用户名: 密码: 验证码:
SCB火工品静电、射频损伤机理及其加固技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种颇具大规模应用前景的发火元件,半导体桥(SCB)火工品发展迅速,产品体系也在不断丰富中。然而,SCB火工品属于微电子火工品的范畴,其规模应用受到电磁干扰的限制。压敏电阻和热敏电阻具有阻值非线性的特点,是以金属氧化物为主要原材料制造的半导体元件,其电学性能与尺寸大小可按照用途来选择,具有在SCB火工品电磁防护上的潜在应用前景。为此,本文首次探索了静电和射频对SCB火工品作用的过程,初步探明了SCB火工品的静电和射频损伤机理,在火工品的电磁干扰易损特性方面形成了一些规律性的认识。在此基础上,将压敏电阻和热敏电阻作为防护元件,分别与SCB芯片并联连接,组成具有抗电磁干扰功能的火工品,研究了该火工品的抗静电和抗射频性能。
     本文选取了V型角SCB芯片和对静电作用敏感的点火药剂LTNR,组成典型的SCB火工品,研究了其静电感度和易损特性。静电放电能量是影响SCB火工品静电易损特性的重要因素,不同静电放电(ESD)条件下火工品的静电损伤机理不同。低能量静电作用下(10000pF、5000Ω、23kV),其损伤机理为简单的电热转换、热传导作用过程;高能量静电作用下(10000pF、5000Ω、30kV),其损伤机理为等离子体作用过程,静电作用产生感应电流,形成焦耳热后SCB桥膜升温,温度高于多晶硅材料的沸点,产生等离子体后作用于点火药剂。
     建立了SCB火工品静电作用的数学模型及物理模型,分析了桥膜温度随静电作用时间变化的规律,以及静电作用下SCB桥膜表面温度的分布情况。桥膜温度随ESD加载的时间先迅速增加后逐渐减小,存在最高温度值;桥膜温度从几何中心向上下尖角端递增,向左右两侧递减;25kV(10000pF、5000Ω)作用下,尖角处温度高达2689℃,高于多晶硅桥材料的沸点(2355℃)。模拟结果验证了静电对SCB火工品的热传导作用及等离子体作用机理。
     以SCB火工品的静电损伤机理为指导,采用贴片压敏电阻对SCB火工品进行静电防护。静电作用下压敏电阻被击穿,与SCB并联后电流主要流经压敏电阻,静电能量耗散在压敏电阻上。典型SCB火工品在美军标(500pF、500Ω、25kV)条件下100%发火,而并联压敏电阻后火工品均未发火。压敏电阻提高了火工品的抗静电性能,可以用于SCB火工品的静电防护。
     研究了三种尺寸SCB火工品的射频感度和易损特性,射频注入功率是影响SCB火工品射频易损特性的重要因素。S-SCB火工品的全发火功率为9.74W,M-SCB火工品为13.99W,L-SCB火工品为14.15W;射频注入会引起SCB火工品的意外发火或电爆性能改变,但是不会损伤SCB桥膜。射频作用产生感应电流,形成焦耳热后SCB桥膜升温,通过热传导作用引起药剂发火或性能改变。
     建立了稳态传热模型和电磁耦合模型,理论模拟了射频作用下SCB桥膜表面温度随时间的变化关系。初始时桥膜温度随射频加载的时间逐渐增加,随后当其吸收的能量等于对外的散热量时,达到热平衡而温度恒定;射频功率越大,桥膜尺寸越小,桥膜温升越慢,产生的最大温度越高。射频能量在SCB桥膜上产生的温度低于多晶硅材料的熔点(1410℃),射频作用不会损伤SCB桥膜,与试验研究结果相吻合。
     根据SCB火工品的射频损伤机理以及NTC热敏电阻的负温度系数特性,采用体积小易于封装的贴片热敏电阻,对SCB火工品进行射频防护。射频作用在SCB芯片上产生高温,NTC热敏电阻感应到温度后阻值减小,进而减少了流经SCB的射频感应电流。9.74W作用下,未加固的10发S-SCB火工品全部发火,热敏电阻防护后S-SCB火工品均未发火;未加固的10发L-SCB火工品在17.1W时全部发火,而并联热敏电阻的火工品在17.1W和20W条件下都未发火。NTC热敏电阻降低了火工品的射频感度,可以用于SCB火工品的射频防护。
It is important to explore the electromagnetic interference (EMI) mechanism for the electromagnetic compatibility (EMC) design of semiconductor bridge (SCB) explosive devices. The main contents in this paper include electro-thermal conversion model of electrostatic discharge (ESD) and heat transfer model of radio frequency (RP) for SCB, the electrostatic and RF sensitivity of SCB, SCB plasma diagnosis, the response of bridge film and explosive structure to electrostatic and RF, SCB ignition experiments, electromagnetic reinforcement methods for SCB. The research contents and conclusions are as follows:
     (1) The electro-thermal conversion physical model and heat transfer mathematical model of electromagnetic to SCB were established. The transformation process of electromagnetic energy to Joule heating energy was analyzed, besides, the energy conversion efficiency and thermal dissipation, thermal equilibrium were discussed. The simulation result shows that EMI energy generates current density distribution on the surface of SCB film. The effect of Joule heating becomes greater as the current density increases. The electro-thermal conversion efficiency of ESD that belongs to the strongly transient heat conduction is higher than RF who has more thermal dissipation and loss.
     (2) The Ansys software was used to simulate the electro-thermal coupling of EMI to SCB and the results show that the two V-type angles have the highest temperature. The temperature value increases from the geometric center of bridge film to the angles and decreases from the central region to the edges. ESD can produce the temperature higher than the boiling point of polysilicon bridge to form plasma discharge, while RF ignites the explosive mainly by heat transfer. The electrostatic and RF damage mechanisms of SCB explosive devices provide the guidance and ideas for the electromagnetic protection.
     (3) The electrostatic and RF sensitivity of SCB were tested by the related experiments and the action mechanisms of electrostatic and RF were discussed. The microwave resonator probe and high-speed photography were used to measure the resultant plasma density variations during ESD process. The influence of electrostatic energy to ESD process and the physical form transformation of bridge film were obtained. The plasma electron density, luminous intensity and size variations as a function of time confirmed the plasma damage mechanism of ESD to SCB. The ignition condition of ESD thermal conductivity was discussed, as well as the response of discharge process to different electrostatic voltage and energy.
     (4) The bridge appearances and explosive structures before and after RF were analyzed, as well as the influences of RF to the ignition properties, the electrical and thermodynamic parameters, the chemical structure of SCB film and explosive. The conclusion is that RF power, field strength and frequency affect the induced current on SCB chip, but the RF energy has no significant effect on the SCB film.
     (5) According to the ESD action mechanism and microelectronics packaging technology, the surface mount devices (SMD) varistor was used to protect V-type SCB from ESD and it can effectively reduce the electrostatic sensitivity of explosive device. HAWK3optical microscope, capacitor discharge unit (CDU) system and so on were adopted to test the reinforcement effect. It is shown that the typical SCBs are no-fire under the GJB standard, contrarily, under the US military standard. The varistor can absorb transient voltage pulse and reduce the current through SCB. Ultimately, it improves the anti-static properties of explosive device.
     (6) According to the RF action mechanism and the diversion laws of microelectronic circuit, the discrete components were used to enhance the anti-RF performance of SCBs which had different bridge-shaped, and ignition energy. The protective principle of NTC thermistors for SCB is different from TVS diodes and ferrite beads. The influence of induced temperature on SCB chip is independent with the electrical parameters of thermistors under the RF. NTC thermistors improve the heat dissipation efficiency of the ceramic plug and reduce the temperature on SCB chip. Finally, the RF sensitivity of explosive device is decreased and the thermistors do not affect the normal ignition of SCB.
引文
[1]Bickes R W, Alfred C. Semiconductor bridge igniter[P]. US4708060,1987,11.
    [2]Bickes R W, Grubelich M C, Merson J A, et al. An Overview of Semiconductor Bridge, SCB, Applications at Sandia National Laboratories[R]. AIAA 95-2549,1995.
    [3]Hollander L E. Semiconductive explosive igniter[P]. US3366055,1968,1.
    [4]Benson D A, Larsen M E, Renlund A M, et al. Semiconductor bridge:A plasma generator for the ignition of explosives[J]. Appl. Phys.,1987,62(5):1622-1632.
    [5]Bickes R W, Schlobohm S L. Transformer coupled semiconductor bridge igniter for low voltage ignition from a high voltage source[R]. SAND 90-0001C,1990.
    [6]Bickes R W, Schlobohm S L, Ewick D W. Semiconductor bridge (SCB) igniter studies: I:Comparison of SCB and hot-wire pyrotechnic actuators[R]. SAND 87-3095C1,1987.
    [7]Bickes R W, Schlobohm S L, Bonas A G, et al. Semiconductor Bridge (SCB) Igniter Studies:II:Comparison and hot-wire direct propulsion thrusters[R]. SAND 87-3095C2, 1987.
    [8]杨庆,汪佩兰,金建峰.常规弹药弹道修正用推冲器的国内外研究概况[J].含能材料,2008,16(4):474-479.
    [9]Bickes R W, McCampbell C B. Semiconductor bridge (SCB) research and development[R]. SAND 91-0310C,1991.
    [10]Hendley E. Ignition system for shaped charge perforating gun[P]. EP0396465,1990.
    [11]Grubelich M C, Bickes R W. A semiconductor bridge ignited gas generator[R]. SAND 92-0021C,1992.
    [12]Bickes R W, Marbach K D and Wilcox P D. Smart explosive igniter[P]. US4843964, 1989,7.
    [13]Nerheim E, Hoff D. Integrated silicon secondary explosive detonator[P]. US4862803, 1989,9.
    [14]Headley P S, Bickes R W. A semiconductor bridge (SCB) primary explosive detonator[R]. SAND 86-2045,1986.
    [15]Grubelich M C, Bickes R W. Ignition and deflagration-to-detonation characteristics of HMX and PETN columns employing SCB ignition[R]. SAND 95-2579C,1995.
    [16]Motley J. Explosive detonation apparatus[P]. US5503077,1996,4.
    [17]Francois P, Kent S, Perter L C, et al. Programmable electronic time delay initiator[P]. US005460093A,1995,10.
    [18]Ewick D W, Marshall P N and Rode K A. Hybrid electronic detonator delay circuit assembly[P]. US005929368A,1999,7.
    [19]Ewick D W, Walsh B M. Initiator with loosely packed ignition charge and method of assembly[P]. US00640 8759B1,2002,6.
    [20]杜志军,汪佩兰.半导体桥火工品在油气井中的应用[J].火工品,2005,(4):18-20.
    [21]方彦.变电站的电磁防护分析[J].价值工程,2011,(17):33-34.
    [22]和治伟.着力提高人民防空指挥的电磁防护能力[J].人民防空,2010,(4):40-42.
    [23]Bicks R W, Grubelich M C, Harris J. Semiconductor bridge development and application[R]. SAND 97-0188C,1997.
    [24]周蓉,岳素格,秦卉芊.半导体桥(SCB)的研究[J].半导体学报,1998,19(11):857-860.
    [25]费三国.半导体桥桥膜电阻增大原因剖析[J].电子技术参考,1999,(4):59-62.
    [26]王治平,费三国,龚晏青,等.半导体桥起爆炸药的实验研究[J].爆炸与冲击,2000,20(4):359-363.
    [27]祝逢春,秦志春,陈西武,等.半导体桥的设计分[J].爆破器材,2004,33(2):22-25.
    [28]李华梅,李东杰.新型可调电压半导体桥起爆装置的研制与应用[J].工程爆破,2006,12(4):67-69.
    [29]石盛会.贵州久联民爆器材发展股份有限公司“半导体桥工业电雷管”通过技术鉴定[J].爆破器材,2006,(1):25.
    [30]任炜,周智,刘举鹏.半导体桥点火器的设计与研究[J].火工品,2007,(6):43-46.
    [31]王治平,何智,龚晏青,等.半导体桥雷管原理的实验研究[J].中国核科技报告,2000.
    [32]杨振英,杨树彬,王新才,等.半导体桥(SCB)冲击片起爆技术研究[J].含能材料,2007,15(2):131-133.
    [33]祝明水,蒋明,何碧.半导体桥点火器设计[J].工程物理研究院科技年报,2006,(1):171-172.
    [34]马鹏,朱顺官,徐大伟,等.叠氮化铅半导体桥点火研究[J].火工品,2010,(1):10-13.
    [35]冯红艳,朱顺官,张琳,等.斯蒂芬酸铅的半导体桥点火试验研究[J].兵工学报,2010,31(6):674-677.
    [36]徐禄,张琳,冯红艳,等.降低药剂SCB点火能量的研究进展[J],含能材料,2008,16(5):639-646.
    [37]徐禄.半导体桥点火药剂的敏化研究[D].南京理工大学,2009.
    [38]万晓霞.药剂等离子体点火实验与敏化技术研究[D].南京理工大学,2008.
    [39]马鹏,朱顺官,张琳,等.叠氮肼镍半导体桥点火研究[J].含能材料,2010,18(2):213-216.
    [40]胡剑书.半导体桥多晶硅工艺优化[J].微电子学,2010,40(4):602-603.
    [41]王凯民,温玉全.军用火工品设计技术[M].国防工业出版社,2006.
    [42]叶迎华.火工品技术[M].北京理工大学出版社,2007.
    [43]Benson D. A., Bicks,R. W. Jr. Tungsten Bridge for the low energy ignition of explosive energetic materials. [P] US,4976200,1990
    [44]Bernardo M T, Martin C F. Titanium Semiconductor bridge igniter. [P] 20070056459 A1.2007.
    [45]Bernardo M T, Martin C F. Titanium Semiconductor bridge igniter. [P] 20080017063 A1.2008.
    [46]Bernardo M T, John A M. Semiconductor bridge device and method of making the same. [P] 6133146,2000.
    [47]Roland M F, Winfried B. and Ulrich K. Bridge ignite [P].68110815B2,2004
    [48]Fahey W D. An improved ignition device the reactive Semiconductor bridge.[R] AIAA-2001-3484,2001
    [49]郝建春.使用半导体桥(SCB)以极低的能量点燃烟火剂[J].爆破器材,1993,(2):34.
    [50]谢茂浓.半导体硅桥点火器的设计初探[J].四川大学学报(自然科学版),1997(6):44-48.
    [51]毛国强.低发火能量、高安全性半导体桥的研究[D].南京:南京理工大学,2007.
    [52]周彬,秦志春,毛国强.半导体桥长宽比对其发火性能的影响.南京理工大学学报(自然科学版),2009(2):235-237.
    [53]曹玉武.结型半导体换能元研究[D].南京:南京理工大学,2010.
    [54]张文超.复合半导体桥电爆性能及桥温变化的研究[D].南京:南京理工大学,2011.
    [55]Martinez M J, Baer M R. Microconvective heating of granular explosive by a Semiconductor bridge. [R] SAND-90-005710,1990.
    [56]Ewick D W, Walsh B M. Optimization of the Bridge/Powder Interface for a Low Energy SCB device[R].97-2831,1997.
    [57]Kim J, Kim S G. Correlated Electrical and Optical Measurements of Firing Semiconductor Bridges. J Vac Sci Technol B,1997,15 (6):1943.
    [58]金峰,康小明.半导体桥结构设计分析.爆破器材,2008,37(1):21-24.
    [59]Lee K N, Park M I,Choi S H,et al. Characteristics of plasma generated by polysilicon semiconductor bridge(SCB)[J]. Sensors and Actuators A,2002,96:252-257.
    [60]王立明.半导体桥发火机理研究[D].北京:北京理工大学,2006.
    [61]王文.半导体桥等离子点火性能研究[D].南京:南京理工大学,2007.
    [62]严谨容.半导体桥作用性能及其规律研究[D].南京理工大学,2007
    [63]祝明水,何碧,费三国.关于降低半导体桥发火能量的理论探讨.火工品,2007,(1):35-37.
    [64]祝明水,何碧,胡美娥,蒋明.半导体桥动态阻抗的试验研究.爆破器材,2007,36(2):18-20
    [65]冯红艳,SCB点火技术中等离子体的电子密度的测量[D].南京理工大学,2007
    [66]Keith A K, Baginski T, Rogers J W. Spectroscopic Investigation of An Exploding Semiconductor. IEEE Int Conf Plasma Sci,1994:123.
    [67]Kim J, Roh T M, Cho K I, Jungling K C. Optical Characteristics of Silicon Semiconductor Bridges Under High Current Density Condition. IEEE Trans. Electron Devices,2001,48(5):852.
    [68]Kim J, Schamiloglu E, Tovar B M, Jungling K C. Temporal Measurement of Plasma Density Above a semiconductor Bridge (SCB). IEEE Trans. Electron Devices,1994,44 (4):843.
    [69]Kim J, Jungling K C. Measurement of Plasma Density Generated by A Semiconductor Bridge:Related Input Energy and Electrode. ETRI J.,1995,17 (2):11
    [70]Kim J, Nam K S, Jungling K C. Plasma Electron Density Generated by a semiconductor Bridge as a Function of Input Energy and Land Material. IEEE Trans. Electron Devices,1997,44 (6):1022.
    [71]Kim J U, Park C O, Park M I, Kim S H, Lee J B. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS). Phy. Let. A,2002,305:413.
    [72]吴蓉,半导体桥等离子体温度的光谱法诊断研究[D].南京理工大学,2007
    [73]FENG Hongyan, LI Yan, ZHANG Lin, WU Rong, WANG Junde, ZHU Shunguan. Measurement of the semiconductor bridge (SCB) plasma temperature by the double line of atomic emission spectroscopy. 含能材料,2007,2:134
    [74]张琳,冯红艳,吴蓉.瞬态小尺寸等离子体的判断及光谱法表征.兵工学报,2009,30(11):1435
    [75]张文超,周彬,王文,等.半导体桥等离子体温度的原子发射光谱法测量[J].原 子与分子物理学报,2008,25(2):313-316.
    [76]周彬,徐振相,刘西广,秦志春,王成.半导体桥对粒状炸药的微对流传热数值模拟.南京理工大学学报,1996,20(6):939
    [77]陈越洋,谢堂,汪佩兰,等.半导体点火桥的电路模拟[J].北京理工大学学报,2002,22(5):630-632.
    [78]祝逢春.半导体桥点火数值模拟与试验研究[D].南京理工大学,2004
    [79]胡剑书,焦清介.恒流作用下V型半导体桥的电热性能研究[J].煤矿爆破,2005,(4):4-6.
    [80]胡剑书,焦清介.半导体桥电热性质初探[J].工程爆破,2006,(1):90
    [81]谭明.半导体桥点火装置的热分析及结构优化[D].电子科技大学,2007.
    [82]汤堡辉.电容放电条件下空载H形半导体桥桥膜电热模型研究[D].南京理工大学,2008
    [83]胡剑书,焦清介.半导体桥升温方程研究[J].工程爆破,2008,14(2):77
    [84]张文超,叶家海,秦志春,等.半导体桥电爆过程的能量转换测量与计算[J].含能材料,2008,16(5):564-566.
    [85]刘明芳,张小兵.半导体桥发火模型的建立及数值模拟.火炸药学报,2008,31(5):87
    [86]刘明芳,张小兵。半导体桥点火电路的设计与仿真.火工品,2008,(2):1
    [87]Baginski M D, Woodbury M B, Hansen D D. Inflator initiator with zener diode electrostatic discharge protection[P]. US,5672841,1995.12.15
    [88]Baginski T A. Monolithic RF/EMI desensitized electroexplosive device[P]. US,4893563,1988.12.5
    [89]Henderson J H, Baginski T A. An RF-Insensitive Hybrid Electroexplosive Device Incorporating an Integral Filter [J]. IEEE TRANSACTIONS ON INDUSTIRY APPLICATIONS,1996,32 (2):465-470
    [90]中华人民共和国国家军用标准.GJB736.11-90:电火工品静电放电试验[S].北京:国防科学技术工业委员会,1991.
    [91]中华人民共和国国家军用标准.GJB736.2-89:电火工品射频感度测定[S].北京:国防科学技术工业委员会,1989.
    [92]中华人民共和国国家军用标准.GJB736.15-94:电火工品射频阻抗测定[S].北京:国防科学技术工业委员会,1994.
    [93]中华人民共和国国家军用标准.GJB151A-97:军用设备和分系统电磁发射和敏感度要求[S].北京:国防科学技术工业委员会,1997.
    [94]中华人民共和国国家军用标准.GJB152-86:军用设备和分系统电磁发射和敏感 度测量[S].北京:国防科学技术工业委员会,1986.
    [95]陈飞,周彬,秦志春,等.半导体桥火工品的防静电和防射频技术[J].爆破器材,2010,39(3):28-32.
    [96]Baginski T A, Baginski M E. Characterization of a Novel Passive RF Filter for Frequencies of 4-225 MHz[J]. IEEE Transactions on Electromagnetic Compatibility,1990, 32 (2):163-167
    [97]Baginski T A, Baginski M E. A novel RF-insensitive EED utilizing an integrated metal-oxide-semiconductor structure[J]. Electromagnetic Compatibility, IEEE Transactions on,1990,32 (2):106-112
    [98]Robert L D, Proctor P W Attenuator for protecting an electroexplosive device from inadvertent RF energy or electrostatic energy induced firing[P]. US,5279225,1994.1.18
    [99]Novotney D B, Welch B M, Evick D W Semiconductor bridge development for enhanced ESD and RF immunity[R].AIAA99-2417,1999
    [100]King T L, William T W Pin-to-pin Electrostatic Discharge Protection for Semiconductor Bridges[R], SAND2002-2213,2002
    [101]Baginski T A Radio frequency and electrostatic discharge insensitive electro-explosive devices having non-linear resistances[P]. US,5905226,1997.11.13
    [102]Bernardo M, Foster M C and Novotney D B, Voltage-protected semiconductor bridge igniter elements.2001, The Ensign-Bickford Company.
    [103]叶林,半导体桥火工品静电射频加固技术研究,2009,南京理工大学.
    [104]陈飞,周彬,秦志春.NTC热敏电阻用于半导体桥火工品射频防护的研究[J].南京理工大学学报(自然科学版),2012,36(1):171-175.
    [105]张君德,铁氧体磁珠用于SCB防射频技术的研究,2011,南京理工大学.
    [106]周彬,王林狮,秦志春.一种半导体桥火工品抗静电技术[J].火工品,2010,(2):5-7
    [107]任钢,半导体桥火工品电磁兼容技术研究,2012,南京理工大学.
    [108]CHEN Fei, ZHOU Bin, QIN Zhi-chun. Research on the Mechanism of Pin-to-Pin ESD to SCB Initiators[J].Przeglad Elektrotechniczny,2011,87 (12a):169-172
    [109]Goetz R J. Mechanical shielding for electric primer [P], US5361702,1994,10.
    [110]中华人民共和国国家军用标准.GJB1389A-2005:系统电磁兼容性要求[S].北京:中国人民解放军总装备部,2005.
    [111]Kim J, Jungling K C Measurement of Plasma Density Generated by A Semiconductor Bridge:Related Input Energy and Electrode. Material [J]. ETRI Journal,1995,7(2):11-19
    [112]Bernardo M T, John A M. Surface-connectable Semiconductor Bridge Elements and Decvices Including the Same[P].US006054760A,2000,4
    [113]中华人民共和国国家军用标准.GJB5309.10-2004:电火工品不发火验证试验[S].北京:国防科学技术工业委员会,2004.
    [114]中华人民共和国国家军用标准GJB5309.11-2004:1A1W5min不发火试验[S].北京:国防科学技术工业委员会,2004.
    [115]中华人民共和国国家军用标准.GJB5309.12-2004:射频阻抗试验[S].北京:国防科学技术工业委员会,2004.
    [116]中华人民共和国国家军用标准.GJB5309.13-2004:射频感度试验[S].北京:国防科学技术工业委员会,2004.
    [117]中华人民共和国国家军用标准.GJB5309.14-2004:静电放电试验[S].北京:国防科学技术工业委员会,2004.
    [118]中华人民共和国国家军用标准.GJB5309.15-2004:杂散电流试验[S].北京:国防科学技术工业委员会,2004.
    [119]严楠.火工品失效分析概论[J].失效分析与预防.2006,1(1):10-14.
    [120]郑春开.等离子体物理[M].北京:北京大学出版社,2009.
    [121]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009.
    [122]黄勇,时家明,袁忠才,徐记伟.等离子体鞘层及粒子碰撞对微波共振探针诊断的影响[J].核聚变与等离子体物理,2010,30(1):86-89.
    [123]马柳,时家明,袁忠才,陈宗胜,黄勇.微波共振探针及其在等离子体诊断中的应用[J].核聚变与等离子体物理,2008,28(3):270-273.
    [124]程仲元,邹积岩,杨磊,张汉明.郎谬尔探针用于VAC等离子诊断的初步研究[J].应用科学学报,1994,14(4):25
    [125]池凌飞,林揆训,姚若河,林璇英,余楚迎,余云鹏.Langmuir单探针诊断射频辉光放电等离子体及其数据处理[J].物理学报,2001,50(7):1311
    [126]林葵训,余云鹏,林学瑛,王洪.射频辉光放电等离子体的电探针诊断[J].核聚变与等离子体物理,1992,14(1):56
    [127]王志文,严东海.四极质谱计用作等离子体诊断时的几个问题[J].真空,2003,1(1):49
    [128]Auciello O, Flamm D L. (郑少白等译).等离子体诊断[M].电子工业出版社.1994:34-39.
    [129]高温等离子体诊断技术.合肥中科院等离子体物理研究所(内部资料)
    [130]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004.
    [131]黄昆,韩汝琦.半导体物理基础[M].北京:科学出版社,1979.
    [132]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [133]刘明芳,张小兵.半导体桥火工品升温性能研究[J].南京理工大学学报(自然科学版).2010(2):203-208.
    [134]ANSYS inc. ANSYS theory manual[M].USA:SAA IP, Inc,1997.
    [135]阎照文ANSYS 10.0工程电磁分析技术[M].中国水利水电出版社,2006.
    [136]杨贵丽,焦清介.双V型半导体桥电阻计算方法研究[J].火工品,2009,(3):1-5.
    [137]孙熙,蒋永清.电气安全[M].北京:机械工业出版社,2010.
    [138]区健昌.电磁设备的电磁兼容性设计理论与实践[M].北京:电子工业出版社,2010.
    [139]赵文虎.某导弹用电点火具抗静电技术研究.火工品.2001(3):24-27
    [140]易建政,檀朝彬,蔡俊峰.火箭弹电点火系统抗电磁危害加固技术研究[J].装备环境工程,2006,3(4):52-54
    [141]赵炳秋,汤仕平,万海军.电磁辐射对舰载导弹危害及防护技术的研究[J].舰船电子工程,2009(8):199-202
    [142]马辉,魏光辉,张龙.绝缘垫在火箭弹静电防护中的作用[J].北京理工大学学报,2005,25:96-98
    [143]赵晓君,任志杰.浪涌保护器原理分析[J].山西电子技术,2011,(1):16-17.
    [144]周志敏,纪爱华.电磁兼容技术:屏蔽、滤波、接地、浪涌、工程应用[M].北京:电子工业出版社,2007.
    [145]黄蕾,刘建朝.半导体放电管[J].微电子学与计算机,2002,(3):28-30.
    [146]李祥超,姜翠宏,赵学余.防雷工程设计与实践[M].北京:气象出版社,2010.
    [147]郑军奇.电气产品设计EMC风险评估[M].北京:电子工业出版社,2008.
    [148]帕塞科夫,萨维利也夫,契尔金.非线性半导体电阻及其应用[M].北京:国防工业出版社,1964.
    [149]MIL-STD-331C.《引信及引信零件的环境和性能试验》[S].2009
    [150]钟明峰,苏达根,庄严.多层片式ZnO压敏电阻器内电极材料研究[J].电子元件与材料,2005,24(11):8-9.
    [151]王兰义.多层片式ZnO压敏电阻器的现状与发展方向[J].电子元件与材料,2003,22(7):42-45.
    [152]付明,周东祥,龚树萍,等.多层片式ZnO压敏电阻器的研究进展[J].材料导报,2000,14(9):39-40.
    [153]贺树兴,张安容,王信译,武器系统防射频技术[M].北京:国防工业出版社,1992
    [154]Baginski T A, Keith A T. A RF-Insensitive Electro-Explosive Device with 500 V Standoff Capability [J]. IEEE,2008,78-80.
    [155]甄汉生.等离子体加工技术[M].北京:清华大学出版社,1990.
    [156]李国新,程国元,焦清介.火工品试验与测试技术[M].北京理工大学出版社,1998.
    [157]汪源浚.LCR测量仪的工作原理和使用技巧[J].教学与科技,2008,(1):14-18.
    [158]周坤.HP4287A型LCR测量原理及其误差分析[J].重庆科技学院学报(自然科学版),2010,12(6):138-140.
    [159]配合物的结构与燃速的关系.俄罗斯Fongelzang教授讲学(内部资料)
    [160]封青梅,呼新义,邢显国.电火工品抗电磁干扰测试方法的研究[J].火工品,2001(3):19-23.
    [161]王新稳,李延平,李萍.微波技术与天线[M].北京:电子工业出版社,2011.
    [162]卢万铮.天线理论与技术[M].西安:西安电子科技大学出版社,2004.
    [163]王朴中,石长生.天线原理[M].北京:清华大学出版社,1993.
    [164]冯恩信.电磁场与电磁波[M].西安:西安交通大学出版社,2010.
    [165]廖承恩.微波技术基础[M].西安:西安电子科技大学出版社,1995.
    [166]弗兰克P.英克鲁佩勒,大卫P.德维特,狄奥多尔L.伯格曼,等.传热和传质基本原理[M].北京:化学工业出版社,2007.
    [167]汪贵华.光电子器件[M].北京:国防工业出版社,2009.
    [168]史建华,钱振宇.片式铁氧体磁珠及其应用[J].电源技术应用.2009,12(7):17-19
    [169]王为民,赵鸣,张慧君,等.NTC热敏电阻材料组成及制备工艺研究进展[J].材料科学与工程学报,2005,4(2):286-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700