用户名: 密码: 验证码:
乘波体结构热响应及防护问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超音速飞行器技术因其高度的科技前沿性和巨大的战略应用价值而受到各国青睐。当前,航空、航天重大力学问题已被列入《国家中长期科学和技术发展规划纲要》,使得发展高超音速飞行器的若干技术问题显得更为突出。面对未来航天飞行器普通化与普通飞行器航天化的航空与航天技术的一体化融合趋势,本文依托发展高超音速吸气式飞行器这条主线,选取乘波体为研究对象,围绕乘波体的设计与优化、壁面热流预测、结构气动加热响应及热防护等问题开展了下列研究工作:
     首先,基于锥型流场理论,以激波角、半展角、膨胀角、长宽比和底面函数系数为设计控制参数,在30km大气高度、来流马赫数为6条件下设计生成了锥导乘波体构型。在分析各设计控制参数对乘波体构型升阻比、容积效率等性能影响的基础上,引入复合形法,对生成体进行了升力重力匹配、上表面等熵膨胀等优化处理,获得了设计点条件下的乘波体优化外形;
     其次,在分析钝体结构热防护效果的基础上,以生成的乘波体构型为研究对象,对气动加热最为严重的前缘锋锐区域进行钝化处理。通过数值试验获取了设计点飞行状态下乘波体构型的绕流流场特性及近壁面处的气动力参数,并结合工程方法,预测了乘波体构型壁面的气动加热热流;
     再次,对气动加热最为严重的乘波体前缘区域进行流固耦合分析,研究了乘波体前缘在流动冲击及气动加热作用下的变形响应。通过考察结构温度场和热应力场分布,分析了结构热变形所诱发的热应力问题,初步了解了乘波体前缘结构对流动冲击及气动加热的响应,为结构防热设计和强度设计提供一定的参考;
     最后,结合具体试验,对喷流热防护及其工程应用问题展开研究。分析了反向喷流热防护机理及干扰激波波后流场的振荡特性,研究了反向喷流与主流干扰流场的稳定性对热防护效果的影响。对气动加热最为严重的乘波体锋锐前缘区域,采用数值模拟验证了喷流热防护对锋锐前缘结构的热防护效果。
     综上所述,本文针对高超音速乘波体,从外形设计、气动加热预测、结构响应及热防护等多个方面开展了较系统的研究,希望能够为工程设计提供一定的参考。
Hypersonic vehicle technology, for its highly scientific and technological frontier nature and great strategic application value, is favored by all. Currently, major mechanical problems of aviation and aerospace have been listed in the Outline of National Long-and Mid-term Science and Technology Development Plan, which makes some technical problems concerning the development of hypersonic vehicle appear more prominent. Facing with the tendency of integration and fusion of aviation and aerospace technology and generalization of aerospace flying vehicle and spacialization of general flying vehicle in the future, this dissertation conducts the following research relying on the masterstroke of the development of hypersonic air-breathing vehicle, selecting waverider as the research object, centering on the issues such as design and optimization of waverider, prediction of wall heating flux, response of structural aerodynamic heating and thermal protection:
     Firstly, based on the theory of conical flow field, with shock angle, semi-spanwise angle, expansion angle, length-to-span ratio and function coefficient as design control parameters, cone-derived waverider configuration is generated under conditions of mach number 6 and 30km high atmosphere. On the basis of the analysis of the effect of the design control parameters on the performance of the lift-to-drag ratio of the waverider configuration, volume efficiency and etc., complex method is introduced to optimize and process the matching of lift to weight and top surface isentropic expansion of the generated waverider and the optimized shape of waverider is obtained under the design condition.
     Secondly, on the basis of the analysis of the thermal protection effect of blunt body structure, taking the generated waverider configuration as the research object, the sharp leading edge, which is the most serious aerodynamic heating area, is blunted. Through numerical simulation characteristics of flow over waverider configuration and the aerodynamic parameters near the wall under the flying state from the designed points are obtained. In combination with the engineering method, the heating flux caused by aerodynamic heating of the waverider configuration wall is predicted.
     Thirdly, the dissertation analyzes the fluid structure interaction of leading edge of the waverider configuration, the most serious aerodynamic heating area, studies the deformation of the leading edge of the waverider in the function of flow impact and aerodynamic heating and analyzes the interaction effect from the structural deformation to the flow field. The distribution of structural temperature field and thermal stress field is also inspected. A preliminary understanding of the response to flow impact and aerodynamic heating response is achieved, providing certain reference for the design of structural thermal protection.
     Finally, combined with specific experiment, the dissertation studies the issue of opposing jet thermal protection and its engineering application, analyzes the mechanism of reverse opposing jet thermal protection and the characteristics of the oscillations of the flow field after the interference wave and studies the effect of the stability of reverse opposing jet and the mainstream of flow field on thermal protection. Measures of opposing jet thermal protection are adopted for the sharp leading edge of the waverider, the most serious aerodynamic heating area. The numerical simulation verified the thermal protection effect of opposing jet thermal protection for the sharp leading edge structure.
     To sum up, taking hypersonic waverider for example, the dissertation conducts a comparatively systematic research on the appearance design, aerodynamic heating prediction, structural response and thermal protection. However, studies on the various researches on the work are still weak and have many shortcomings. It is expected that the dissertation can provide certain reference for project design problem.
引文
[1]黄志澄,仇强华,袁生学.高超声速飞行展望.流体力学实验与测量.1997,11(1):6-11页
    [2]黄志澄.高超音速飞行—人类新世纪的追求.航空知识.2002(12):25-28页
    [3]关世义.美国新一代X-飞行器一瞥.飞航导弹.2002(1):20-26页
    [4]刘桐林.美国超-X计划与X43试飞器.飞航导弹.2002(5):5-12页
    [5]刘桐林.国外高超声速技术发展探析.飞航导弹.2002(6):30-40页
    [6]Hicks J W, Trippensee G. NASA Hypersonic X-Plane flight development of technologies and capabilities for the 21st century access to space. NASA Dryden Flight Research Center
    [7]Calhoun P. An entry flight controls analysis for a reusable launch vehicle.38th Aerospace SciencesMeeting & Exhibit. AIAA-2000-1046
    [8]Davidson J, Lallaman F, MCMinn J D and Martin J. Flight control laws for NASA's Hypersonic-X Research Vehicle. AIAA-99-4124
    [9]Murphy K J, Nowak R J. X-33 Hypersonic aerodynamic characteristics AIAA-99-4162
    [10]童雄辉.美国“猎鹰”计划及其最新进展.中国航天.2005(2):42-44页
    [11]Albert H Boudreau. Status of the U. S. Air Force HYTECH program.12 th AIAA International Space Planes and Hypersonic Systems and Technologies.15-19, Dec.2003
    [12]Laurent SERRE, Francois FALE-MP IN. PROMETHEE:the Frenchmilita-ry hypersonic propulsion program status in 2002.12th AIAA International Space Planes and Hypersonic Systems and Technologies 15-19, Dec.2003
    [13]Lentsch A, Becy R, Deneu F, Novelli Ph, RigaultM, Conrardy J-M. Airbreathing launch vehicle activities in France-the last and the next 20 years.12th AIAA International Space Planes and Hypersonic Systems and Technologies 15-19, Dec.2003
    [14]TakeshiNishizawa, Wataru Sarae, TakaoMunenaga, Kenji Fujii and Masaaki Yanagihara. Overview of high speed flight demonstration p roject.12th AIAA International Space Planes and Hypersonic Systems and Technologies 15-19, Dec.2003
    [15]李成智,郑晓齐.中国载人航天工程决策过程中航天飞机与载人飞船之争.科技导报.2009,17(18):19-27页
    [16]Marshall L A, Bahm C and Corpening G. Overview with Results and Lessons Learned of the X-43A Mach 10 Flight. AIAA 2005-3336
    [17]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态.飞航导弹.2004(5)P27-31页
    [18]Hei W H, Pratt D T. Hypersonic Airbreathing Propulsion. AIAA, Inc, Washington, DC, 1994
    [19]刘嘉,王发民.乘波前体构型设计与压缩性能分析.工程力学.2003,20(6):130-134页
    [20]Edwards C L W, Small W J, Weidner J P and Johnson P J. Studies of Scramjet-Airframe Integration Techniques for Hypersonic Aircraft, AIAA 1975-58
    [21]侯志强,刘济民,宋宝贵.高超声速乘波飞行器多学科设计优化研究进展.导弹与 航天运载技术,2009(3):15-19、22页
    [22]Lewis M J. A Hypersonic Propulsion Airframe Integration Review, AIAA 2-3-4405
    [23]姜宗林.关于吸气式高超声速推进技术研究的思考.力学进展.2009 39(4):398-405页
    [24]姜宗林,韩贵来,俞鸿儒.吸气式高超音速推进技术研究的进展、问题与思考.第十三届全国激波与激波管会议论文集.2008:1-7页
    [25]Nonweiler T R F. Aerodynamic Problems of manned space vehicle. J of the Royal Areonautical Society.1959,63(9):521-528P
    [26]Bowcutt K G, Anderson J D Jr, Capriotti D. Viscous optimized hypersonic waveriders. 1987, AIAA 87-0272
    [27]Corda S, Anderson J D Jr.Viscous optimized hypersonic waveriders designed from axisymmetric flow fields.1988, AIAA88-0369
    [28]Kuchemann D. The Aerodynamic Design of Aircraft. London, Pergamon Press,1978
    [29]Sobieczky H, Zores B, Wang zhuo, Qian Yiji. High Speed Flow Design Using the theory of Osculating Cones and Axisymmetric Flows. Chinese Journal of Aeronautics, 1999,12(1):1-8P
    [30]王卓,钱翼稷.乘波机外形设计.北京航空航天大学学报.1999,25(2)180-183页
    [31]Sobieczky H, Dougherty F C, Jones K D. Hypersonic waverider design from given shock waves. Proceedings of the first International Hypersonic Waverider Symposium. Maryland University of Maryland,1990
    [32]黄志澄.高超声速飞行器空气动力学.国防工业出版社.1995
    [33]赵桂林,胡亮,闻洁等.乘波构型和乘波飞行器研究综述.力学进展.2003,33(3):357-374页
    [34]Maikapqr G I. Bodies Formed by the Stream Surfaces of Conical Flow. Mekhanika Zhidkostii Gaza.1966,1(1):126-127P
    [35]Rasmussen. M.L. Waverider Configurations Derived from Inclined Circular and Elliptic Cones. Journal of Spacecraft and Rockets,1980,17(6):537-545P
    [36]Yu.P.Goonko, I.I.Mazhul, and N.Karkelov, Convergent-Flow-Derived Waverider. Journal of Aircraft.2000,37(4)
    [37]Takashima, N. Optimization of waverider-based hypersonic vehicle designs, PHD Thesis, University of Maryland,1997
    [38]Miller R W, Argrow B M. Subsonic aerodynamics of an osculating cones waverider. AIAA 1997-0189
    [39]Graves R E, Argrow B M. Aerodynamic performance of an osculating cones waverider at high altitudes. AIAA 2001-2960
    [40]Lobbia M, Suzuki K. Numerical investigation of waverider-derived hypersonic transport configurations. AIAA 2003-3804
    [41]Park, Hyung-Koo. Model of an aerospace plane based on an idealized cone-derived waverider forebody. PhD thesis, the University of Oklahoma,1990
    [42]Jones K D, Center K B. Waverider design methods for non-conical shock geometries. AIAA 2002-3204
    [43]Charles E Jr. Aerodynamic Performance and Flow-field Characteristics of Two Waverider-derived Hypersonic Cruise Configurations, AIAA 1995-0736
    [44]Chauffour M., Lewis M J. Corrected Waverider Design for Inlet Applications, AIAA 2004-3405
    [45]O'Brien, Timothy F, Lewis M J. RBCC engine-airframe integration on an osculating cone waverider vehicle. AIAA 2000-3823
    [46]O'Neill M K L. Optimized scramjet engine integration on a waverider airframe. PhD thesis. University of Maryland.1992
    [47]Miller R W, Argrow B M. Experimental verification of the osculating cones method for two waverider forebodies at Mach 4 and 6. AIAA 1998-0682
    [48]Sobieczky H., Dougherty F C, Jones K D. Hypersonic Waverider Design from Given Shock Waves. Proceedings of First International Hypersonic Waverider Symposium. University of Maryland,1990
    [49]黄志澄.空天飞机的乘波外形.气动实验与测量控制.1992,6(3):1-9页
    [50]瞿章华,刘伟等.高超音速空气动力学.国防科技大学出版社.2001
    [51]杨岞生,俞守勤等.飞行器部件空气动力学.国防工业出版社.1981
    [52]徐华舫.空气动力学基础(下).国防工业出版社.1980
    [53]Rasmussen M L, Jischke M C, Daniel D C. Experimental forces and moments on Cone-derived waveriders for M∞=3 to 5. J of Spacecraft and Rockets.1982,19(6): 592-598P
    [54]Ferguson. Frederick. Expanding the waverider design space using arbitrary generating flowfields. Doctor Thesis, University of Maryland,1993
    [55]Takashima N, Lewis M J. Waverider configurations based on non axisymmetric flow fields for engine-airframe integration. AIAA-94-0380
    [56]Cole J D, Zien T F. A Class of Three-Dimensional Optimism Hypersonic Wings. AIAA Journal,1969,7(2):264-271P
    [57]Kim B S, Rasmussen M L, Jischke M C. Optimization of Waverider Configurations Generated from Axisymmetric Conical Flows. AIAA-82-1299
    [58]Starkey R P, Lewis M J. Analytical off-design lift-to-ratio analysis for hypersonic waveriders. Journal of Spacecraft and Rockets.2000,37(5):684-691P
    [59]Mary Kae L, O'Neill, Mark J. Lewis. Optimized Scramjet Integration on Waveriders. Journal of Aircraft.1992(29):235-237P
    [60]Naruhisa Takashima. Navier-stokes Computations of a Viscous Optimized Waverider. Master Thesis, University of Maryland,1992
    [61]X He, Rasmussen M L. Computational Analysis of Off Design Waveriders. Journal of Aircraft.1994(31):14-15P
    [62]Yijian Shi, Bor-fang Tsai, John B. Miles. Cone-derived Waverider Flowfiled Simulation Including Turbulence and Off Design Conditions. Journal of Spacecraft and Rockets,1996(33):16-18P
    [63]Naruhisa, Mark J and Lewis. Optimization of Waverider-Based Hypersonic Cruise Vehicles with Off-Design Conditions. Journal of Aircraft.1999(36):122-123P
    [64]Miyagawa T, Ohta T and Matsuzaki R. Experimental studies on several waverider configurations Transactions of the Japan Society for Aeronautical and Space Sciences. Japan Soc for Aeronautical & Space Sciences.1997,39(126):416-427P
    [65]Gillum, Michael Joseph, Lewis, Mark J. Experimental Results on a Mach 14 Waverider with Blunt Leading Edges. Journal Aircraft.1997,34(3):296-303P
    [66]Anderson Lewis, Kothari, Corda. Hypersonic Waveriders for Planetary Atmosphere. Journal of Spacecraft.1991,28(4):156-158P
    [67]商旭升,蔡元虎等.锥导乘波机的构型设计与性能研究.宇航学报.2005,26(2):137-139页
    [68]肖洪,商旭升等.吻切锥乘波机的构型设计与性能研究.宇航学报.2004,25(2):127-130页
    [69]彭钧,陆志良,李文正.Ma4.5巡航飞行器乘波体方法优化设计.宇航学报.2004,25(2):135-140页
    [70]耿永兵,刘宏,姚文秀等.锥型流乘波体优化设计研究.航空学报.2006,27(1):23-28页
    [71]耿永兵,刘宏,雷麦芳等.高升阻比乘波构型优化设计.力学学报报.2006,38(4):540-546页
    [72]耿永兵,刘宏,王发民.飞行高度及设计长度对锥型流乘波体优化的影响.宇航学报.2006,27(2):162-166页
    [73]Chen Xiaoqing, Hou Zhongxi, He Lietang, et al. Multiobject optimization of waverider generated from conical flow and osculating cone. AIAA2008-131
    [74]赵志.乘波构型前体的设计与性能计算[D].西北工业大学,2006
    [75]薛倩.乘波机/进气道构型设计与优化[D].西北工业大学,2005
    [76]田婷.乘波器气动外形优化设计[D].北京航空航天大学,2005
    [77]张元,余少志等.乘波体预压缩性能试验研究.空气动力学学报.1999,17(1),93-97页
    [78]张东俊,王延奎等.高升阻比乘波体外形设计及气动特性计算研究.北京航空航天大学学报.2004,30(5):429-433页
    [79]张东俊,王延奎等.基于乘波体的高超音速运载器气动布局设计.北京航空航天大学学报.2005,31(2):177-181页
    [80]党雷宁.乘波飞行器外型设计与气动特性研究.中国空气动力研究与发展中心研究生部硕士学位论文.2007
    [81]刘桐林.俄罗斯高超声速技术飞行试验计划(四).飞航导弹.2000(7):18-23页
    [82]毕士冠.美国2010年后的巡航导弹发展道路初步分析.飞航导弹.2001(1):1-8页
    [83]刘嘉,姚文秀,李静美,王发民.高超声速飞行器测热试验研究.流体力学试验与测量.2004,18(1):29-30页
    [84]DeJarnette F R, Hamilton H H and Cheatvood F M. A review of some approximate methods used in aerodnamic heating analyses. AIAA 85-0906
    [85]Riley C J and DeJarnette F R. Surface pressure and streamline effects on laminar heating calculations. AIAA 88-2708
    [86]Griffith B J and Lewis C H. Laminar heat transfer to spherically blunted cones at hypersonic conditions, AIAAjournal,1964:438-444P
    [87]Van Driest. Turbulent boundary layer in compressible fluids. Journal of Aeronautic Science.1951:145-160P
    [88]Detwiler, Andrew. Effects of Subsonic Aircraft on Aerosols and Cloudiness in the Upper Troposhere and Lower Stratosphere. NASA-CR-200614,1995
    [89]Gnotfo P A. An Upwind-Biased Point-Implicit Relaxation Algorithm for Viscous Compressible Perfect Gas Flow. NASA TP-2953,1990
    [90]Karen E.Harwell. Matching boundary layer and inviscid flowfields at hypersonic speeds[D]. Raleigh, NC:North Carolina State University,2000
    [91]Ahmad Farid Khorra. Upstream Influence in Hypersonic Aerodynamics Over Sharp Thin and Thick Bodies. International Journal of Engineering Science.2003(41):45-59P
    [92]Shripad P. Mahulikar.Theoretical Aerothermal Concepts for Configuration Design of Hypersonic Vehicles. Aerospace Science and Technology 2005, (9):681-685P
    [93]Roxan Cayzac, Christophe Grignon, Eric Carette. Navier-Stokes Computation of Heat Transfer and Aeroheating Modeling for Supersonic Projectiles. Aerospace Science and Technology.2006(10):374-384P
    [94]Heppenheimer, Thomas A. Facing the Heat Barrier:A History of hypersonics. NASA/SP-2007-4232,2007
    [95]Van Driest. Investigation of laminar boundary layer in compressible fluids using the crocco method, NACA TN 2597, Washington D C,1952
    [96]Van Driest. Turbulent boundary layer on a cone in a supersonic flow at zero angle of attack. Journal of Aeronautic Science.1952:55-57P
    [97]Holden M S and Moselle J R. A database of aerothermal measurements in hypersonic flow for CFD validation. AIAA 92-4023
    [98]Holden M S, Wadhams T P and MacLean M. Experimental studies in hypersonic flows for facility and code validation, AIAA 2007-1304
    [99]Zoby E V, Moss J N and Sutton K. Approximate convective heating equations for hypersonic flows. AIAA 79-1078
    [100]Hamilton H H and Greene F A. An approximate method for calculating heating rates on three-dimensional vehicles. AIAA93-2881
    [101]Hamilton H H, Weilmuenster K J and DeJarnette F R. Improved approximate method for computing convective heating on hypersonic vehicles using unstructured grids. AIAA 2006-3394
    [102]Riley C J and DeJarnette F R. An engineering aerodynamic heating method for hypersonic flow. AIAA 92-0499
    [103]汤海荣.高超音速飞行器表面热流密度工程估算方法研究[D].南京航空航天大学.2008.1
    [104]蒋友娣.高超音速飞行器气动热和表面瞬态温度计算研究[D].上海交通大学.2008.2
    [105]蒋友娣,董葳,陈勇.高超声速飞行器瞬态表面热流和温度的工程计算.能源技术.2007,28(6):315-318页
    [106]蒋友娣,董葳,陈勇.高超声速钝头体变熵流表面热流计算.航空动力学报.2008,23(9):1591-1594页
    [107]吕丽丽.高超声速气动热工程算法研究[D].西北工业大学.2005.2
    [108]乐嘉陵,詹妮迈德芙V L,曼彻娜娅MI等.高超声速飞行器表面气动热和粘性摩力计算.流体力学实验与测量.2002,16(1):8-20页
    [109]张涵信,内政.细长锥体有攻角绕流的非对称分岔及其涡结构的数值模拟.空气动力学报.1994,12(3):282-287页
    [110]沈遐龄.航天飞机气动加热计算.北京航空航天大学学报.1998 24(2):189-192页
    [111]耿湘人,桂业伟,土安龄.微型凸起物高超音速气动热特性研究.空气动力学报.2006,24(2):265-268页
    [112]策维中,高铁锁.带座舱飞船高超音速再入非平衡流场的数值研究.ACTA AERODYNAMICA SINICA.2002,20(2):239-245页
    [113]程克明,昌英伟.飞行器持续气动加热的藕合性分析.南京航空航天大学学报.2000,32(2):150-155页
    [114]姜庆贵.疏导式热防护若干问题的探讨.飞行器热环境与热防护研讨会.2006.5
    [115]吴国庭.统一热管理的疏导式热防护系统概念研究.航天器工程.2009,18(4):13-19页
    [116]孙兵,郑力铭.超然冲压发动机支板热环境及热防护方案.航空动力学报.2006,21(2):336-341页
    [117]李素循.激波与边界层主导的复杂流动.科学出版社.2007.6
    [118]李素循.喷流控制飞行器姿态的物理问题.气体物理物理与应用.2006,1(1):12-16页
    [119]Warren C H E. An Experimental Investigation of the Effect of Ejecting a Coolant Gas at the Nose of a Blunt body. Fluid Mech.1960
    [120]Finley P J. The Flow of a Jet from a Body Opposing a Supersonic Free Stream. Journal of Fluid Mechanics.1966,26(2):337-368P
    [121]Fujita M. Axisymmetric Oscillations of an Opposing Jet from a Hemispherical Nose. AIAA 1994-0659
    [122]Aso S, Hayashi K and Mizoguch M. A Study on Aerodynamic Heating Reduction due to Opposing Jet in Hypersonic Flow. AIAA 2002-0646
    [123]Hayashi K, Aso Shigeru. Numerical study on aerodynamic heating reduction by oppsing jet. AIAA 2005-188
    [124]Hayashi K, Aso Shigeru. Effect of Pressure Ratio on Aerodynamic Heat-ing Reduction due to Opposing Jet. AIAA-2003-4041
    [125]Balla Venukumar and K P J REDDY. Experimental investigation of drag reduction by forward facing high speed gas jet for a large angle blunt cone at Mach8. Sadhana. 2007,32(1-2):123-131P
    [126]国务院.国家中长期科学和技术发展规划纲要.2006.2
    [127]杨岞生.飞行器部件空气动力学.国防工业出版社,1981.2
    [128]徐华舫.空气动力学基础(上).国防工业出版社,1980.12
    [129]Rasmussen, M. Hypersonic Flow, John Wiley & Sons, Inc., New York,1994
    [130]李晓宇.高超声速乘波构型初步设计与分析[D].国防科学技术大学.2002.11
    [131]Marie-Laure Chauffour. Shock-Based Waverider Design with Pressure Corrections, and Computational Simulations[D]. Master of Science, University of Maryland,2004
    [132]张捷迁,章光华,陈允文.真实流体力学.清华大学出版社,1986
    [133]Charles E. Jr. Interpretation of Waverider Performance Data Using Com-putational Fluid Dynamics. AIAA 1993-2921
    [134]Akashima N, Lewis M J. Wedge-Cone Waverider Configurations for Engine-Airframe Integration. Journal of Aircraft.1995,32(5):1142-1144P
    [135]孙靖民.机械优化设计.机械工业出版社,1999
    [136]马铁犹.计算流体动力学.北京航空学院出版社,1986.6
    [137]陶文铨.数值传热学(第二版).西安交通大学出版社,2001
    [138]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York,1995
    [139]王福军.计算流体动力学分析.清华大学出版社,2007.4
    [140]CFD-FASTRAN Theory Manual. Version2003. CFD Research Corporation
    [141]Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, August 1994,32(8):1598-1605P
    [142]Menter F R, Kuntz M and Langtry R. Ten Years of Experience with the SST Turbulence Model. Heat and Mass Transfer 4,2003,625-632P
    [143]Chima R V and Liou M S. Comparison of the AUSM+ and HCUSP schemes for turbomachinery applications. NASA TM,2003,21-24P
    [144]Liou M S. A sequel to AUSM:AUSM+. Journal of Computational Physics.1996. 129:364-382
    [145]Liou M S and Steffen C J. A new flux splitting scheme. Journal of Computational Physics,1993,107(1):23-39P
    [146]卞荫贵,徐立功.气动热力学.中国科技大学出版社.1997:15-20页
    [147]陈小庆,侯中喜,刘建霞.边缘钝化对乘波构型性能影响分析.宇航学报.2009,V30(4):1336-1339页
    [148]Fay J A, Ridden F R. Theory of Stagnation Point Heat Transfer in Dissociated Air. Journal of the Aeronautical Science,1958,25(2):73-85P
    [149]Kemp N H, Ridden F R. Heat Transfer to Satellite Vehicles Reenters the Atmosphere. 1957,27(2)
    [150]Kemp N H, Rose R H and Detra R W. Laminar Heat Transfer around Blunt Bodies in Dissociated Air. Journal of the Aerospace Science,1959,26(7):421-430P
    [151]Cohen C B, Reshotko E. Similar Solution for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient. NACA Report 1293,1956
    [152]Lees L.Laminar Heat Transfer over Blunt Nosed Bodies at Hypersonic Flight Speeds. Jet Propusion.1956,26(4):259-269P
    [153]Cooke J C. An Axial Symmetry Analogue for General Three-dimensional Boundary Layer. ARC R & M 0.3200,1959
    [154]Dejarnette F R and Tai T C. A Method for Calculating Laminar and Turbulent Convective Heat Transfer over Bodies at an Angle of Attack. NASA CR-101678,1969
    [155]Dejarnette F R. Calculating of Heat Transfer on Shuttle-Type Configurations Including of Effects of varable Entropy at Boundary Layer Edge. NASA CR-112180,1972
    [156]Dejarnette F R. Calculating of Inviscid Surface Streamlines and Heat Transfer on Shuttle Type Configurations Part1. NASA CR-111921-1971
    [157]Zoby E V. Approximate Heating Analysis for the Windward-Symmetry Plane of Shuttle-Like Bodies at Large Angle of Attack. AIAA 81-1042
    [158]Rakich J V and Lanfrance M J. Numerical Computations of Space Shuttle Laminar Heating Aurface Streundince. J.S.R.1977,14(5)
    [159]Eckert R G. Engineering Relations for Friction and Heat Transfer to Surface in High Velocity Flow. J.A.S.1955:585-587P
    [160]章熙民.传热学(第四版).中国建筑工业出版社.2001
    [161]李维特,黄保海,毕仲波.热应力理论分析及应用.中国电力出版社.2004
    [162]李凰立.再入弹头的气动加热及热响应分析.西北工业大学硕士论文.2001
    [163]何琨,陈坚强,董维中.逆向喷流流场模态分析及减阻特性研究.力学学报.2006,38(4):438-455页
    [164]Love E S, Grigsby C E, Lee L P and Woodling M J. Exoperimental and Theoretical Studies of Axisymmetric Free Jets. NASA TR R-6(1959)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700