用户名: 密码: 验证码:
利用聚苯胺强化分离膜性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术是一门新型高效的分离、浓缩、提纯和净化技术。分离膜是膜技术的核心,开发高性能的膜对拓展膜技术应用至关重要。本文研究了利用聚苯胺(PANI)强化聚砜(PSf)超滤膜和聚乙烯胺(PVAm)气体分离膜性能。
     利用浸没沉淀相转化法,以PANI纳米纤维和聚乙烯吡咯烷酮(PVP)为添加剂共混改性PSf超滤膜,分析并比较两种添加剂对成膜过程、膜结构和膜性能的影响。当添加剂含量小于0.5wt%时,PSf/PANI纳米复合膜的纯水通量明显高于PSf/PVP复合膜,对BSA的截留率都达到98%以上。相对PSf/PVP复合膜,PSf/PANI纳米复合膜在抗污染性能、机械性能和热稳定性能上具有明显优势。
     利用原相聚合共混法制备PSf/PANI纳米复合超滤膜。在相转化成膜过程中,苯胺低聚体和聚苯胺纳米球均自发向界面处迁移,大部分苯胺低聚体溶出到凝固浴中,大部分聚苯胺纳米球存留在膜内。相对PSf膜,共混膜的表面亲水性得到改善,表面平均孔径和孔隙率有所增加,断面结构的指状孔具有良好的垂直贯通性。PSf/PANI纳米复合膜的纯水通量可达到纯聚砜膜的1.7~4.1倍,对BSA的截留率可达96%以上。此外,PSf/PANI纳米复合膜具有较高的通量恢复率。
     以本征态聚苯胺(PANiEB)为添加剂制备PSf/PANiEB超滤膜。PSf/PANiEB膜在0.30MPa TMP下显示出良好的耐压密性,经过60分钟的预压,通量下降幅度均小于30%。在0.20MPa TMP下,PSf/PANiEB膜的纯水通量可达PSf膜的2.9倍,BSA的截留率在98%以上。BSA溶液超滤中,相比PSf膜,PSf/PANiEB膜具有更高的渗透通量和通量恢复率。采用分散聚合法合成易分散的PANI-PVP纳米复合材料,并以其为添加剂制备纳米复合超滤膜。PANI-PVP纳米复合材料在铸膜液中具有良好的分散性和稳定性。相对PSf膜,纳米复合膜的表面平均孔径和孔隙率得到明显增加,大空腔结构增多,孔道之间的贯通性增强,亲水性大幅改善。纳米复合膜的纯水通量为PSf膜的1.8~3.5倍,BSA的截留率保持在97%以上,BSA溶液超滤90分钟后的通量保留率在71%~80%,明显高于PSf膜。
     以聚苯胺为添加剂制备PVAm-PANI/PSf气体分离膜。对于CO_2/N_2混合气体系(15vol%CO_2+85vol%N_2),聚苯胺的适量添加可以同时提高膜的CO_2渗透速率和CO_2/N_2分离因子。通过考察涂膜液中PANI与PVAm质量比及湿涂层厚度对膜性能的影响,获得适宜的制膜工艺参数。当湿涂层厚度为50μm,涂膜液中PANI与PVAm质量比为0.2时,PVAm-PANI/PSf复合膜在进料气压力为0.15、0.5和1.5MPa下,CO_2渗透速率分别为2034、951和161GPU,CO_2/N_2分离因子分别为159、102和49。
Membrane separation is an advanced technology for concentration andpurification. Membrane is the key of membrane process, and the development ofmembrane with high performance has significant meaning for membrane technology.This work have investigated the enhancement of polysulfone (PSf) ultrafiltration (UF)membrane performance and polyvinylamine (PVAm) gas separation membrane usingpolyaniline (PANI).
     PSf/PANI nanocomposite membranes and PSf/polyvinylpyrrolidone (PVP)membranes were prepared through immersion phase inversion using PANI nanofibersand PVP as the additives, respectively. The effects of the additives on membraneformation process, membrane structure and performance had been analyzed andcompared. When the additive contents were below0.5wt%, PSf/PANI nanocompositemembranes had higher pure water flux than PSf/PVP membranes. BSA rejection ofthe membranes was all above98%. Compared with PSf/PVP membranes, PSf/PANInanocomposite membranes had better antifouling property, mechanical strength andthermal stability.
     To solve the agglomeration problem of nanomaterial, PSf/PANI nanocompositemembrane was prepared using in situ blending method. During membrane formationprocess, PANI oligomers and PANI nanospheres can migrate spontaneously to themembrane/water interface. Compared with PSf membrane, nanocompositemembranes had higher surface hydrophilicity, surface pore size and porosity. Theacicular pores in the cross-section structure of nanocomposite membranes almostdisappeared and the finger-like pores became longer and better verticallyinterconnected with transfixion from membrane toplayer to sublayer. The pure waterflux of PSf/PANI nanocomposite membranes reached to1.7~4.1times that of PSfmembrane. BSA rejection kept above96%. Moreover, PSf/PANI nanocompositemembranes had higher flux recovery ratio.
     PSf/PANiEB ultrafiltration membrane was prepared using PANiEB (emeraldinebase polyaniline) as the additive. PSf/PANiEB membranes exhibited much morestable pure water flux under0.30MPa TMP. After about60min of compaction,PSf/PANiEB membranes had the pure water fluxes decrement lower than30%. At 0.20MPa TMP, the pure water flux of PSf/PANiEB membrane was2.9times that ofPSf membrane. BSA rejections of the membranes were in the range of98.2%~98.6%.During BSA ultrafiltration, PSf/PANiEB membranes had higher flux and fluxrecovery ratio than PSf membrane. Well-dispersed PANI-PVP nanocomposite wassynthesized through dispersed polymerization and used as the additive to preparePSf/PANI-PVP nanocomposite membranes. PANI-PVP nanocomposite could stablyand long-term disperse into the casting solutions. Compared with PSf membrane,PSf/PANI-PVP nanocomposite membranes had higher surface pore size and porosity,larger macrovoids, better pore interconnection and hydrophilicity. Pure water fluxes ofnanocomposite membranes were1.8~3.5times that of PSf membrane. BSA rejectionsof all the membranes kept above97%. After BSA ultrafiltration for90min, fluxretentions of nanocomposite membranes were71%~80%, which was higher than thatof PSf membrane.
     PVAm-PANI/PSf gas separation membranes were prepared using PANI as theadditive. In the tests with CO_2/N_2mixed gas (containing15vol%CO_2and85vol%N_2), the proper addition of PANI could simultaneously enhance CO_2permeance andCO_2/N_2selectivity of membranes. The effects of mPANI/mPVAm(mass ratio of PANI toPVAm) in the casting solution and wet coating thickness on membrane performancehad been investigated and the optimal parameters for membrane preparation had beenobtained. PVAm-PANI/PSf membrane prepared with wet coating thickness of50μmand mPANI/mP VAm in the casting solution of0.2had CO_2permeance of2034,951and161GPU and CO_2/N_2selectivity of159,102and49at0.15,0.5and1.5MPa feedpressure, respectively.
引文
[1]刘茉娥,膜分离技术,北京:化学工业出版社,2000
    [2] J. Davey, A.I. Sch fer, Ultrafiltration to supply drinking water in internationaldevelopment: a review of opportunities, Appropriate Technologies forEnvironmental Protection in the Developing World, Edinburgh, UK: SpringerScience and Business Media B.V.,2009
    [3]杨座国,膜科学技术过程与原理,上海:华东理工大学出版社,2009
    [4]黄维菊,魏星,膜分离技术概论,北京:国防工业出版社,2008
    [5]华耀祖,超滤技术与应用,北京:化学工业出版社,2004
    [6] L. Song, Flux decline in cross flow microfiltration and ultrafiitration:mechanisms and modeling of membrane fouling, J. Membr. Sci.,1998,139: l83-200
    [7] M.F.A. Goosen, S.S. Sablani, H. AI-Hinai, et al., Fouling of reverse osmosisand ultrafiltration membranes: A critical review, Sep. Sci. Technol.,2004,39:226l-2297
    [8] S. Nakao, M. Rokuhira, S. Kimura, Enhancement of mass transfer by screwvibration in a tubular UF module. Proceedings of Sino Japanese Symposium onLiquid Membrane, Ion Exchange, Electrodialysis, Reverse Osmosis andUltrafiltration, Xi’an, China,1994,10:216-219
    [9]董秉直,刘风仙,桂波,在线混凝处理微污染水源水的中试研究,工业水处理,2008,28:40-43
    [10] H. Liang, Y. Yang, W. Gong, et al., Effect of pretreatment bypermanganate/chlorine on algae fouling control for ultrafiltration (UF)membrane system, Desalination,2008,222:74-80
    [11] P.V. Zumbuch, W. Kulcke, G. Brunner, Use of alternating electrical fields asanti-fouling strategy in ultrafiltration of biological suspensions—Introduction ofa new experimental procedure for crossflow filtration, J. Membr. Sci.,1998, l42:75-86
    [12] S. Muthukumaran, K. Yang, A. Seuren, et al., The use of ultrasonic cleaningfor ultrafiltration membranes in the dairy industry, Sep. Purif. Technol.,2004,39:99-107
    [13] S. Pavlova, Study on the cleaning of new ultrafiltration spiral-wound modulesto prevent membrane fouling (including biological fouling), Desalination,2005,172:267-270
    [14]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [15] M. Mulder, Basic Principles of Membrane Technology, Netherlands: KluwerAcademic Publishers,1996
    [16] A. Gugliuzza, R. Fabiano, M.G. Garavaglia, et al., Study of the surfacecharacter as responsible for controlling interfacial forces at membrane–feedinterface, J. Colloid Interface Sci.,2006,303:388-403
    [17]郑领英,王学松,膜技术,北京:化学工业出版社,2001
    [18]汪锰,王湛,李政雄,膜材料及其制备,北京:化学工业出版社,2003
    [19] J.A. Morehouse, L.S. Worrel, D.L. Taylor, et al., The effect of uni-axialorientation on macroporous membrane structure, J. Porous Mater.,2006,13:61-72
    [20] R. Halaui, A. Moldavsky, Y. Cohen, et al., Development of micro-scalehollow fiber ultrafiltration membranes, J. Membr. Sci.,2011,379:370-377
    [21] K. Yoon, B.S. Hsiao, B. Chu, High flux ultrafiltration nanofibrous membranesbased on polyacrylonitrile electrospun scaffolds and crosslinked polyvinylalcohol coating, J. Membr. Sci.,2009,338:145-152
    [22] Z. Tang, J. Wei, L. Yung, et al., UV-cured poly(vinyl alcohol) ultrafiltrationnanofibrous membrane based on electrospun nanofiber scaffolds, J. Membr.Sci.,2009,328:1-5
    [23] Y. Wang, F.B, Li, An emerging pore-making strategy: confinedswelling-induced pore generation in block copolymer materials, Adv. Mater.,2011,23:2134-2148
    [24] Y. Wang, C. He, W. Xing, et al., Nanoporous metal membranes withbicontinuous morphology from recyclable block-copolymer templates, Adv.Mater.,2010,22:2068-2072
    [25] P.S.T. Machado, A.C. Habert, C.P. Borges, Membrane formation mechanismbased on precipitation kinetics and membrane morphology: flat and hollowfiber polysulfone membranes, J. Membr. Sci.,1999,155:171-183
    [26] I.M. Wienk, C.A. Smolders, Recent advances in the formation of phaseinversion membranes made from amorphous or semi-crystalline polymers, J.Membr. Sci.,1996,113:361-371
    [27] P.V. Witte, P.J. Dijkstra, Phase separation processes in polymer solutions inrelation to membrane formation, J. Membr. Sci.,1996,117:1-31
    [28] J.H. Kim, B.R. Min, J. Won, et al., Phase behavior and mechanism ofmembrane formation for polyimide/DMSO/water system, J. Membr. Sci.,2001,187:47-55
    [29] B. Kunst, S. Sourirajan, Evaporation rate and equilibrium phase separationdata in relation to casting conditions and performance of porous celluloseacetate reverse osmosis membranes, J. Appl. Polym. Sci.,1970,14:1983-1996
    [30]武冠英,孙本惠,郭林,聚氯乙烯超滤膜的溶剂蒸发速度影响研究,应用化学,1988,5:48-52
    [31]孙本惠,热力学及动力学因素对L-S相转化法制备非对称膜结构与性能的影响,膜科学与技术,2010,31:1-11
    [32] H. Caquineau, P. Menut, A. Deratani, et al., Influence of the relative humidityon film formation by vapor induced phase separation, Polym. Eng. Sci.,2003,43:798-808
    [33] H.A. Tsai, C.Y. Kuo, J.H. Lin, et al., Morphology control of polysulfonehollow fiber membranes via water vapor induced phase separation, J. Membr.Sci.,2006,278:390-400
    [34] H.J. Kim, R.K. Tyagi, A.E. Fonda, et al., The kinetic study for asymmetricmembrane formation via phase-inversion process, J. Appl. Sci.,1996,62:621
    [35] G.R. Guillen, Y. Pan, M. Li, et al., Preparation and Characterization ofMembranes Formed by Nonsolvent Induced Phase Separation: A Review, Ind.Eng. Chem. Res.,2011,50:3798-3817
    [36] C. Cohen, G.B. Tanny, S. Prager, Diffusion-controlled formation of porousstructures in ternary polymer systems, J. Polym. Sci. Part B: Polym. Phys.,1979,17:477-489
    [37] A.J. Reuvers, J.W.A. Vandenberg, C.A. Smolders, Formation of membranesby means of immersion precipitation.1. A model to describe mass-transferduring immersion precipitation, J. Membr. Sci.,1987,34:45-65
    [38] C.S. Tsay, A.J. McHugh, Mass-transfer modeling of asymmetric membraneformation by phase inversion, J. Polym. Sci. Part B: Polym. Phys.,1990,28:1327-1365
    [39] P. Radovanovic, S.W. Thiel, S.T. Hwang, Formation of asymmetricpolysulfone membranes by immersion precipitation.1. Modelingmass-transport during gelation, J. Membr. Sci.,1992,65:213-229
    [40] P. Radovanovic, S.W. Thiel, S.T. Hwang, Formation of asymmetricpolysulfone membranes by immersion precipitation.2. The effects of castingsolution and gelation bath compositions on membrane structure and skinformation, J. Membr. Sci.,1992,65:231-246
    [41] H. Strathmann, K. Kock, P. Amar, et al., The formation mechanism ofasymmetric membranes, Desalination,1975,16:179-203
    [42] A. Reuvers, C. Smolders, Formation of membranes by means of immersionprecipitation: Part II. the mechanism of formation of membranes prepared fromthe system cellulose acetate-acetone-water, J. Membr. Sci.,1987,34:67-86
    [43] J.H. Kim, K.H. Lee, Effect of PEG additive on membrane formation by phaseinversion, J. Membr. Sci.,1998,138:153-163
    [44]王连军,李恕光,江成璋, PES制膜体系凝胶时间的研究,膜科学与技术,2001,21:16-20
    [45] H. Strathmann, K. Kock, The formation mechanism of phase inversionmembranes, Desalination,1977,21:241-255
    [46] M.A. Frommer, I. Feiner, O. Kedem, et al., The mechanism for formation of“skinned” membranes: II. Equilibrium properties and osmotic flowsdetermining membrane structure, Desalination,1970,7:393-402
    [47] U. Rosenthal, J. Nechushtan, A. Kedem, et al., An apparatus for studying themechanism of membrane formation, Desalination,1971,9:193-200
    [48] Y.S. Kang, H.J. Kim, U.Y. Kim, Asymmetric membrane formation viaimmersion precipitation method. I. Kinetic effect, J. Membr. Sci.,1991,60:219-232
    [49] P.Y. Qin, C.X. Chen, Y.B. Yun, et al., Formation kinetics of a polyphthalazineether sulfone ketone membrane via phase inversion, Desalination,2006,188:229-237
    [50] P.Y. Qin, C.X. Chen, B.B. Han, et al., Preparation of poly(phthalazinone ethersulfone ketone) asymmetric ultrafiltration membrane: II. The gelation process, J.Membr. Sci.,2006,268:181-188
    [51] P. Menut, C. Pochat-Bohatier, A. Deratani, et al., Structure formation of poly(ether-imide) films using non-solvent vapor induced phase separation:relationship between mass transfer and relative humidity, Desalination,2002,145:11-16
    [52]赵晓勇,曾一鸣,施艳荞,等,相转化法制备超滤和微滤膜的孔结构控制,功能高分子学报,2002,15:487-494
    [53] P. Dunn, G.F. Sansom, The stress cracking of polyamides by metal salts. Part I.Metal halides, J. Appl. Polym. Sci.,1969,13:1641-1649
    [54] S.R. Kim, K.H. Lee, M.S. Jhon, The effect of ZnC12on the formation ofpolysulfone membrane, J. Membr. Sci.,1996,119:59-64
    [55] H.J. Lee, J. Won, H. Lee, et al., Solution properties of poly(amic acid)–NMPcontaining LiCl and their effects on membrane morphology, J. Membr. Sci.,2002,196:267-277
    [56] A. Bottino, G. Capannelli, S. Munari, et al., High performance ultrafiltrationmembranes cast from LiCl doped solutions, Desalination,1988,68:167-177
    [57]侯太平,杨兰娜,王志余,等,聚砜铸膜液体系有机添加剂作用规律的研究,水处理技术,1990,16:359-367
    [58] H.A. Tsai, L.D. Li, K.R. Lee, et al., Effect of surfactant addition on themorphology and pervaporation performance of asymmetric polysulfonemembranes, J. Membr. Sci.,2000,176:97-103
    [59] H.A. Tsai, R.C. Ruaan, D.M. Wang, et al., Effect of temperature and Spanseries surfactant on the structure of polysulfone membranes, J. Appl. Polym.Sci.,2002,86:166-173
    [60] J.Y. Lai, F.C. Lin, T.T. Wu, et al., On the formation of macrovoids in PMMAmembranes, J. Membr. Sci.,1999,155:31-43
    [61] D.M. Wang, F.C. Lin, T.T. Wu, et al., Formation mechanism of themacrovoids induced by surfactant additives. J. Membr. Sci.,1998,142:191-204
    [62] H.A. Tsai, D.H. Huang, S.C. Fan, et al., Investigation of surfactant additioneffect on the vapor permeation of aqueous ethanol mixtures throughpolysulfone hollow fiber membranes, J. Membr. Sci.,2002,198:245-258
    [63] H.A. Tsai, D.H. Huang, R.C. Ruaan, et al., Mechanical properties ofasymmetric polysulfone membranes containing surfactant as additives, J. Ind.Eng. Chem. Res.,2001,40:5917-5922
    [64] M.J. Han, Effect of propionic acid in the casting solution on the characteristicsof phase inversion polysulfone membranes, Desalination,1999,121:31-39
    [65] A.K. Fritzsche, C.A. Cruse, R.E. Kesting, et al., Polysulfone hollow fibermembranes spun from lewis acid–base complexes.2. The effect of lewis acid tobase ratio on membrane structure, J. Appl. Polym. Sci.,1990,39:1949-1956
    [66] H.A. Tsai, M.J. Hong, G.S. Huang, et al., Effect of DGDE additive on themorphology and pervaporation performances of asymmetric PSF hollow fibermembranes, J. Membr. Sci.,2002,208:233-245
    [67] B. Chakrabarty, A.K. Ghoshal, A.K. Purkait, Preparation, characterization andperformance studies of polysulfone membranes using PVP as an additive, J.Membr. Sci.,2008,315:36-47
    [68] B. Chakrabarty, A. Ghoshal, M. Purkait, Effect of molecular weight of PEG onmembrane morphology and transport properties, J. Membr. Sci.,2008,309:209-221
    [69] H. Matsuyama, T. Maki, M. Teramoto, et al., Effect of PVP additive on porouspolysulfone membrane formation by immersion precipitation method, Sep. Sci.Technol.,2003,38:3449-3458
    [70] M.J. Han, S.T. Nam, Thermodynamic and rheological variation in polysulfonesolution by PVP and its effect in the preparation of phase inversion membrane,J. Membr. Sci.,2002,202:55-61
    [71] B. Jung, J. Yoon, B. Kim, et al., Effect of molecular weight of polymericadditives on formation, permeation properties and hypochlorite treatment ofasymmetric polyacrylonitrile membranes, J. Membr. Sci.,2004,243:45-57
    [72] H. Susanto, M. Ulbricht, Characteristics, performance and stability ofpolyethersulfone ultrafiltration membranes prepared by phase separationmethod using different macromolecular additives, J. Membr. Sci.,2009,327:125-135
    [73] Y.Q. Wang, T. Wang, Y.L. Su, et al., Remarkable reduction of irreversiblefouling and improvement of the permeation properties of poly(ether sulfone)ultrafiltration membranes by blending with Pluronic F127, Langmuir,2005,21:11856-11862
    [74] Y.Q. Wang, Y.L. Su, Q. Sun, et al., Improved permeation performance ofPluronic F127-polyethersulfone blend ultrafiltration membranes, J. Membr. Sci.,2006,282:44-51
    [75] W. Zhao, Y.L. Su, C. Li, et al., Fabrication of antifouling polyethersulfoneultrafiltration membranes using Pluronic F127as both surface modifier andpore-forming agent, J. Membr. Sci.,2008,318:405-412
    [76] J.F. Hester, P. Banerjee, A.M. Mayes, Preparation of protein-resistant surfaceson poly(vinylidene fluoride) membranes via surface segregation,Macromolecules,1999,32:1643-1650
    [77] Y. Zhao, B. Zhu, L. Kong, et al., Improving hydrophilicity and proteinresistance of poly(vinylidenefluoride) membranes by blending with amphiphilichyperbranched-star polymer, Langmuir,2007,23:5779-5786
    [78] L.F. Hancock, S.M. Fagan, M.S. Ziolo, Hydrophilic, semipermeablemembranes fabricated with poly(ethylene oxide)–polysulfone block copolymer,Biomaterials,2000,21:725-733
    [79] L.F. Hancock, Phase inversion membranes with an organized surface structurefrom mixtures of polysulfone and polysulfone–poly(ethylene oxide) blockcopolymers, J. Appl. Polym. Sci.,1997,66:1353-1358
    [80] J.Y. Park, M.H. Acar, A. Akthakul, et al., Polysulfone-graft-poly(ethyleneglycol) graft copolymers for surface modification of polysulfone membranes,Biomaterials,2006,27:856-865
    [81] Y.H. Cho, H.W. Kim, S.Y. Nam, et al., Fouling-tolerantpolysulfone–poly(ethylene oxide) random copolymer ultrafiltration membranes,J. Membr. Sci.,2011,379:296-306
    [82] S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bathon morphology of PVDF hollow fiber membrane, J. Membr. Sci.,1998,150:75-85
    [83]高维珏,卞晓锴,陆晓峰,等,纳米TiO2对不同材料超滤膜结构与性能的影响,膜科学与技术,2008,28:23-29
    [84]于媛,马彩莲,宋任远,等,聚砜-纳米Al2O3共混超滤膜的制备与表征,化工生产与技术,2009,16:24-26
    [85]杨亚楠,王鹏,郑庆柱,聚砜/纳米TiO2有机/无机复合超滤膜的制备与表征,高校化学工程学报,2007,21:765-772
    [86] T.H. Bae, T.M. Tak, Effect of TiO2nanoparticles on fouling mitigation ofultrafiltration membranes for activated sludge filtration, J. Membr. Sci.,2005,249:1-8
    [87] J. Choi, J. Jegal, W. Kim, Fabrication and characterization of multi-walledcarbon nanotubes/polymer blend membranes, J. Membr. Sci.,2006,284:406-415
    [88] E. Celik, H. Park, H. Choi, Carbon nanotube blended polyethersulfonemembranes for fouling control in water treatment, Water Res.,2011,45:274-282
    [89] W. Zhao, J. Huang, B. Fang, et al., Modification of polyethersulfonemembrane by blending semi-interpenetrating network polymeric nanoparticles,J. Membr. Sci.,2011,369:258-266
    [90] Y.N. Yang, H.X. Zhang, P. Wang, et al., The influence of nano-sized TiO2fillers on the morphologies and properties of PSf UF membrane, J. Membr. Sci.,2007,288:231-238
    [91] L. Yan, Y.S. Li, C.B. Xiang, et al., Effect of nano-sized Al2O3–particleaddition on PVDF ultrafiltration membrane performance, J. Membr. Sci.,2006,276:162-167
    [92] X.C. Cao, J. Ma, X.H. Shi, et al., Effect of TiO2nanoparticle size on theperformance of PVDF membrane, Appl. Surf. Sci.,2006,253:2003-2010
    [93] S. Qiu, L.G. Wu, X.J. Pan, et al., Preparation and properties of functionalizedcarbon nanotube/PSf blend ultrafiltration membranes, J. Membr. Sci.,2009,342:165-172
    [94] S. Bhadra, D. Khastgir, N.K. Singha, et al., Progress in preparation, processingand applications of polyaniline, Prog. Polym. Sci.,2009,34:783-810
    [95] Z.F. Fan, Z. Wang, N. Sun, et al., Performance improvement of polysulfoneultrafiltration membrane by blending with polyaniline nanofibers, J. Membr.Sci.,2008,320:363-371
    [96] G. Guillen, T. Farrell, R. Kaner, et al., Pore-structure, hydrophilicity, andparticle filtration characteristics of polyaniline–polysulfone ultrafiltrationmembranes, J. Mater. Chem.,2010,20:4621-4628
    [97] D. Rana, T. Matsuura, Surface modifications for antifouling membranes,Chem. Rev.,2010,110:2448-2471
    [98] A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemicalmodification of TiO2nanoparticles on the surface chemistry, structure andfouling performance of PES ultrafiltration membranes, J. Membr. Sci.,2011,378:73-84
    [99]景遐斌,王利祥,王献红,等,导电聚苯胺的合成、结构、性能和应用,高分子学报,2005,5:655-663
    [100]吕生华,王飞,周志威,聚苯胺导电聚合物应用新进展,化工新型材料,2008,36:7-19
    [101]曹丰,李东旭,管自生,导电高分子聚苯胺研究进展,材料导报,2007,21:48-55
    [102]王新生,顾大伟,李冀蜀,等,基于锌离子掺杂的锌-聚苯胺二次电池的研究,功能材料,2007,38:1463-1465
    [103] E.M. Genies, P. Hany, C. Santier, A rechargeable battery of the typepolyaniline/propylene carbonate-LiCIO4/Li-Al, J. Appl. Electrochem.,1988,18:751-756
    [104]毕孝国,孙旭东,盛伟,等,层状自组装聚苯胺纳米复合电致变色薄膜的制备与性能,功能材料,2007,38:267-271
    [105]周光敏,王大伟,李峰,等,不同形貌纳米炭/聚苯胺复合材料对超级电容器电化学性能的影响,新型炭材料,2011,26:180-186
    [106]孙毅,钟发春,舒远杰,等,聚苯胺的腐蚀防护机理及其在金属防腐中的应用,材料导报,2009,23:65-68
    [107]宋月贤,韦玮,郑元锁,等,用于电磁屏蔽与吸波技术的聚苯胺导电聚合物的研究进展,化工新型材料,2000,28:3-7
    [108]黄美荣,李新贵,改性聚苯胺膜的气体分离性能及应用,塑料工业,2003,31:22-24
    [109]滕一万,武法文,丁少杰,等,改性聚苯胺膜在CO2/CH4分离中的应用研究,化学工程,2010,38:48-51
    [110]杜军,白晓渝,陶长元,等, PVDF-PANI共混膜气体分离性能的研究,膜科学与技术,2002,22:21-65
    [111]苏小明,王景平,邓祥,等,聚苯胺气体分离膜研究进展,膜科学与技术,2006,26:66-70
    [112] Y. Gupta, K. Hellgardt, R.J. Wakeman, Enhanced permeability of polyanilinebased nano-membranes for gas separation, J. Membr. Sci.,2006,282:60-70
    [113]田云霞,徐莹,王新,聚四氟乙烯膜表面的苯胺聚合沉积亲水改性研究,膜科学与技术,2009,29:40-44
    [114]周海骏,黄美荣,李新贵,等,共轭聚合物膜的渗透汽化性能及应用,工程塑料应用,2003,31:67-70
    [115] B.V.K. Naidu, M. Sairam, K.V.S.N. Raju, et al., Pervaporation separation ofwater+isopropanol mixtures using novel nanocomposite membranes ofpoly(vinyl alcohol) and polyaniline, J. Membr. Sci.,2005,260:142-155
    [116] F.D.R. Amado, M.A.S. Rodrigues, F.D.P. Morisso, et al., High-impactpolystyrene/polyaniline membranes for acid solution treatment byelectrodialysis: Preparation, evaluation, and chemical calculation, J. ColloidInterface Sci.,2008,320:52-61
    [117] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, et al., Polyaniline: a newconcept in conducting polymers, Synth. Met.,1987,18:285-290
    [118] A.J. Heeger, Semiconducting and metallic polymers: the fourth generation ofpolymeric materials, Synth. Met.,2002,125:23-42
    [119] H.S. Kolla, S.P. Surwade, X. Zhang, et al., Absolute molecular weight ofpolyaniline, J. Amer. Chem. Soc.,2005,127:16770-16771
    [120] E.S. Matveeva, R.D. Calleja, V.P. Parkhutik, Impedance study of chemicallysynthesized emeraldine form of polyaniline, Electrochim. Acta,1996,41:1351-1357
    [121]范克雷维伦(D.W.VanKrevelen)著,聚合物的性质:性质的估算及其与化学结构的关系,北京,科学出版社,1981
    [122]匡汀,廖力夫,刘传湘,聚苯胺溶解性研究,应用化工,2006,35:445-447
    [123] N. Gospodinava, L. Teriemezyan, Conducting polymers prepared byoxidative polymerization: polyaniline, Prog. Polym. Sci.,1998,23:1443-1484
    [124]王俊生,聚苯胺微/纳米结构的构建与表征:[博士学位论文],天津,天津大学,2009
    [125]李寒露,聚苯胺纳米材料的制备及应用:[博士学位论文],天津,天津大学,2009
    [126] D.K. Moon, T. Maruyama, K. Osakada, et al., Chemical oxidation ofpolyaniline by radical generating reagents, O2, H2O2-FeCl3catalyst, anddibenzoyl peroxide, Chem. Lett.,1991,9:1633-1636
    [127] S.P. Armes, M. Aldissi, Potassium iodate oxidation route to polyaniline-anoptimization study, Polymer,1991,32:2043-2048
    [128] W. Liu, J. Kumar, S. Tripathy, Enzymatic synthesis of conducting polyanilinein micelle solutions, Langmuir,2002,18:9696-9704
    [129] J. Stejska, R.G. Gilbert, Polyaniline: preparation of a conducting polymer,Pure Appl. Chem.,2002,74:857-867
    [130]徐浩,延卫,冯江涛,聚苯胺的合成与聚合机理研究进展,化工进展,2008,27:1561-1568
    [131]孙文兵,聚苯胺导电材料的制备及表征,化工新型材料,2007,35:69-71
    [132]封伟,韦玮,吴洪才,聚合方法对聚苯胺导电性能的影响,功能材料,1999,30:320-322
    [133] J.E. Osterholm, Y. Cao, F. Klavetter, et al., Emulsion polymerization ofaniline, Synth. Met.,1993,55:1034-1039
    [134] S. Palaniappan, A. John, Polyaniline materials by emulsion polymerizationpathway, Prog. Polym. Sci.,2008,33:732-758
    [135] S.G. Kim, J.Y. Lim, J.H. Sung, et al., Emulsion polymerized polyanilinesynthesized with dodecylbenzene-sulfonic acid and its electrorheologicalcharacteristics: temperature effect, Polymer,2007,48:6622-6631
    [136]李永明,万梅香,乳液聚合-萃取法制备掺杂态聚苯胺溶液,功能高分子学报,1998,11:337-342
    [137] S. Shreepathi, R. Holze, Spectroelectrochemical investigations of solublepolyaniline synthesized via new inverse emulsion pathway, Chem. Mater.,2005,17:4078-4085
    [138] R.P. Swapna, S. Subrahmanya, D.N. Sathyanarayana, Inverse emulsionpolymerization: a new route for the synthesis of conducting polyaniline, Synth.Met.,2002,128:311-316
    [139]曹庆同,刘庆普,胡金生,聚合物乳液合成原理、性能及应用,北京:化学工业出版社,1997
    [140] J. Jang, J. Ha, S. Kim, Fabrication of polyaniline nanoparticles usingmicroemulsion polymerization, Macromol. Res.,2007,15:154-159
    [141]程雪坚,微乳液聚合研究新进展,化工进展,2003,22:195-198
    [142] A. Mani, S.T. Selvan, K.L.N. Phani, et al., Studies on the generation ofpolyaniline microstructures using microemulsion polymerization, J. Mater. Sci.Lett.,1998,15:385-387
    [143] M.G. Han, S.K. Cho, S.G. Oh, et al., Preparation and characterization ofpolyaniline nanoparticles synthesized from DBSA micellar solution, Synth.Met.,2002,126:53-60
    [144] B.J. Kim, S.G. Oh, M.G. Han, et al., Synthesis and characterization ofpolyaniline nanoparticles in SDS micellar solutions, Synth. Met.,2001,122:297-304
    [145] H.S. Xia, Q. Wang, Sythesis and characterization of conductive polyanilinenanopaticles through ultrasonic assisted inverse microemulsion polyaniline, J.Nanopart. Res.,2001,3:309-409
    [146] D.X. Han, Y. Chu, L.K. Yang, et al., Reversed micelle polymerization: a newroute for the synthesis of DBSA-polyaniline nanoparticles, Colloids Surf. A:Physicochem. Eng. Aspects,2005,259:179-187
    [147]罗正平,张秋禹,谢刚,等,分散聚合研究,高分子通报,2002,5:35-40
    [148] D. Chattopadhyay, B.M. Mandal, Methyl cellulose stabilized polyanilinedispersions, Langmuir,1996,12,1585-1588
    [149] A. Riede, M. Helmstedt, V. Riede, et al., Polyaniline dispersions.9. Dynamiclight scattering study of particle formation using different stabilizers, Langmuir,1998,14:6767-6771
    [150] D. Chattopadhyay, S. Banerjee, D. Chakravoay, et al., Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticlestherefrom, Langmuir, l998,14:1544-1547
    [151] C. Dispenza, G. Fiandaca, C. LoPresti, et al., Electrical properties ofγ-crosslinked hydrogels incorporating organic conducting polymers, Radiat.Phys. Chem.,2007,76:1371-1375
    [152] J. Stejskal, I. Sapurina, On the origin of colloidal particles in the dispersionpolymerization of aniline, J. Colloid Interface Sci.,2004,274:489-495
    [153] R. Murugesan, G. Anitha, E. Subramanian, Multi-faceted role of blended poly(vinyl pyrrolidone) leading to remarkable improvement in characteristics ofpolyaniline emeraldine salt, Mater. Chem. Phys.,2004,85:184-194
    [154] P. Ghosh, S. Siddhanta, A. Chakrabarti, Characterization of poly (vinylpyrrolidone) modified polyaniline prepared in stable aqueous medium, Eur.Polym. J.,1999,35:699-710
    [155] J. Stejskal, P. Kratochvíl, M. Helmstedt, Polyaniline dispersions.5. Poly(vinyl alcohol) and poly (N-vinylpyrrolidone) as steric stabilizers, Langmuir,1996,12:3389-3392
    [156] A.F. Diaz, J.A. Logan, Electroactive polyaniline films, J. Electroanal. Chem.,1980,111:111-114
    [157] V. Gupta, N. Miura, Large-area network of polyaniline nanowires preparedby potentiostatic deposition process, Electrochem. Commun.,2005,7:995-999
    [158] S.K. Mondal, K.R. Prasad, N. Munichandraiah, Analysis of electrochemicalimpedance of polyaniline films prepared by galvanostatic, potentiostatic andpotentiodynamic methods, Synth. Met.,2005,148:275-286
    [159] A.J. Motheo, J.R. Santos, E.C. Venancio, et al., Influence of different typesof acidic dopant on the electrodeposition and properties of polyaniline films,Polymer,1998,39:6977-6982
    [160] S.Q. Jiao, H.H. Zhou, J.H. Chen, et al., Influence of the preparationconditions on the morphology of polyaniline electrodeposited by the pulsegalvanostatic method, J. Appl. Polym. Sci.,2004,94:1389-1394
    [161] C.W. Wang, Z. Wang, M.K. Li, et al., Well-aligned polyaniline nano-fibrilarray membrane and its field emission property, Chem. Phys. Lett.,2001,341:431-434
    [162] P. Burgmayer, W. R Murray, An ion gate membrane: electrochemical controlof ion permeability through a membrane with an embedded electrode, J. Am.Chem. Soc.,1982,104:6139-6140
    [163] R.B. Kaner, Gas, liquid and enantiomeric separations using polyaniline,Synth. Met.,2002,125:65-71
    [164] S.C. Huang, I.J. Ball, R.B. Kaner, Polyaniline membranes for pervaporationof carboxylic acids and water, Macromolecules,1998,31:5456-5464
    [165] M.R. Anderson, B.R. Mattes, H. Reiss, et al., Conjugated polymer films forgas separations, Science,1991,252:1412-1415
    [166] M.R. Anderson, B.R. Mattes, H. Reiss, et al., Gas separation membranes.Anovel application for conducting polymers, Synth. Met.,1991,41-43:1151-1154
    [167] H.L. Wang, B.R. Mattes, Gas transport and sorption in polyaniline thin film,Synth. Met.,1999,102:1333-1334
    [168]陶勇,宋超,自支撑聚苯胺多孔膜的制备及其催化性能,石油化工,2008,37:1311-1315
    [169] W. Zheng, M. Angelopoulos, A.J. MacDiarmid, Experimental evidence forhydrogen bonding in polyaniline: mechanism of aggregate formation anddependency on oxidation state, Macromolecules,1997,30:2953-2955
    [170] B.R. Mattes, H.L. Wang, D. Yang, et al., Formation of conductivepolyaniline fibers derived from highly concentrated emeraldine base solutions,Synth. Met.,1997,84:45-49
    [171] Y.M. Lee, S.Y. Ha, Y.K. Lee, et al., Gas separation through conductivepolymer membranes (2) Polyaniline membrane with high oxygen selectivy, Ind.Eng. Chem. Res.,1999,38:1917-1924
    [172] E.T. Kang, K.L. Tan, K. Kato, et al., Surface modification andfunctionalization of polytetrafluoroethylene films, Macromolecules,1996,29:6872-6879
    [173] L.Y. Ji, E.T. Kang, K.G. Neoh, Oxidation graft polymerization of aniline onPTFE films modified by surface hydroxylation and silanizatioin, Langmuir,2002,18:9035-9040
    [174] T.M. Su, I.J. Ball, J.A. Conklin, et al., Polyaniline/polyimide blends forpervaporation and gas separation studies, Synth. Met.,1997,84:801-802
    [175] I.J. Ball, S.C. Huang, Pervaporation studies with polyaniline membranes andblends, J. Membr. Sci.,2000,174:161-176
    [176] Z.F. Fan, Z. Wang, M.R. Duan, et al., Preparation and characterization ofpolyaniline/polysulfone nanocomposite ultrafiltration membrane, J. Membr.Sci.,2008,310:402-408
    [177] X.X. Loh, M. Sairam, A. Bismarck, et al., Crosslinked integrally skinnedasymmetric polyaniline membranes for use in organic solvents, J. Membr. Sci.,2009,326:635-642
    [178] M. Sairam, X.X. Loh, K. Li, et al., Nanoporous asymmetric polyaniline filmsfor filtration of organic solvents, J. Membr. Sci.,2009,330:166-174
    [179] P.C. Rodrigues, G.P. de Souza, J.D. DaMottaNeto, et al., Thermal treatmentand dynamic mechanical thermal properties of polyaniline, Polymer,2002,43:5493-5499
    [180] G. Illing, K. Hellgardt, R. Wakeman, et al., Preparation and characterizationof polyaniline membranes for gas separation, J. Membr. Sci.,2001,184:69-78
    [181] A. Stolarczyk, M. Lapkowski, Investigation of gas separation on polyanilinelaminar composite membranes, Synth. Met.,2001,121:1385-1386
    [182] G. Illing, K. Hellgardt, M. Schonet, et al., Towards ultrathin polyanilinefilms for gas separation, J. Membr. Sci.,2005,253:199-208
    [183] M. Sairam, S. Nataraj, T. Aminabhavi, et al., Polyaniline membranes forseparation and purification of gases, liquids and electrolyte solutions, Sep. Purif.Rev.,2006,35:249-283
    [184] E. Chatzidaki, E. Favvas, S. Papageorgiou, et al., New polyimide-polyanilinehollow fibers: Synthesis, characterization and behavior in gas separation, Eur.Polym. J.,2007,43:5010-5016
    [185]樊智锋,聚苯胺纳米纤维复合超滤膜制备研究:[博士学位论文],天津,天津大学,2009
    [186]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究:[硕士学位论文],天津,天津大学,2007
    [187]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992
    [188]郭素枝,扫描电镜技术及其应用,厦门:厦门大学出版社,2006
    [189] J. Xu, Z.L. Xu, Poly(vinyl chloride)(PVC) hollow fiber ultrafiltrationmembranes prepared from PVC/additives/solvent, J. Membr. Sci.,2002,208:203-212
    [190]顾惕人,朱步瑶,李外郎,表面化学,北京:科学出版社,1994
    [191] C.M. Hansen, The three dimensional solubility parameter-key to paintcomponent affinities II, J. Paint Technol.,1967,39:505-510
    [192] C.M. Hansen, K. Skaarup, The three dimensional solubility parameter-key topaint compone nt affinities III, J. Paint Technol.,1967,39:511-514
    [193] R. Nair, N. Nyamweya, S. G nen, et al., Influence of various drugs on theglass transition temperature of poly(vinylpyrrolidone): a thermodynamic andspectroscopic investigation, Int. J. Pharm.,2001,225:83-96
    [194] S. Adhikari, P. Banerji, Enhanced conductivity in iodine doped polyanilinethin film formed by thermal evaporation, Thin Solid Films,2010,518:5421-5425
    [195] H.M. Xiao, W.D. Zhang, C. Lv, et al., Large enhancement in conductivity ofpolyaniline films by cold stretching, Macromol. Chem. Phys.,2010,211:1109-1116
    [196] H.A. Tsai, C.Y. Kuo, J.H. Lin, et al., Morphology control of polysulfonehollow fiber membranes via water vapor induced phase separation, J. Membr.Sci.,2006,278:390-400
    [197]李昕,陈翠仙,李继定,聚乙二醇对相转化成膜过程凝胶动力学的影响研究,功能材料,2008,39:410-413
    [198] T. Kajiyama, K. Tanaka, A. Takahara, Surface segregation of the highersurface free energy component in symmetric polymer blend films,Macromolecules,1998,31:3746-3749
    [199] C.W. Li, Y.S. Chen, Fouling of UF membrane by humic substance: Effects ofmolecular weight and powder-activated carbon (PAC) pre-treatment,Desalination,2004,170:59-67
    [200] S. Yoo, J. Kim, J. Jho, et al., Influence of the addition of PVP on themorphology of asymmetric polyimide phase inversion membranes: effect ofPVP molecular weight, J. Membr. Sci.,2004,236:203-207
    [201] Y. Yang, P. Wang, Q. Zheng, Preparation and properties of polysulfone/TiO2composite ultrafiltration membranes, J. Polym. Sci. Part B: Polym. Phys.,2006,44:879-887
    [202] Y. Yang, P. Wang, Preparation and characterizations of a new PS/TiO2hybrid membranes by sol–gel process, Polymer,2006,47:2683-2688
    [203] T.H. Bae, I.C. Kim, T.M. Tak, Preparation and characterization offouling-resistant TiO2self-assembled nanocomposite membranes, J. Membr.Sci.,2006,275:1-5
    [204] M.L. Luo, J.Q. Zhao, W. Tang, et al., Hydrophilic modification of poly(ethersulfone) ultrafiltration membrane surface by self-assembly of TiO2nanoparticles, Appl. Surf. Sci.,2005,249:76-84
    [205] W.J. Bae, W.H. Jo, Y.H. Park, Preparation of polystyrene/polyaniline blendsby in situ polymerization technique and their morphology and electricalproperty, Synth. Met.,2003,132:239-244
    [206]谢晶曦,常俊标,王绪明,红外光谱在有机化学和药物化学中的应用,北京:科学出版社,2002
    [207]徐琳,王乃岩,霸书红,傅里叶变换衰减全反射红外光谱法的应用与进展,光谱学与光谱分析,2004,24:317-319
    [208] J. Laska, J. Widlarz, Spectroscopic and structural characterization of lowmolecular weight fractions of polyaniline, Polymer,2005,46:1485-1495
    [209] J.E. Albuquerque, L.H.C. Mattoso, D.T. Balogh, et al., A simple method toestimate the oxidation state of polyanilines, Synth. Met.,2000,113:19-22
    [210] I. Kulszewicz-Bajer, Spectroscopic properties of polyaniline protonated withpoly(alky1ene phosphates), Macromolecules,1995,28:610-613
    [211] S. Pruneanu, E. Veress, I. Marian, et al., Characterization of polyaniline bycyclic voltammetry and UV-Vis absorption spectroscopy, J. Mater. Sci.,1999,34:2733-2739
    [212] R. Cruz-Silva, J. Romero-Garc′a, J.L. Angulo-Sa′nchez, et al., Comparativestudy of polyaniline cast films prepared from enzymatically and chemicallysynthesized polyaniline, Polymer,2004,45:4711-4717
    [213] P.S. Rao, D.N. Sathyanarayana, Synthesis of electrically conductingcopolymers of aniline with o/m-amino benzoic acid by an inverse emulsionpathway, Polymer,2002,43:5051-5058
    [214] Y.M. Lee, J.H. Kim, J.S. Kang, et al., Annealing effects of dilutepolyaniline/NMP solution, Macromolecules,2000,33:7431-7439
    [215] I.C. Kim, K.H. Lee, Effect of various additives on pore size of polysulfonemembrane by phase-inversion process, J. Appl. Polym. Sci.,2003,89:2562-2566
    [216] K.C. Tam, R.D. Jenkins, M.A. Winnik, et al., A structural model ofhydrophobically modified urethane-ethoxylate (HEUR) associative polymers inshear flows, Macromolecules,1998,31:4149-4159
    [217] Y.N. Yang, J. Wu, Q.Z. Zheng, et al., The research of rheology andthermodynamics of organic–inorganic hybrid membrane during the membraneformation, J. Membr. Sci.,2008,311:200-207
    [218] T.H. Young, L.W. Chen, Pore formation mechanism of membranes fromphase inversion process, Desalination,1995,103:233-247
    [219] I.N.H.M. Amina, A.W. Mohammada, M. Markoma, et al., Flux decline studyduring ultrafiltration of glycerin-rich fatty acid solutions, J. Membr. Sci.,2010,351:75-86
    [220] J. Xu, P. Yao, X. Li, et al., Synthesis and characterization of water-solubleand conducting sulfonated polyaniline/para-phenylenediamine-functionalizedmulti-walled carbon nanotubes nano-composite, Mater. Sci. Eng. B,2008,151:210-219
    [221] G. Li, B. Li, First successful post-synthetic self-assembly of polyaniline withpoly(N-vinylpyrrolidone) into aqueous nanocolloids, Macromol. RapidCommun.,2006,27:854-858
    [222] R. A. Peterson, A. R. Greenberg, L. J. Bond, et al., Use of ultrasonic TDR forreal-time noninvasive measurement of compressive strain during membranecompaction, Desalination,1998,116:115-122
    [223]宋晓岚,王海波,吴雪兰,等,纳米颗粒分散技术的研究与发展,化工进展,2005,24:47-52
    [224]陈云华,林安,甘复兴,纳米颗粒的化学改性方法研究现状,中国表面工程,2005,2:5-11
    [225]王伟,纳米Fe3O4颗粒改性详析,材料科学与工艺,2001,9:431-433
    [226] T.G. Sabbides, P.G. Koutsoukos, The effect of surface treatment withinorganic orthophosphate on the dissolution of calcium carbonate, J. Cryst.Growth,1996,165:268-272
    [227] H. Mahfuz, Fabrication, synthesis and mechanical characterization ofnanoparticles inflused polyurethane foams, Composites (Part A: Appliedscience and manufacturing),2004,35:453-460
    [228] J. Gouzalez, Effects of coupling agent on mechanical and morphologicalbehavior of the PP/HDPE blend with two different CaCO3, Eur. Polym. J.,2002,38:2465-2475
    [229]邹玲,表面修饰二氧化钛纳米粒子的结构表征及形成机理,物理化学学报,2001,17:305-309
    [230] S. Palaniappan, M. Sairam, Benzoyl peroxide as a novel oxidizing agent inpolyaniline dispersion: Synthesis and characterization of a purepolyaniline–poly (vinyl pyrrolidone) composite, J. Appl. Polym. Sci.,2008,108:825-832
    [231] E. Subramanian, G. Anitha, N. Vijayakumar, Constructive modification ofconducting polyaniline characteristics in unusual proportion throughnanomaterial blend formation with the neutral polymer poly (vinyl pyrrolidone),J. Appl. Polym. Sci.,2007,106:673-683
    [232] C.A. Smolders, A.J. Reuvers, R.M. Boom, et al., Microstructures in phaseinversion membranes. Part1. Formation of macrovoids, J. Membr. Sci.,1992,73:259-275
    [233] M. Cho, S. Park, J. Hwang, et al., Synthesis and electrical properties ofpolymer composites with polyaniline nanoparticles, Mater. Sci. Eng.,2004,24:15-18
    [234] J. Li, J. Zhu, M. Zheng, Morphologies and properties of poly (phthalazinoneether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2nanoparticles, J. Appl. Polym. Sci.,2007,103:3623-3629
    [235] D. Gomes, S. Nunes, K. Peinemann, Membranes for gas separation based onpoly (1-trimetylsilyl-1-propyne)-silica nanocomposites, J. Membr. Sci.,2005,246:13-25
    [236] T. Merkel, Z. He, I. Pinnau, Effect of nanoparticles on gas sorption andtransport in poly (1-trimethylsilyl-1-propyne), Macromolecules,2003,36:6844-6855
    [237] J. Kim, Y. Lee, Gas permeation properties of poly(amide-6-b-ethyleneoxide)-silica hybrid membranes, J. Membr. Sci.,2001,193:209-225
    [238] H. Cong, X. Hu, M. Radosz, et al., Brominatedpoly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocompositemembranes for gas separation, Ind. Eng. Chem. Res.,2007,46:2567-2575
    [239] S. Kim, E. Marand, High permeability nano-composite membranes based onmesoporous MCM-41nanoparticles in a polysulfone matrix, Micropor.Mesopor. Mater.,2008,114:129-136
    [240] S. Kim, J. Ida, V. Guliants, et al., Tailoring pore properties of MCM-48silicafor selective adsorption of CO2, J. Phys. Chem. B,2005,109:6287-6293
    [241] S. Kim, L. Chen, J.K. Johnson, et al., Polysulfone and functionalized carbonnanotube mixed matrix membranes for gas separation: Theory and experiment,J. Membr. Sci.,2007,294:147-158
    [242] E.V. Perez, K.J.B. Jr, J.P. Ferraris, et al., Mixed-matrix membranescontaining MOF-5for gas separations, J. Membr. Sci.,2009,328:165-173
    [243] B. Dasgupt, S.K. Sen, S. Banerjee, AminoethylaminopropylisobutylPOSS-Polyimide nanocomposite membranes and their gas transport properties,Mater. Sci. Eng. B,2010,168:30-35
    [244]远双杰,强化含氨基固定载体膜CO2/N2渗透选择性能研究:[博士学位论文],天津,天津大学,2011
    [245]王珲,基于聚乙烯吡咯烷酮分子的聚苯胺衍生物的合成与表征:[硕士学位论文],长沙,国防科学技术大学,2009
    [246]高家武,高分子材料近代测试技术,北京:北京航空航天大学出版社,1994
    [247]伊春海,含氨基固定载体膜制备及其CO2传递特性研究:[博士学位论文],天津,天津大学,2007
    [248] S.A. Stern, Polymers for gas separations: the next decade, J. Membr. Sci.,1994,94:1-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700