initial stages of the anomalous codeposition[J]. Journal of Electroanalytical Chemistry,1999, 469(2):139-149.
    210 Gomez E, Alcobe X, Valles E. Electrodeposition of zinc+ iron alloys:Ⅱ. Relation between the stripping results and ex-situ characterization[J]. Journal of Electroanalytical Chemistry, 1999,475(1):66-72.
    211 Zhang Z, Leng W H, Shao H B, et al. Study on the behavior of Zn-Fe alloy electroplating[J]. Journal of Electroanalytical Chemistry,2001,516(1):127-130.
    212 Panossian Z. Simultaneous deposition of zinc with iron-group metals[J]. Metal finishing, 1999,97(6):88-92.
    213 屠振密,张景双,安茂忠,等.锌与铁族金属共沉积机理的新进展[J].农面技术,2001,30(6):1-4.
    214 Moreau R, Laskar O, Tanaka M, et al. Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime[J]. Materials Science and Engineering:A,1993,173(1):93-100.
    215 Usui M., Iwai K., Asai S. Crystal Alignment of Sn-Pb Alloy by Controlled Imposition of a Static Magnetic Field and an Alternating Electric Current During Solidification[J]. ISIJ international,2006,46(6):859-863.
    216 Kang C., Bae J., Kim B. The Grain Size Control of A356 Aluminum Alloy by Horizontal Electromagnetic Stirring for Rheology Forging[J]. Journal of Materials Processing Technology,2007,187:344-348
    217 Liang X J, Hu X F, Weng X X, et al. Synthesis of Spherical Zinc Oxide Micro-Flower via an Electric Field-Assisted Homogeneous Precipitation Method[J]. Advanced Materials Research,2011,328:1541-1544.
    218林昌健,董明松,宋沛.电场对水溶液中磷酸钙盐晶体形成的影响[J].生物医学工程学杂志,1993,10(1):1-7.
    219 Guy Lorin. Phosphating of Metals[M], London:Finishing Publications Ltd,1974.
    220孙伟,徐晓斌,张宏,等.电场作用下水分子转向极化和离子扰动对生物溶液相变过程的影响[J].低温工程,2007,4:006.
    221 Jung D H, Yang J H, Jhon M S. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations[J]. Chemical physics,1999,244(2): 331-337.
    222 Wei Sun, Xiaobin Xu, W Sun, et al Effect of altemated electric field on the ice formation during freezing process of 0.9% KMnO4 Water [C], IEEE ICPADM 2006,2006:774-777.
    223 陈程,陶乐仁,华泽钊.静电场对红细胞悬液冻结特性的影响[J].工程热物理学报,2005,26(5):841-843.
    224谢晶,华泽钊.氯化钠溶液在高压静电场中的冻结和解冻[J],上海水产大学学报,2002(3):53-57.
    225王照伦,杨晓庆.静电场对硫酸钙结晶的影响及计算机模拟.四川大学学报(自然科学版),2007,44(5):1045-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700