用户名: 密码: 验证码:
直拉单晶硅炉用炭素材料防护涂层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着单晶硅在太阳能光伏行业和半导体行业的应用越来越广泛,炭素材料作为直拉单晶硅炉重要的热场材料也得到迅速发展。但是由于直拉单晶硅炉内微氧化气氛使得炭素热场材料缓慢氧化,生成的二氧化碳和一氧化碳溶解于硅料里面,造成直拉单晶硅产品的碳沉降和氧沉降。另外直拉单晶过程中,硅料的熔融可能会产生硅蒸汽和熔融硅飞溅,造成炭素热场材料硅化,严重影响炭素部件的力学性能和使用寿命。所以,对直拉单晶硅炉内炭素热场材料的抗氧化防护和抗硅化腐蚀防护显得尤为必要,其中涂层技术是必要的选择。
     本文首先研究了炭素热场材料在氧化环境和硅化腐蚀情况下的失效机理。研究发现,炭素材料的基体类型、物相结构、杂质含量、表面抛光处理等对其氧化性能的影响比较显著。由于碳纤维属于皮芯结构,外层碳原子排列规整,反应活性低,因此纤维含量高的炭素材料的抗氧化性能较好,且在氧化过程中,氧化反应首先从炭素基体开始。另外对于碳原子排列规整、石墨微晶完整的炭素材料抗氧化性能较好,也就是石墨化程度越高越抗氧化。炭素材料内部金属杂质有效的降低了碳元素与氧元素的反应活化能,对炭材料的氧化起到催化作用。表面抛光处理会减少炭素材料比表面积,降低碳原子与氧原子撞击概率,提高了炭素材料的抗氧化性能。对炭素材料进行熔融硅的硅化腐蚀发现,硅元素对炭素材料的腐蚀主要是通过炭素材料表面开气孔和缺陷向材料内部扩散。对于C/C复合材料,纤维束之间存在大量的连续孔隙,硅元素主要通过这些孔隙和基体纵向缺陷进行。另外随着硅化腐蚀时间的延长,C/C复合材料力学性能逐渐下降,而石墨材料硅化腐蚀后表面生成连续的SiC,使石墨材料的力学性能优于未硅化材料,但是表面硅化腐蚀使炭素材料在使用过程中长期存在残余应力,严重影响了其使用寿命。
     以炭素材料氧化侵蚀和硅化腐蚀机理为基础,设计了树脂热解炭涂层和气相沉积热解炭涂层改善炭素材料的抗氧化和抗硅化腐蚀性能。通过对两种热解炭涂层的物相结构和微观形貌发现,树脂热解炭涂层由于树脂炭化过程收缩,表面有很多孔洞,通过添加石墨粉作为填料,抑制了树脂收缩引起的孔洞。经过900℃的静态氧化试验和1600℃硅化腐蚀试验发现,树脂热解炭涂层对炭素材料起到一定的抗氧化防护能力,但是经过4小时的静态氧化后,失重率仍然高达60%。气相沉积热解炭涂层的抗氧化效果比较好,4小时氧化失重率在10%左右。在经过1600℃硅化腐蚀之后,气相沉积热解炭具有极佳的硅化防护能力,而树脂热解炭涂层的抗硅化腐蚀虽然优于未加涂层样品,但仍与气相沉积热解炭涂层有一定差距。抗氧化效果不理想主要是因为炭素涂层自身固有易氧化性引起的。
     热解炭涂层由于自身固有的易氧化性,使得热解炭涂层作为防护涂层的抗氧化效果不佳。本文用包埋熔渗法和气相沉积法分别制备了SiC涂层。研究表明,随着包埋法制备SiC涂层熔渗时间的增长,SiC晶粒逐渐长大,根据XRD计算结果,SiC涂层主要为β-SiC,且SiC晶粒沿着(311)晶面堆垛方向长大速度较快。C/C复合材料基体对包埋法制备SiC涂层的影响较为显著,SiC涂层由于与炭素基体热膨胀系数差异,引起涂层表面微裂纹的产生。通过900。C,10h的氧化试验发现,SiC涂层具有较好的抗氧化防护能力,氧化失重率在4%左右。而通过SiC涂层的硅化腐蚀试验发现,SiC涂层表面微裂纹的存在,成为熔融硅向基体内部扩散的通道。如何抑制SiC表面微裂纹的产生,成为SiC涂层发挥抗氧化防护和抗硅化防护能力的关键。
     为了缓解SiC涂层与炭素材料热膨胀系数不匹配造成的应力集中,抑制SiC涂层表面微裂纹的产生,本文设计了以热解炭涂层为过渡层,以SiC涂层为外涂层的复合防护体系。通过对PyC过渡层的测试分析发现,由于石墨粉的添加,涂层内部存在大量晶界与缺陷,这些缺陷的存在提高了过渡层的韧性。经过1600。C处理的PyC过渡层内部残余应力要小于900。C处理的PyC过渡层,主要是因为石墨化程度高的PyC过渡层能消耗更多的热应力能量。经过制备SiC外涂层发现,表征SiC残余应力的拉曼频移与平衡位置基本平衡,说明PyC过渡层的存在为SiC涂层缓解了大部分热应力,使得SiC表面有较少的微裂纹,更有效的发挥SiC涂层的抗氧化防护和抗硅化防护效果。通过对PyC增韧涂层机理研究发现,PyC过渡层其实是引入一层弱界面,在弱界面内部存在大量缺陷和微裂纹,这些缺陷和微裂纹可以对主裂纹进行分散,吸收主裂纹能量,缓解主裂纹垂直于涂层方向扩展,避免了穿透性微裂纹的产生。
     作为直拉单晶硅炉热场材料,炭素材料的热辐射性能非常重要。随着直拉单晶硅的发展,对炉内热场设计和模拟尤为重要,其中热场材料的热辐射性能是其中重要的参数。本文研究炭素基底材料及涂层复合材料的热辐射性能,分析发现,C/C复合材料AC100和等静压石墨G330的光谱发射率相对其他炭素材料较高,光谱发射率随波长变化幅度较小,发射率相对稳定。C/C复合材料AC100和等静压石墨G330的石墨微晶结构相对于同类其他材料的规整性不高,缺陷结构的存在几率大,紊乱结构引起局域振动模式使炭素材料形成较强的光谱辐射带。表面不平整度对炭素材料光谱发射率有较大影响,AC100表面不平整程度较大,粗糙表面引起电磁波吸收散射较强,光谱发射率较强;石墨材料表面不平整程度差别并不明显,由表面状态引起的发射率变化不明显。热解炭防护涂层复合材料在测试波段内的热辐射性能优于基底C/C复合材料,气相沉积热解炭涂层复合材料的热辐射性能最佳,法向光谱发射率基本在0.85-0.9范围内,法向总发射率达0.89。相对于基底C/C复合材料来说,碳化硅热防护涂层复合材料的光谱发射率在测试波段内有明显提高,其中包埋法制备Pyc/SiC涂层的光谱发射率基本高于气相沉积的涂层,包埋法复合涂层,可有效改善炭素材料的热辐射性能。
With the application of single crystal silicon in solar photovoltaic and the semiconductor industry more widely, carbon materials used as thermal field parts developed more quickly. But because the micro oxidizing atmosphere in CZ furnace makes carbon thermal field slow oxidation, generate carbon dioxide and carbon monoxide, these gas dissolved in silicon materials cause the silicon products carbon and oxygen settlement. In addition, in the process of pulling crystal, silicon material melt may produce silicon steam and molten silicon splash, cause carbon thermal field material surface silicification, seriously affecting the mechanical properties of carbon parts and service life. So, the antioxidant protection and corrosion protection of carbon thermal field material in monocrystalline silicon furnace is necessary, and coating technology is a necessary choice.
     This paper first studied carbon thermal field materials in oxidation environment and silicification corrosion cases failure mechanism. This study found that carbon materials matrix type, which structure, impurity content, surface finish effect the oxidation performance significantly. Due to the carbon fiber skin core structure, outer carbon atoms are arranged neat, reaction activity is relatively low, and in the oxidation process, oxidation reaction begin from carbon matrix began, the antioxidant performance of high fiber content carbon material is good. In addition, oxidation performance of carbon material with carbon atoms arranged neat, graphite crystallite complete is good, the higher graphitization degree, the higher antioxidant performance. Carbon materials internal metal impurity effectively reduces the carbon and oxygen element reaction activation energy, the carbon materials play a catalytic role in oxidation. Surface polishing treatment will reduce carbon material specific surface area, reduce carbon atoms and oxygen atom collision probability and improve the carbon material of oxidation resistance. For carbon materials for molten silicon silicification corrosion found that silicon elements on carbon material corrosion is mainly through the carbon material surface open pore and defect to material internal diffusion. For C/C composite material, cellulose exist between a large number of continuous pore, silicon mainly through these pore and matrix longitudinal defects. In addition with silicification corrosion the extension of time, the C/C composite material mechanics performance gradually declined, and graphite material silicification corrosion surface generation after continuous SiC, the mechanical properties of graphite materials for not silicification materials, but surface silicification seriously affect its service life.
     According to the carbon material oxidation erosion and silicification corrosion mechanism research, this paper designed a resin pyrolytic carbon coating and deposition pyrolytic carbon coating on carbon materials to protection oxidation and silicification. Based on two kinds of pyrolytic carbon coating phase structure and microstructure, because resin contracte in carbonized process, the surface of resin pyrolytic carbon coating has a lot of holes.Adding graphite powder as filler, restrain the the hole caused by resin shrinkage. After900℃static oxidation test and1600℃silicification corrosion test, resin pyrolytic carbon coating on carbon materials have some antioxidant protection ability, but after four hours of static oxidation, weight loss rate is still as high as60%. Antioxidant effect of CVD pyrolytic carbon coating is good,4hours oxidation weightlessness rate at about10%. After1600℃silicification corrosion, vapor deposition pyrolytic carbon has excellent silicification protection ability, and resin pyrolytic carbon coating corrosion resistance is better than that of silicide though without coating samples.
     Because of pyrolytic carbon coating inherent oxidation performance, makes the pyrolytic carbon coating as a protective coating of antioxidant effect is not good. In this paper, using embedding melt infiltration method and deposition method, we prepared the SiC coating. This study found that, along with the melt infiltration embedding for SiC coating time growth, SiC grain grew older, according to the XRD results, SiC coating is mainly beta SiC, and SiC grain grow up priority along the (311) crystal plane stacking direction. C/C composites matrix for embedding method for SiC coating effect is significant, SiC coating with carbon matrix coefficient of thermal expansion difference, causes micro crack generation in coating surface. Through the900℃,10h oxidation test found that SiC coating has good antioxidant protection ability, oxidation weightlessness rate at about4%.Through the SiC coating silicification corrosion test found that SiC coating surface microcrack exists, and be fused silicon to matrix internal diffusion channels. How to suppress the SiC surface micro crack generation, called SiC coating play antioxidant protection and resistance to silicification protection ability of the key.
     In order to alleviate the stress concentration caused by SiC coating and carbon material coefficient of thermal expansion mismatch, restrain SiC coating surface microcrack production, this paper designed a pyrolytic carbon coating for transition layer to SiC coating for external coating of composite protective system. Through the PyC transition layer test analysis found that, with the graphite powder add, coating internal exist a lot of grain boundary and defects existed, and these defects improve the transition layer of plastic. After1600℃processing PyC transition layer internal residual stress to less than900℃processing PyC transition layer, mainly because of the high degree of graphitization PyC transition layer can consume more energy thermal stress. After preparation SiC external coating found that characterization of SiC residual stress of Raman frequency shift and the equilibrium position basic balance, explain the existence of PyC transition layer for SiC coating ease most thermal stress, makes the SiC surface is less micro crack, more effective play SiC coating of antioxidant protection and resistance to silicification protective effect. Through the PyC toughening coating mechanism study found that PyC transition layer is actually into a layer of weak interface, in the weak interface internal there are many defects and micro crack, these defects and micro crack can be the main crack is dispersed, absorb the main crack energy, alleviate the main crack perpendicular to the direction of expansion coating, to avoid the penetrability micro crack generation.
     As furnace thermal field material in Czochralski silicon, the thermal radiation properties of carbon materials is very important. With the development of Czochralski silicon, the design and simulation of the thermal field in the furnace is particularly important, wherein the heat radiation performance of the thermal field of materials is one of the important parameters. This paper sdudied carbon substrate material and coating composite heat radiation performance analysis and found that the spectral emissivity of the C/C composites AC100and isostatic graphite G330high relative to other carbon materials, the spectral emissivity with wavelength variation smaller, the emission rate is relatively stable. C/C composites AC100and isostatic graphite G330graphite microcrystalline structure relative to the regularity of similar other materials is not high, the probability of the existence of the defect structure disorders cause localized vibrational mode structure of the carbon material to form a strong spectral radiation belts. Surface irregularities of the spectral emissivity of carbon materials, AC100surface smoothness of the rough surface caused by strong electromagnetic wave absorption scattering, strong spectral emissivity; graphite material surface uneven degree of difference is not obvious from the emission caused by the surface state of the rate change is not obvious. Thermal radiation properties of the protective coating of pyrolytic carbon composite materials in the test band is better than the base C/C composites, the performance of the vapor deposition of pyrolytic carbon coated composite thermal radiation, normal the basic spectral emissivity0.85-0.9range, to the total emission rate of0.89. Relative to the base C/C composites, silicon carbide heat protection coating composite spectral emissivity significantly improved in the test band embedding method Pyc/SiC coating the spectral emissivity basic higher than the vapor deposition coating, embedding composite coating, which can effectively improve the thermal radiation properties of carbon materials.
引文
[1]熊远生.太阳能光伏发电系统的控制问题研究[D].浙江工业大学博士学位论文,2009.
    [2]于雪峰.单晶硅炉有限元分析及优化设计[D].西安理工大学硕士论文,2000.
    [3]M.Z.Saghir, D.Labrie, A.Ginovker. Float-zone crystal growth of CdGeAs2in microgravity:numerical simulation and experiment[J]. Journal of Crystal Growth,2000,208 (1-4):370-378.
    [4]Mingwei Li, Chunmei Liu, Tingxia Zhu. Numerical simulation of liquid encapsulant float zone growth of indium phosphide crystals in zero gravity[J]. International Journal of Heat and Mass Transfer,2008,51 (3-4): 844-852.
    [5]D Labrie, A.E George, A.M Simpson. Characterization of CdGeAs2 grown by the float zone technique under microgravity[J].2000,208 (1-4):379-388.
    [6]段建军,李瑞珍,解惠贞.炭/炭复合材料在半导体制造行业的应用[J].炭素,2007,1:12-15.
    [7]T Sinno, E Dornberger, W von Ammon. Defect engineering of Czochralski single-crystal silicon[J]. Materials Science and Engineering:R:Reports. 2000,28(5-6):149-198.
    [8]Jyotirmay Banerjee, Krishnamurthy Muralidhar.Role of internal radiation during Czochralski growth of YAG and Nd:YAG crystal[J]. International Journal of Thermal Sciences.2006,45 (2):151-167.
    [9]Xiaobo Wu, Koichi Kakimoto, Hiroyuki Ozoe. Numerical study of natural convection in Czochralski crystallization[J]. Chemical Engineering Journal. 1998,71 (3):183-189.
    [10]王世援,韩焕鹏,刘锋.碳碳复合材料应用于直拉硅单晶生长的研究[J].材料制备工艺,2011,195:29-33.
    [11]詹国彬.石墨在直拉单晶硅Cz炉热场中的应用[J].炭素技术,1998,3:29-31.
    [12]X Fan, S Kou. Czochralski growth of NiAl single crystals:effect of crucible support/insulation material[J]. Journal of Crystal Growth.1999,204, (1-2): 108-114.
    [13]L.Y.Huang, P.C.Lee, C.K.Hsieh. On the hot-zone design of Czochralski silicon growth for photovoltaic applications[J]. Journal of crystal growth 2004,261 (4):433-443.
    [14]李贺军.炭/炭复合材料[J].新型炭材料,2001,16(2):7-8.
    [15]吴磊,刘峰,韩焕鹏等.碳/碳复合材料在半导体制造行业的应用[J].天津科技,2010,4:11-13.
    [16]Myungsoo Kim, Young-Bin Park, Okenwa I.Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites[J]. Composites Science and Technology.2009,69 (3-4):335-342.
    [17]Arthui J.Lucchesi, John C.Hay, Kenneth. Characterization of wake-zone tractions in an oxidation-inhibited carbon/carbon composite [J]. Composites Science and Technology.1993,49 (4):315-325.
    [18]Tse-Hao Ko, Wen-shyong Kuo, Shinn-Shyong Tzeng. The microstructure changes of carbon fiber pores in carbon-carbon composites during pyrosis[J]. Composites Science and Technology.2003,63 (13):1965-1969.
    [19]Chongjun Li, Alan Crosky. The effect of carbon fabric treatment on delamination of 2D-C/C composites[J]. Composites Science and Technology. 2006,66 (15):2633-2638.
    [20]徐洪新,罗刚.粘胶基炭纤维毡的制备[J].辽宁化工,2001,30(11):472-497.
    [21]李南,屈军杰.高温炭管炉工艺改造[J].工业炉,2007,29(3):49-50.
    [22]Chaney and Varker. Initial Dissolution Rate of Quartz Rods in silicon Melts: Influenee of Quartz surface Conditions [J]. Crystal Growth,1976,33:188.
    [23]Shiraishi Y, Kurosaka S, Imai M.J. Ga segregation in czochralski-Si crystal growth with B codoping[J]. Crystal Growth,1996,166 (1-4):685.
    [24]G.muler, A.muhe.R.Backofen. Study of oxygen transport in Czochralski growth of silicon[J]. Microelectronic Engineering,1999,45:135-147.
    [25]Sumio Kobayashi. A model for oxygen precipitation in Czochralski silicon during crystal growth[J]. Journal of Crystal Growth.1996,174 (1-4): 163-169.
    [26]Zhidian Zeng, Xiangyang Ma, Jiahe Chen. Effect of oxygen precipitates on dislocation motion in Czochralski silicon[J]. Journal of Crystal Growth. 2010,312 (2):169-173.
    [27]Lin Chen, Xuegong Yu, Peng Chen. Effect of oxygen precipitation on the performance of Czochralski silicon solar cells[J]. Solar Energy Materials and Solar Cells.2011,95 (11):3148-3151.
    [28]G.muller, A.Muhe. Study of oxygen transport in Czochralski growth of silicon[J]. Microelectronic Engineering.1999,45 (2-3):135-147.
    [29]曾燮榕,李贺军,杨峥等.表面硅化对C/C复合材料组织结构的影响[J].金属热处理报,2000,21(2):64-67.
    [30]周新贵,张长瑞,张红刚等.CVD涂层SiC纤维增强SiC复合材料的研究[J].材料科学与工程学报,2006,24(6):815-820.
    [31]肖志英,蒋建纯等.C/C复合材料在硅单晶生长炉中的应用前景[C].第七届新型碳材料会议,2005.
    [32]蔡大勇,李东春.纤维含量对C/C复合材料力学性能的影响[J].炭素技术,2001,(1):16-18.
    [33]董幼文.碳毡碳/碳复合材料的研制[J].宇航材料工艺,1990,5:21-24.
    [34]周玲,姜稚清,华渊.碳/碳复合磨阻材料的研制[C].中国材料研究学会.96中国材料研讨会论文集.材料设计与加工.北京:化学工业出版社,1997.
    [35]嵇阿琳,马伯信,霍肖旭.CVD法制备2D炭/炭复合材料研究[J].新型炭材料,2000,15:35-39.
    [36]Bok-Cheol Sim, In-Kyoo Lee, Kwang-hun Kim. Oxygen concentration in the Czochralski-growth crystal with cusp-magnetic field[J]. Journal of Crystal Growth.2005,275 (3-4):455-459.
    [37]康伟超.硅材料检测技术[M].北京.化学工业出版社,2009:80-90.
    [38]张东.直拉单晶炉中碳氧含量的研究[J].科技信息,2011,30:17.
    [39]H.Ming Liaw.直拉单晶硅中的氧和碳[J]. World CEMENT Technology, 1982:92-98.
    [40]李贺军,薛晖,付前刚.C/C复合材料高温抗氧化涂层的研究现状与展望[J].无机材料学报,2010,25(4):337-343.
    [41]黄剑锋,李贺军,熊信柏等.碳/碳复合材料高温抗氧化涂层的研究进展[J].新型炭材料,2005,20(4):373-379.
    [42]王博.碳/碳复合材料SiCn-MoSi2/SiC复合抗氧化涂层的制备及性能研究[D].硕士学位论文.陕西科技大学,2011.
    [43]传秀云,李贺军,曾燮榕.炭材料惰性涂层方法分析[J].新型炭材料,1999,14(3):63-68.
    [44]张武装,熊翔,曾毅.包埋法制备SiC涂层C/C复合材料及真空热处理对涂层的影响[J].粉末冶金材料科学与工程,2011,(02):231-236.
    [45]焦更生,李贺军,卢国锋.原位生成SiC-MoSi2-TiSi2涂层的工艺条件研究[J].功能材料,2011,(10):1847-1850.
    [46]梁武,李国栋,熊翔.C/C复合材料SiC/SiO2涂层的制备及其抗氧化性能[J].宇航材料工艺,2011,(05):55-59.
    [147]王博,黄剑锋,刘淼,李抗,曹丽云,吴建鹏.水热温度对SiC-C/C复合材料表面水热电泳沉积MoSi2抗氧化涂层的影响[J].无机化学学报,2011,(04):666-672.
    [48]Yiguang Wang,Juan Yang,Jia Liu.Fabrication of oxidation protective coating on C/C-SiC brake materials at room temperature[J].Surface and Coating Technology.2012.
    [49]T.Suemitsu, S.Motojima.Forrmation of C/SiC multilayer coating on Si-Ti-C-O fiber[J].Materials Science and Engineering:B.2000,78(2-3): 119.124.
    [50]Yang Xiang,Wei Li, Song Wang.Oxidation behavior of oxidation protective coating for PIP-C/SiC composites at 1500℃[J].Ceramics International. 2012,38(1):9-13.
    [51]方勋华,易茂中,黄启忠.一种中温炭/炭复合材料抗氧化涂层的制备及其性能[J].炭素,2004,3:17-21.
    [52]Huang Jian-Feng,Li He-Jun,Zeng XieRong.Preparation and oxidation kinetics mechanism of three-layer multi layer coatings coated carbon/carbon Composites[J]. Surface&Coatings Technology,2006, (200):5379-5385.
    [53]Huang Jian-Feng, Li He-Jun, Zeng Xie-Rong. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon,2004 (42):2329-2366.
    [54]Huang Jian-Feng, Li He-Jun, Zeng Xie-Rong. Oxidation resistance yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method[J]. Ceramics International.2006, (32):417-421.
    [55]Huang Jian-Feng, Li He-Jun, Zeng Xie-rong. Influence of preparation technology on the microstructure and anti-oxidation property of SiC-Al2O3-mullite multi-coatings for carbon/carbon compo sites [J]. Applied Surface Science,2006, (252):4244-4249.
    [56]Huang Jian-Feng, Zeng Xie-rong, Li He-Jun. Al2O3 mullite SiC Al4SiC4 multi-composition coating for carbon/carbon composites[J]. Materials Letters,2004, (58):2627-2630
    [57]Huang Jian-Feng, Zeng Xie-rong, Li He-Jun. Mullite Al2O3 SiC oxidation protective coating for carbon/carbon composites[J]. Carbon,2003, (41): 2825-2829.
    [58]Huang Jian-Feng, Zeng Xie-rong, Li He-Jun. SiC/yttrium silicate multi-layer coating for oxidation protection of carbon/carbon composites[J]. Journal of Material Science,2004, (39):7383-7385.
    [59]Fu Qian-Gang, Li He-Jun, Li Ke-Zhi. SiC whisker-toughened MoSi2-SiC-Si coating to protect carbon/carbon composites against oxidation[J]. Carbon, 2006, (44):1845-1869.
    [60]Li He-Jun, Fu Qian-Gang, Shi Xiao-Hong. SiC whisker-toughened SiC oxidation protective coating for carbon/carbon composites[J]. Carbon,2006, (44):602-605.
    [61]Fu Qian-Gang, Li He-Jun, Shi Xiao-Hong. Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD[J]. Materials Letters,2005, (59):2593-2597.
    [62]Fu Qian-Gang. Li He-JuIl, Shi Xiao—Hong. Silicon carbide coating to protect carbon/carbon composites against oxidation[J]. Scripta Materialia, 2005,52 (9):923-927.
    [63]Oliver P, Alain D. Silicon Carbide Coating by Reactive Pack Cementation-Part II:Silicon Monooxide/Carbon Reaction[J]. Advanced Materials,2000,12 (3):41-50.
    [64]杨尊社,卢刚认,曲德全.C/C复合材料的磷酸盐与硼系涂料的防氧化研究.材料保护[J].2001,34(3):12-13.
    [65]崔红,苏君明,李瑞珍,李贺军,康沫狂.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报.2000,18(4):669-673.
    [66]朱小旗,杨峥,康沫狂,张海涛.基体改性碳/碳复合材料抗氧化影响规律探析[J].复合材料学报.1994,11(2):107-111.
    [67]P.Ehrbllrger. Inhibition of the oxidation of carbon-carbon composites by Boron oxide. carbon[J].1986,24 (4):495-499.
    [68]F.J. Buchanan. Particulate-containing Glass Sealants for Carbon-carbon Composites. Carbon[J].1996,31:649-654.
    [69]R.W.lynch B.Morosin. thermal Expansion, Compressibility, and Polymorphism in Hfnium and Zirconium Titanates[J], L.Am Ceram Soc. 1972,55 (8):409-413.
    [70]J.R.Strife. Ceamic coating for carbon-carbon composites. Ceramic Bulletin[J].1988.2:369-374.
    [71]邓景屹,刘文川,杜海峰.C/C-SiC梯度基复合材料氧化行为的研究[J].硅酸盐学报.1999,27(3):357~361.
    [72]李瑞珍,郝志彪,李贺军,崔红.CVR法抗氧化处理对炭/炭复合材料抗氧化行为的影响[J].复合材料学报.2005,22(5):125-129.
    [73]郭海明.C/C复合材料防氧化复合涂层的制备及其性能.宇航材料工艺[J].1998,(5):31-40.
    [74]简科,胡海峰,陈朝辉.碳/碳复合材料高温抗氧化涂层研究进展[J].材料保护.2003,36(1):22-24.
    [75]Fukuda K, Matsubara H. Thermal Expansion of 8-yttrium disilicate[J]. J Am Ceram Soc,2004,87 (1):89-92.
    [76]Cheng L F, Xu YD, Zhang LT. Preparation of an oxidation protection coating for C/C composites by low pressure chemical vapor deposition[J]. Carbon,2000, (38):1493-1498.
    [77]曾燮榕,杨洚,李贺军.防止C/C复合材料氧化的MoSi2/SiC双相涂层系统的研究[J].航空学报,1997,18(4):427-431.
    [78]Shuford D M. Composition and method for forming a protective coating on carbon/carbon substrate. US, Patent 4.465,777[P].1984.
    [79]黄剑锋,李贺军,熊信柏.碳/碳复合材料高温抗氧化涂层的研究进展[J].新型碳材料,2005,20(4):373-379.
    [80]Shu WB, Guo H M, Qiao S R. Phase Composition and Surface Morphology of TiC Coating by Chemical Vapor Deposition[J]. Xi Bei Gong Ye Da Xue Xue Bao,2000,18 (2):229-232.
    [81]Roos E, Maile K, Lyutovich A. Electron Beam Physical Vapor Deposition of Protective Films on Carbon Reinforced Carbon[J]. Surface and Coatings Technology,2000, (125):331-334.
    [82]Zhi Qiao Yan, Xiang Xiong, Peng Xiao. Si-Mo-SiO2 oxidation protective coating prepared by slurry painting for C/C-SiC composites[J]. Surface and Coating Technology.2008,202 (19):4734-4740.
    [83]Y.Yang, Y.F.Cheng. Electrolytic deposition of Ni-Co-SiC nano coating for erosion enhanced corrosion of carbon steel pipes in oilsand slurry [J]. Surface and Coating Technology.2011,205 (10):3198-3204.
    [84]Hai-Tao Fang, Jae-Ho Jeon, Jing-Chuan Zhu. Inhibition of Liquid Si infiltration into carbon-carbon composites by the addition of Al to the Si slurry pre-coating:mechanism analysis[J]. Carbon.2002,40 (14): 2559-2565.
    [85]H T Fang, J C Zhu, Z D Yin, J H Jeon, Y D Hahn. A Si-Mof used slurry coating for oxidation protection of carbon-carbon composites[J]. Mater Sci Lett.2001,20(2):175-177.
    [86]H T Fang, Z D Yin, J C Zhu J H Jeon, Y D Hahn. Effect of Al additive in Si slurry coating on liquid Si infiltration into carbon-carbon composites[J]. Carbon.2001,39 (13):2035-2041.
    [87]J.E. Sheehan, K.W. Buesking, B.J. Sullivan. Carbon/Carbon composites[J]. Annu Rev Mater Sci.1994,24:19-44.
    [88]M.Salvo, P.Lemoine, M.Ferraris, M.Montorsi. Joining of carbon carbon composite for thermonuclear fusion applications[J]. Am Ceram Soc.1997, 80(1):206-212.
    [89]D.Kehr, K.Brennfleck, R.Weiss. Application of SiC coatings by CVD for the protection of carbon-carbon-carbon composites against oxidation[J]. High Temp High Press.1990,22:693-706.
    [90]Yaran Niu, Xuebin Zheng, Chuanxian Ding. Microstructure charateristics of silicon carbide coating fabricated on C/C composites by plasma spraying technology [J]. Ceramics International.2011,37 (5):1675-1680.
    [91]Heng Wu, He-Jun Li, Chao Ma. MoSi2-based oxidation protective coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying[J]. Journal of European Ceramic Society.2010,30 (15): 3267-3270.
    [92]Z.Y.Pan, Y.Wang, X.W.Li. Fabrication and characterization of heat and plasma treated SiC/Al2O3-YSZ feedstocks used for plasma spraying[J]. Vacuum.2012,86 (10):1558-1567.
    [93]S.Jiansirisomboon, K.J.D.Mackenzie. Low pressure plasma sprayed Al2O3 and Al2O3/SiC nanocomposites coating from different feedstock powder[J]. Journal of European Ceramic Society.2003,23 (6):961-976.
    [94]Manchang Gui, Suk Bong Kang, Kwangjun Euh. Thermal conductivity of Al-SiCp composites by plasma sprying[J]. Scripta Materialia.2005,52 (1): 51-56.
    [1]V.B. Gupta, S. Kumar. The effect of heat setting on the structure and mechanical-properties of poly(ethylene-terephthalate) fiber Part 1:Structure changes[J]. Journal of Applied Polymer Science,1981,26 (6):1865-1876.
    [2]Qunwei Tang, Jihuai Wu, Hui Sun. Crystallization degree change of expanded graphite by milling and annealing[J]. Journal of Alloys and Compounds.2009,475 (1-2):429-433.
    [3]Else Breval,Maria Klimkiewicz,Dinesh K Agrawal,et al.Pinhole formation and weight loss during oxidation of industrial graphite and carbon[J].Carbon.2002,40(7):1017-1027.
    [4]L.G.Cancado, K.Takai, T.Enoki. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon.2008,46 (2):272-275.
    [5]Donggang Yao, Byung Kim. Developing rapid heating and cooling systems using pyrolytic graphite[J]. Applied Thermal Engineering.2003,23 (3): 341-352.
    [6]E Asari. An effect of the extended cascade on the Raman spectra of ion-irradiated graphite[J]. Carbon.2000,38 (13):1857-1861.
    [7]Istvan Pocsik, Martin Hundhausen, Margit Koos. Origin of the D peak in the Raman spectrum of microcrystalline graphite[J]. Journal of Non-Crystalline Solids.1998,227 (2):1083-1086.
    [8]Vinay Gupta, Tsuyoshi Nakajima. A study on the formation mechanism of graphite fluorides by Raman spectroscopy[J]. Journal of Fluorine Chemistry. 2003,120(2):143-150.
    [9]杨潇,卞昂,阎捷,杨序纲.复合材料残余应力的拉曼测定[J].光散射学报,2008,20(1):47-51.
    [10]Luo Xiaowei, Robin Jean-Charles, Yu Suyuan. Effect of temperature on graphite oxidation behavior[J]. Nuclear Engineering and Design.2004,227 (3):273-280.
    [11]侯党社,李克智,李贺军,付前刚.C/C复合材料难容金属二硅化物涂层防氧化机理研究[J].固体火箭技术.2010,33(2):218-221.
    [12]G. Neuer. High temperature behaviour of the spectral and total emissivity of CMC materials[J]. High Temperature High Pressures,1995,27 (2): 183-189.
    [1]Yong-Gen Lv, Dong Wu, Qing-Fang Zha,et al.Skin-core structure in mesophase pitch-based carbon fiber:causes and prevention[J]. Carbon.1998, 36(12):1719-1724.
    [2]Gengheng Zhou, Yequn Liu, Lianglong He. Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites[J]. Carbon.2011,49 (9):2883-2892.
    [3]Y.Huang, R.J.Young. Effect of fiber microstructure upon the modulus of PAN- and pitch-based carbon fibres[J]. Carbon.1995,33 (2):97-107.
    [4]L.G.Cancado, K.Takai, T.Enoki. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon.2008,46 (2):272-275.
    [5]Donggang Yao, Byung Kim. Developing rapid heating and cooling systems using pyrolytic graphite[J]. Applied Thermal Engineering.2003,23 (3): 341-352.
    [6]赵伟,蔡菲,蔡殉,朱波,曹伟伟.表面结构与碳毡吸湿性能的相关性研究[J].功能材料.2011,4:63-69。
    [7]P.L.Walker, R.L.Taylor. An update on the carbon-carbon reaction[J]. Carbon. 1991,29 (3):411-421.
    [8]郭伟明,肖汉宁.多晶石墨材料非等温氧化动力学及其氧化机理的研究[J].无机材料学报.2007,22(5):991-995.
    [9]Nathan S. Jacobson, Don J.Roth. Oxidation through coating crack of SiC-protected carbon/carbon[J]. Surface and Coatings Technology.2008, 230:372-383.
    [10]Roy M. Sullivan.Amodel for the oxidation of carbon silicon carbide composite structures[J]. Carbon.2005,43:275-285.
    [11]赵娟,王贵,刘朗.SiC梯度涂层的制备及其氧化行为研究[J].广东化工2007,34(174):25-28.
    [12][12] K H Han, Rate of oxidation of carbon fiber/carbon matrix composites with an anti-oxidation at high temperature[J]. J. Electrochem. Soc,1987, 134(4):1003-1009.
    [13]黄剑锋,李贺军,熊信柏等.碳/碳复合材料高温抗氧化涂层的研究进展[J].新型炭材料,2005,20(4):373-379.
    [14]王博.碳/碳复合材料SiCn-MoSi2/SiC复合抗氧化涂层的制备及性能研究[D].硕士学位论文.陕西科技大学,2011.
    [15]Hon MH, Davis RF. Self-diffusion of Si in polycarystalline β-SiC[J]. J Mater Sci.1980,15:2073-2080.
    [16]Van Loo FJJ, Bastin GF. On the diffusion of carbon in titanium carbide [J]. Metal Trans A,1989,20:403-411.
    [17]NIST-JANAF. Thermochemical tables.J.Phys. Chem Ref.Data monograph Nr.9,4th ed,1998.
    [18]Durand F, Duby JC. Carbon solubility in solid and liquid silicon. A review with reference to eutectic equilibrium[J]. J Phase Equilib.1999,20:61-63.
    [19]Garandet JP. New determinations of diffusion coefficients for various dopant in liquid silicon[J]. Int J Themophys,2007,28:1285-1303.
    [1]Angoni K. Remarks on the structure of carbon materials on the basis of Raman spectra[J]. Carbon,1993,31 (4):537-547.
    [2]Nakamizo M, Kammereck R, Walker PL. Laser Raman studies on carbons[J]. Carbon,1974,12 (2):259-267.
    [3]李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱[J].光谱与光谱学分析,2007,27(11):2249-2253.
    [4]Vallerot J M, Bourrar X,Mouchon A. Quantitative structural and textural assessment of laminar pyrocarbon through Raman spectroscopy, electron diffraction and few other techniques[J]. Carbon,2006,44:1833-1844..
    [5]Tuinstra F, Koenig J I. SRaman spectrum of graphite[J]. The Journal of chemical physics,1970,53 (3):1126-1130.
    [6]张福勤,黄伯云,黄启忠.C/C复合材料石墨化度的拉曼光谱表征[J].无机材料学报,2003,18(2):361-366.
    [7]Nakamizo M, Kammereck R, Walker PL. Laser Raman studies on carbons[J]. Carbon,1974,12 (2):259-267.
    [8]Fitzer E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temperature High Pressures,1988,20:449-454.
    [9]曹伟伟,朱波,井敏,王成国.PAN基碳纤维在表面处理中的拉曼光谱研究[J].光谱与光谱学分析,2008,28(12):2885-2889.
    [10]杨潇,卞昂,阎捷.复合材料残余应力的拉曼测定[J].光散射学报.2008,20(1):47-51.
    [11]Craig A Taylor,Mark F Wayne,Wilson K. Reidual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation[J]. Thin Solid Films,2003,429:190-200.
    [12][12] Craig A Taylor, Mark F Wayne, Wilson K. Heat treatment of thin carbon films and the effect on residual stress, modulus, thermal expansion and microstructure[J]. Carbon,2003,41 (10):1867-1875.
    [13]张守阳,李贺军,唐松.沉积表面粗糙度对热解炭组织结构的影响[A].中国金属学会炭素材料专业委员会第十四次学术交流会[C].1999.
    [14]周乐平,张明瑜,黄启忠.沉积条件对CVD法SiC涂层形貌和组成成分的影响[J].炭素技术.2010,5(29):1-4.
    [1]黄剑锋,李贺军,熊信柏.炭/炭复合材料高温抗氧化涂层的研究进展[J].新型炭材料,2005,20(4):373-379.
    [2]施成营.拉曼光谱在SiC晶体生长和结构分析中的应用[D].南开大学博士学位论文,2005.
    [3]S.Nakashima, Y. Nakatake, Y. Ishida, T. Talkahashi. Detection of defects in SiC crystalline films by Raman scattering [J]. Physica B,2001:684-686.
    [4]Dipankar Ghosh, Ghatu Subhash, Nina Orlovskaya. Measurement of scratch-induced residual stress within SiC grains in ZrB2-SiC composite using micro-Raman spectroscopy [J]. Acta Materialia,2008,56:5345-5354.
    [5]刘兴防,黄启忠,苏哲安,蒋建献.化学气相反应法制备SiC涂层[J].硅酸盐学报,2004,32(7):906-910.
    [6]杨潇,卞昂,阎捷,杨序纲.复合材料残余应力的拉曼测定[J].光散射学 报,2008,20(1):47-51.
    [7]J.G, Li. Wetting and adhesion in liquid silicon/ceramic systems[J]. Materials Letters,1992,14:329-332.
    [8]李贺军,曾燮榕,李克智.炭/炭复合材料的应用现状及思考[J].炭素技术,2001,5:24-27.
    [9]刘皓,李克智,李贺军,卢锦花.热解炭过渡层—中间相沥青基炭/炭复合材料的微观结构[J].新型炭材料,2010,25(4):297-302.
    [10]G.W. Liu, M.L Muolo.Survey on wetting of SiC by molten metals[J]. Ceramics International,2010,36:1177-1188.
    [11]Rayisa Voytovych, Rana Israel, Noelia Calderon. Reactivity between Liquid Si or Si alloys and graphite[J]. Journal of the European Ceramic Society. 2012.
    [12]Favre A, Fuzellier H, Suptil J. An original way to investigate the siliconizing of carbon materials[J]. Ceram Int.2003,19:235-243.
    [13]Hon MH, Davis RF. Self-diffusion of C in polycrystalline β-SiC[J]. J Mater Sci,1979,14:2411-2421.
    [14]Frank H. Gern Liquid silicon infiltration:description of infiltration dynamics and silicon carbide formation [J]. Composites.1997,28:355-364.
    [1]高文,冯志海.涂层改性碳纤维复合材料的微波性能研究[J].宇航材料工艺,2000,30(5):53-56.
    [2]杨潇,卞昂,阎捷.复合材料残余应力的拉曼测定[J].光散射学报.2008,20(1):47-51.
    [3]Craig A Taylor, Mark F Wayne, Wilson K. Reidual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation[J]. Thin Solid Films,2003,429:190-200.
    [4]刘志峰,邱世鹏,刘家臣.弱界面结合陶瓷材料的研究现状及增韧机制[J].宇航材料工艺,2002,6:6-9.
    [5]Y.Benveniste, T.Miloh.Imperfect soft and stiff interfaces in two-dimensional elasticity[J]. Mechanics of Materials.2001, (33):309-323.
    [6]Hashin.Thermaloelastic properties of fiber composites with imperfect interface[J]. Mech mater.1990,8:333-348.
    [7]Lavrcntycv I, Rokhlin S I. Models for ultrasonic characterization of environmental degradation of interfaces in adhesivejoints[J]. J AppL Phys, 1994,75 (8):4643-4650.
    [8]Goncalves J P M, M.ES.Ede Moura, RM.S.T.de Castro. A three-dimensional finite element model for stress analysis of adhesive joints [J]. International Journal of Adhesion&Adhesives,2002,22(5):357-365.
    [9]申昭熙,阎宇振,王子坤.含弱界面的复合材料层合板对水平剪切波的散射[J].西安交通大学学报,2004,38(1):81-84.
    [10]黄小华.非完美界面非规则形状夹杂复合材料有效性能研究[D].武汉理工大学学位论文,2004.
    [11]Favre A, Fuzellier H, Suptil J. An original way to investigate the siliconizing of carbon materials[J]. Ceram Int.2003,19:235-243.
    [1]李军,史舸,吴书晓,王文,廖寄乔.C/C复合材料坩埚在直拉单晶硅炉中的应用研究[C].第十届中国太阳能光伏会议论文集.2008.96-101.
    [2]段建军,李瑞珍,解惠贞.炭/炭复合材料在半导体制造行业中的应用[J].炭素,2007,129:12-16.
    [3]朱波,曹伟伟,井敏,董兴广,王成国.C/C复合材料光谱发射率研究[J].光谱与光谱学分析,2007,29(11):2909-2913.
    [4]吴永红,夏德宏.材料的选择性辐射机理[J].冶金能源,2010,22(6):15-18.
    [5]曹伟伟.碳素电热元件的电热辐射性能研究[D].山东大学博士论文,2009.
    [6]刘广平.微结构热辐射光谱控制特性及其应用研究[D].南京理工大学学位论文,2008.
    [7]张光寅,蓝国祥,王玉芳.晶格振动光谱学.北京:高等教育出版社,2001.
    [8]刘咏梅,李铁忠,刘晓宁,王维新.碳纤维高温石墨化炉及材料选用[J].非织造布,2009,17(2):46-48.
    [9]Neuer G. High temperature behaviour of the spectral and total emissivity of CMC materials[J]. High Temperature High Pressures,1995,27 (2):183-189.
    [10]Angoni K. Remarks on the structure of carbon materials on the basis of Raman spectra[J]. Carbon,1993,31 (4):537-547.
    [11]Fitzer E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temperature High Pressures,1988,20:449-454.
    [12]欧阳德刚,胡铁山,罗安智,赵修建.高辐射材料辐射机制的研究[J].钢铁研究,2002,30(1):40-43.
    [13]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2001.
    [14]余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [15]孙鸿宾.辐射换热[M].北京:冶金工业出版社,1996.
    [16]夏宏德,吴永红,高庆昌.新一代热辐射涂料的开发[J].矿冶,2003,12(3):37-40.
    [17]钟立晨,丁海曙.分析光谱及激光[M].北京:电子工业出版社,1987.
    [18]中井贞雄.激光工程[M].北京:科学出版社,2002.
    [19]武文明.C/SiC复合材料热辐射性能研究[D].西北工业大学硕士学位论文,2005.
    [20]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700