用户名: 密码: 验证码:
三向纤维复合材料的冲击性能和抗侵彻/破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料在防护领域有广泛的应用,其在冲击载荷作用下的动态力学行为、抗弹性能和破坏机理的研究已成国内外学者的研究热点。三向机织复合材料由于在厚度方向引入纤维增强,克服了层合板易分层,层间强度低等缺点,有效地改善了材料力学性能,但相关领域的研究工作,如多相结构以及应变率效应和损伤效应的各向异性、抗侵彻性能等的研究还相对薄弱。本文以Kevlar纤维/乙烯树脂三向正交机织复合材料(3DKW)为研究对象,采用实验、工程分析方法与数值计算相结合,围绕材料的动态力学性能、抗弹性能和破坏机理开展了较系统的研究。
     在材料本构关系的理论和本构算法的研究工作方面,对Misess类材料的“半径回归方法”给出了最一般性的严格理论证明,并由此提出了广义回归算法讨论了其适用性和局限性;以应力空间中的屈服函数和Drucker公设为基础,推导并建立了含有多应变率因子和多损伤的热粘塑性增量型本构关系的普适形式,即粘塑性流动的自洽增量算法,并提出了广义单参数应变率因子热粘塑性增量型本构关系的显式算法,从而可保证高效准确地描述材料应变率效应的各向异性;同时还分析了静水压在本构算法中的地位以及状态方程参数选取方法等。
     在3DKW复合材料动静态力学性能的研究方面,通过系列的MTS准静态实验和SHPB动态实验,对材料在不同加载方向的拉伸、压缩力学性能进行了相应的研究,得到了材料的基本力学参数,并进一步建立了由Hill-Tsai模型所表述的弹塑性屈服准则和本构关系。以实验结果为基础,对不同加载方向上材料强度的应变率效应进行了分析,并分析了材料在不同加载条件下的破坏模式。
     在3DKW复合材料抗弹性能的实验研究方面,采用球形弹和柱形弹分别对材料靶进行了系列的贯穿实验,弹速范围被控制在500-1100m/s,分析了弹型、靶厚、纤维粗细对靶板的抗侵彻性能的影响,进一步详细分析了不同弹速对靶板破坏模式的影响以及靶板的吸能机制。在高速贯穿实验结果基础上,首次提出了“超临界耗能”的概念,假定其为弹的初始动能的某种函数,并由此提出了一种以完全贯穿实验数据为基础预测靶材弹道极限V50的方法,由该法所预测的V50值比用传统面密度法和剩余能量法预测的V_(50)值更接近实测结果。
     在抗侵彻的工程分析方法研究方面,给出了一种基于球腔膨胀/柱腔贯穿相耦合的准一维工程分析方法,方法中靶板被视为横观各向同性材料,考虑了靶板强度的应变率效应和各向异性修正,并引入了波后锁应变的区域平均算法和柱腔贯穿对球腔膨胀的运动学修正。利用该方法对钢球侵彻贯穿靶板问题开展了系列分析计算,计算所得的剩余速度与实测剩余速度一致性很好。
     在抗侵彻的有限元计算方面,通过引入新的滑移面处理算法、新的破坏单元开关处理,引入粘塑性流动的自洽增量算法和适用于各向异性弹塑性的广义半径回归算法,改进和完善了已有的二维有限元程序HVP,并利用此软件对钢球贯穿3DKW靶板进行了2D的系列数值模拟,得到了侵彻贯穿图像、弹速衰减时程、剩余速度等结果,计算结果与实验结果吻合良好,较好地揭示了3DKW靶板抗侵彻/破坏的规律和机理。
As fiber-reinforced composite is used extensively in defense engineering, study of the mechanical response, ballistic performance and failure mechanism of composite under impact loading being the hot-topic by the researchers in and out. Three-dimensional woven composite can overcome the defects of traditional laminates which are apt to delaminate and have low interstratified strength, because there are reinforced fibers along the thickness direction, which can improve the composite's mechanical property, but the research works are still quite limited in this area, for example the multi-phase structure, anisotropic multi-strain.rate and damage modes, and the penetraion mechanism on it and so on. In this paper, systemic studies including experiments, engineering analyses methods and numerical simulations on the dynamic-static mechanical property and penetration property and failure mechanism of 3D Kevalr/vinyl orthogonal Woven composites(3DKW).
     On the theory of constitutive relation and constitutive algorithm, a strictly theoritical testification of the radial-returan method on Misess material is given, based on the radial-return method ,a general return algorithm is deduced and its applicability is also discussed. On the modified Drucker's postulate, the universal form of the thermo-visco-plastic incremental constitutive relations which is including multi strain rate and multi-damage mode, just is the self-consistent incremental algorithm of visco-plastic flow, then the universal single strain rate parameter constitutive relation is dedued; it can easily and fitly describe the anistropic strainrate material; More,the position of hydrostatic pressure in the constitutive relation is studied, and the determination of parameters on Equation Of States are also studied.
     The dynamic-static mechanical properties of 3DKW composites are studied by a series of MTS quasi-static experiments and SHPB dynamic experiments, the main parameters of basic mechanical are obtained, furthermore, the Hill-Tsai model is got, which is used to describe the mechanical of 3DKW composites. Based on the experiment results, the strain-rate of strength and the damage patterns under different load are analyzed.
     On the ballistic experiment of 3DKW, a series of penetration experiments are carried out by spherical and cylindrical projectiles within velocity from 500m/s to 1100m/s. Based on the experiment results, the effects of projectile shapes, target thickness and the coarse of fiber on penetration resistances are investigated, the failure modes and absorbed energy mechanism of target are analyzed within different initial velocity. Based on the high velocity penetration experimental results, the definition of "critical consumption energy" is proposed, which is assumed to be a function of the initial kinetic energy of bullet, and so a new engineering method to forecast the ballistic limit (V_(50)) is presented, compared with the traditional surface-density method and the residual energy method which is used to forecast the ballisti limit value are more simlar to the experimental V_(50) value which is directly got by the direct measurement method.
     On the engineering analysis method of penetration, An engineering analysis method of computing the penetration of a metal ball into fibre-reinforced composite targets is presented, the modified model which the spherical cavity dilatation model is coupled with the cylindrical cavity penetration method is presented. In the simulation, the sphere is regarded as rigid body and the 3DKW composite target is assumed to a transversely isotropic elasto-plastic material, the strength of 3DKW targets' strain-rate, the modification of anistropic behavior, the floating lock strain being calculated by a zone-average method and the kinematic modification are also considered. The simulation results are in good agreement with the results for the 3-D Kevlar Woven composite (3DKW) anti-penetration experiments.
     On the finite element method, A series of new numerical method are investigated, such as the new algorithm of the sliding interface in the penetration computations, and a new damage switch to control the element failure and so on, by introduce the self-consistent incremental algorithm of visco-plastic flow and the generalized radial-return method for anisotropic elasto-plastic material constitutive calculations, the original high velocity penetration (HVP)software is improved greatly;A series numerical simulations of 3DKW composite plate penetrated by a steel ball are carried out by the improved HVP. The numerical results of the penetration process, the history of bullet velocity and the residual velocity of the ball are fitted with the experimental results well, which indicates strongly that the numerical simulations and the new software we developed are rational and effective in the study of ballistics resistance of fiber-reinforced laminates. Finally, the physical mechanism of failure and anti-penetration of 3-DKW composites are also studied .
引文
1.杏娟 李端义,复合材料破坏分析及微观图谱[M],科学出版社,北京。1993.8
    2.C Lin,D C Prevosek.Ballistic performance of lightweight spectra composite hard armor.33~(rd)International SAMPE Symposium,1988:833-889.
    3.Antonio Miravete,3D textile reinforcements in composite materials,CRC Press,1999
    4.杨桂,敖大新,张志勇等,编织结构复合材料制作、工艺及工业实践[M],科学出版社,北京,1999.2
    5.S Abrate.Impact on laminated composite materials,Appl.Mech.Rev.,1991,44(4):155-190.
    6.S Abrate.Impact on laminated composite materials:recent advances,Appl.Mech.Rev.,1994,47(11):517-542.
    7.W Cantwell,J Morton.The impact resistance of composite materials-a review,Composites,1991,22(5):347-362.
    8.M Richardson,M Wisheart.Review of low-velocity of impact properties of composite materialls,Composites,Part A,1996,27:1123-1131.
    9.James Leblanc etc,Shock loading of three-dimensional woven composite materials,Composite Structures,79(2007):344-355
    10.J.N.Baucom,M.A.Zikry,Low-velosity impact damage progression in woven E-glass composite systems,Composite,A:36(2005) 358-664
    11.陈利民,织物特性对防弹复合材料弹道性能的影响,纤维复合材料,1995,9:6-10
    12.徐静怡,顾伯洪,编织复合材料弹道冲击破坏形态及模式,弹道学报,2002,14(2):39-43
    13.练军,顾伯洪,三维编织复合材料弹道冲击细观结构模型的有限元计算,2006,18(3):79-83
    14.W J Cantwell.Impact perforation of carbon fiber reinforced plastic.Composite Science and Technology,1990,38:119-141.
    15.J Yuan,N Takeda,M Antony.Compressive failure mechanism and impact behavior of unidirectional carbon-fiber/vinyle ester composites.Journal of Composite Materials,2001,35(16):1470-1507.
    16.P Kumar,A Garg,B D Agarwal.Dynamic compressive behavior of unidirectional GFRP for various orientations.Materials Letters,1986,4:111-116.
    17.B Hopkinson,Collected scientific papers,Cambridge Univ.Press,1921.
    18.J Landon,H Quinney,Experiments with the Hopkinson pressure bar,Proc of Royal Soc of London 103,1923,622.
    19.H Kolsky.Stress Waves in Solids,Clarendon Press,1953,Oxford.
    20.K Kawata,S Hashimoto.ICCM-Ⅳ,829,1982.
    21.K Kawata,A Hondo.Proc.Japan-U.S.Conf.on Comp.Mater.,Tokyo,1981,2-11.
    22.T Frey,J Vinson,K Prewo.High strain-rate effects on mechanical properties of glass/polyester and carbon/aluminum composite materials,Proc.of 32~(nd) SDM conf,1991,19-29.
    23.M V Hosur,Vaidya U K,et al.Static and high strain rate compression response of thck section twill weave S2-glass/vinyl ester composites manufactured by affordable liquid molding process.ASME J.Eng.Master.Technol.1999,121(4):468-475.
    24.U K Vaidya,N C Jadhav,et al.Influence of through the thickness stitching on the high strain rate impact response of resin infused S2-glas/epoxy composites.In:Whitney J M,editor.Proceedings of American Society for Composites 14~(th) Technical Conference,1999,27-29September,Fairborn,141-151.
    25.B Powers,J Vinson,I Hall,et al.High strain-rate mechanical properties of CYCOM 5920-1583,Proc.of 36~(th) SCM,1995,2386-2392
    26.C A Weeks,C T Sun.Modeling non-linear rate dependent behavior in fiber-reinforced composites.Compos.Sci.Technol.,1998,58:603-611.
    27.H M Hsiao,I M Daniel,et al.Strain rate effects on the transverse compressive and shear behavior of unidirectional composites.J.of Compo.Matl.,1999,33(17):1620-1642.
    28.A El-Habak.Compressive resistance of unidirectional gfrp under high strain rate of loading.J.Compos.Technol.Res.JCTER,1993,15(4):311-317.
    29.G Staab,A Gilat.High strain rate characterization of angle-ply glass/epoxy laminates,Proc of 7~(th) ICCM,1993,Madrid Spain 5,278-285.
    30.Yang Wang,Yuanming Xia.A modified constitutive equation for unidirectional composites under tensile impact and the dynamic tensile properties of KFRP,Composites Science and Technology,2000,60:591-596.
    31.Yang Wang,Yuanming Xia.The effects of strain rate on the mechanical behaviour of kevlar fibre bundles:an experimental and theoretical study.Composites PartA,1998,29:1411-1415.
    32.Xia Yuanming,Wang Xing.Constitutive equation for unidirectional composites under tensile impact,Composite Science and Technology,1996,56:155-160.
    33.陈思颖,黄晨光等.几种高性能纤维束的冲击动力学性能实验研究,爆炸与冲击,2003,23(4):355-359.
    34.彭刚.抗冲击复合材料抗弹性能试验及表征技术研究,中国科技大学硕士学位论文.
    35.G Cowper,P Symonds,Strain hardening and strain rate effects in the impact loading of canti -lever beams,Tech.Report No.28,ONR Contr.No.562(10),Div.of Engng.,Brown University,Providence,RI,1957.
    36.T E Tay,H G Ang,et al.An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy.Composite Structures,1995,33:201-210.
    37.L Malvern.J.Appl.Mech.,1951,18:203-208.
    38.S Bonder,Y Parton,J.Appl.Mech.,1975,42:385-389.
    39.N Cristescu,I Suliciu,Viscoplasticiy,1982,Martinus Nijhoff Publishers,The Hague,Boston,London.
    40.E Krempl,B Hong.Comp.Sci.Tech.,1989,35:53-74.
    41.S Ha,G Springer.J.Comp.Mats.,1989,23:1130-1158.
    42.D Robinson.A viscoplastic constitutive theory for metal matrix composites at high tempera -ture in:Thermal Stress,Material Deformation and Thermo-Mechanical Fatigue,Vol.23,New York:ASME,PVP,1987.
    43.T Gates,C T Sun.1989,in:Proc.30th AIAA Struct.,Struct.Dynamics and Mats.Conf.,Mobile,AL,P.845-851.
    44.K Yoon,C T Sun.J.Comp.Mats.,1991,25:1277-1296.
    45.C T Sun,J K Chen.A simple flow rule for characterizing nonlinear behavior of fiber composites.Journal of composite Materials,1989,23:1009-1020.
    46.J K Chen,C T Sun.A plastic potential function suitable for anisotropic fiber composites,J.Compos.Mater.,1993,27:1379-1390
    47.C A Weeks.Nonlinear rate dependent response of thick section composite laminates,Ph.D.Dissertation,Purdue University,1995.
    48.J Tsai,C T Sun.Constitutive model for high strain rate response of polymeric composites,Composites Science and Technology,2002,62:1289-1297.
    49.S V Thiruppukuzhi,C T Sun.Model for the strain-rate-dependent behavior of polymer composites.Composites Science and Technology,2001,61:1-12.
    50.R Hill.A theory of the yielding and plastic flow of anisotropic materials.Pro.Roy.Soc.Ser.A,1948,193,281-297.
    51.Goldenblat,Kopnov.Strength of glass-reinforced plastics in the state of complex stresses,Mechanika Polimerov,1965,2:70-78.
    52.S W Tsi,E M Wu.A general theory of strength for anisotropic materials.J.Composite Materials,1971,5:58-80.
    53.Z.Hashin.Failure criteria for unidirectional fibre composites,J.Appl.Mech.,1980,47:329-334.
    54.S T Jeng,H S Jing,C Chung.Predicting the ballistic limit for plain woven glass/epoxy composite laminate,International Journal of Impact Engineering,1994,15(4):451-464.
    55.张佐光,李岩等.防弹芳纶复合材料实验研究.北京航空航天大学学报,1995,21(3):1-5.
    56.J P Lambert,ARBRL-MR-02828.Ballistic Research Laboratory,Aberdeen Proving Ground,MD,1978.
    57.M J Iremonger,A C Went.Ballistic impact of fibre composite armors by fragment-simulating projectiles.Composites:Part A,1996,27A:575-581.
    58.金子明,沈峰等.纤维增强复合材料抗弹性能研究.纤维复合材料,1999,3:5-9.
    59.V Shim,V Tan.Modeling deformation and damage characteristics of woven fabric under small projectile impact,International Journal of Impact Engineering,1995,16(4):585-605.
    60.徐建波等,杆射弹侵彻混凝土实验研究[J]爆炸与冲击,2002,22(2)
    61.防护结构计算原理与设计,工程兵工程学院
    62.G Zhu,et al.Penetration of laminated kevlar by projectiles-Ⅱ.Int.J.Solid Structures,1992,29(4):421-436.
    63.J W Taylor,J R Vinson.Modeling ballistic impact into flexible materials.AIAA Journal, 1990,28(12):2098-2103.
    64.H M Wen.Penetration and perforation of thick FRP laminates.Composites Science and Technology,2001,61:1163-1172.
    65.王元博.纤维增强层合材料的抗弹性能和破坏机理研究,中国科技大学博士学位论文.
    66.J.N.Goodier,On the Mechanics of Indentation and cratering in Solid-Targets of Strain-Hardening Metal by Impact of Hard and Soft Spheres,Proc.7~(th) Syrup.On Hypervelocity Impact,Vol.Ⅲ,pp.215-259(1965).
    67.Forrestal M.J,Luk V K,Watts H A.Penetration of Reinforced Concrete with Ogive2nose Penetrators[J].Int J Solids Structures,1988,24(1):77-87
    68.陈居伟.纤维增强复合材料抗贯穿特性研究,中国科技大学硕士学位论文.
    69.A Floyd,K William,et al.Through-thickness strain-softening damage modeling of composite laminates,18~(th) International Symposium on Ballistics,San Antonio,TX,USA,November 1999,877-884.
    70.D.Nandlall,et.al.Numerical simulation of the ballistic response of grp plates,Composites Science and Technology,1998,58:1463-1439.
    71.C E Anderson,P A Cox,et al.A constitutive formulation for anisotropic materials,Comp.Mech.,1994,15:201-223.
    72.W Shen,C Wu.Computer simulation for damage-failure process of composite plate under high speed impact.Eng.Fracture Mech.,1992,47(13):159-176.
    73.江大志,沈为等.层合复合材料冲击破坏过程研究—数值分析,复合材料学报,1997,14(4):32-36.
    74.宋顺成等,穿破甲有限元的几何非线性及物理参数的确定[J]爆炸与冲击,2002,22(2)
    75.H Espinosa,et al.A 3D finite deformation anisotropic visco-plasticity model for fiber composites.Journal of Composite Materials,2001 35(5):369-410.
    76.李永池等,卵形头部弹丸对混凝图靶板侵彻的二维数值模拟[J]弹道学报,2002,14(1)
    77.Robert K.Goldberg,Donald C.Stouffer,Strain rate dependent modeling of polymer matrix composites,14~(th) Annual Technical Conference,Dayton,Ohio,1999.
    78.Gama,Bazle A.Gillespie Jr.etc.Ballistic impact damage modeling and experimental validation on a 3-D orthogonal weave fabric composite.International SAMPE Symposium and Exhibition,SAMPE 2005:New Horizons for Materials and Processing Technologies-Conference Proceedings,2005,p 1161-1175
    79.Simon Chan,Zouheir Fawaz etc,Ballistic limit prediction using a numertical model with progressive damage capability,Composite Structure 77(2007)466-474
    80.Lan Yao,Xin Wang etc,Modeling and experimental cerification of dielectric constants for three-dimensional woven composites,Composites Sci.and Tech.Accepted paper,2008
    81.Cox BN,Daskhah MS etc.Failure mechanisms of 3D woven composite in tension,compression and bending.Acta Metall Mater 1994;42(12):3967-84
    82.Callus P,Coman F,Leong K H,Tensile behavior and damage progression in multilayer woven glass/vinyl composites.In Scott M Led.Proceedings of ICCM-11(Vol.5),Gold Coast,1997-07:14-18,36-46
    83.Ping Tan etc,Behavior of 3D orthogonal woven CFRP composite.Part 1.Experimental investigation,Composite A 31(2000) 259-271
    84.Ping Tan etc,Behavior of 3D orthogonal woven CFRP composites.Part Ⅱ.FEA and analytical modeling approaches,Composite A 31(2000) 273-281
    85.Ping Tan,Liyong Tong etc.Micromechanics models for the elastic constants and failure strengths of plain weave composites,Composite Structures 47(1999) 797-804
    86.戎琦,邱夷平,二维和三维机织复合材料的力学性能实验研究,纤维复合材料,2006,6:13-16
    87.吴华利,王钧等,三维正交机织复合材料的力学性能,高科技纤维与应用,2007,8:19-22
    88.杨彩云等,三维机织复合材料纤维体积含量计算方法,固体火箭技术,2005,28(3),224-227
    89.周储伟,张音旋,三维机织复合材料多尺度粘弹性分析,复合材料学报,2007,24(5):125-129
    90.蔡敢为,三维正交纤维复合材料弹性性能细观力学分析,华中理工大学学报,1996,4:67-70
    91.郭兴峰等,三维正交机织物参数对纤维体积含量的影响,复合材料学报,2004,21(2):123-127
    92.郭兴峰等;三维正交机织物结构的几何模型,复合材料学报,2005,22(4):183-187
    93.顾伯洪,织物弹道贯穿性能分析计算,复合材料学报,2002,19(6):93-96
    94.Huang Gu,Zhong Zhili,Tensile behavior of 3D woven composites by using different fabric structures,Materials and Design 23(2002)671-674
    95.张佐光,霍刚等,纤维复合材料的弹道吸能研究,复合材料学报,1998,15(2):74-81
    96.张佐光,沈建明等,航空用防弹复合材料弹道极限速度的估算,航空学报,2000,4:90-95
    97.J.Brandt,K.Drechsler,Mechanical performance of composite based on various theree-dimensional woven-fiber performs,Composite Science and Technology 56(1996)381-386
    98.Z.Rosenberg and E.Dekel,A computational study of the relations between material properties of long-rod penetrators and their ballistic performance,In.J.Impact.Engng.1998,21(4):283-296
    99.James Leblanc etc,Shock loading of three-dimensional woven composite materials,Composite Structures,79(2007):344-355
    100.Mohammed R.Karim,Constitutive modeling and failure criteria of carbon-fiber reinforced polymers under high strain rates.PhD paper,University of Akron,2003
    101.X.Teng,T.Wierzbicki,Evaluation of six fracture models in high velocity perforation.Engineering Fracture Mechanics 73(2006) 1653-1678
    102.R.C.Batra,N.M.Hassan,Blast resistance of unidirectional fiber reinforced composites,Composites,B:39(2008) 513-536
    103.S.S.Morye etc,Modelling of the energy absorption by polymer composites upon ballistic impact,Composite Science and Technology,60(2000) 2631-2642
    104.M.A.G..Silva,C.Cismasiu etc,Numerical simulation of ballistic impact on composite laminates,Int.J.of Imp.Eng.31(2007)289-306
    105.J.N.Baucom,M.A.Zikry,Low-velosity impact damage progression in woven E-glass composite systems,Composite,A:36(2005) 358-664
    106.Drucker,D.C.,A more fundamental approach to plastic-stress-strain relations,Proc.1~(st) U.S.Natl.Congr.Appl.Mech:487-491.New York:A.S.M.E.,1951
    107.#12
    108.王仁,黄文彬,黄筑平,《塑性力学引论》(修订版),北京,北京大学出版社,1992
    109.黄克智,黄永刚,《固体本构关系》,清华大学出版社,北京,1999.9
    110.殷有泉,曲圣年,弹塑性耦合和广义正交法则,力学学报,第1期(1982):63-69,1982
    111.王自强,《理性力学基础》,科学出版社,北京,2000.7
    112.俞茂鋐,《工程强度理论》,高等教育出版社,北京,1999.9
    113.李永池,唐之景,胡秀章,关于Drucker公设和塑性本构关系的进一步研究,中国科学技术大学学报,18(3):339-345,1988
    114.Li Y.C.,Wang X.J.,Huang C.Y.,Further study on the constitutive relations in dynamic plasticity and the application to stress waves,《Research and application in dynamic deformation and fracture of solids》,Hefei,Press of USTC,pp111-119,1998
    115.李永池,王红五,江松青,袁福平,含损伤材料热塑性本构关系的普适表述,《塑性力 学和地球动力学进展(王仁院士八十寿辰庆贺文集)》,万国学术出版社,2000年12月
    116.Li Yong-chi,Guo Yang,Zhu Lin-fa,Yao Lei,"Thermoplastic constitutive relation suitable to dynamic problems in anisotropic and damaged materials",The Chinese Journal of Mechanics,Vol.19(1),2003.3
    117.杨桂通,“粘塑性本构关系”,收于《粘性力学进展》,王仁,黄克智,朱兆祥主编,中国铁道出版社,北京,1988.12
    118.Pergyna P.,"Fundamental problem in visco-plasticity",in 《Advances in Applied Mechanics》,Vol.9,1966
    119.Bodner S.R.,Partom Y.,"Consititutive Equations for Elastic-viscoplasitic Strain Hardening Materials",J.Appl.Mech.,Vol.42,1975
    120.Cheng J Y,Nemat-Nasser Sia,Guo W,"A Unified Constitutive Model for Strain-rate and Temperature Dependent Behavior of Molybdenum",Mechanics of Materials,Vol.33,2001.7
    121.Gordon R.Johnson,William H.Cook,"A constructive Model and Data for Metals Subjected to Large Strain rate and High Temperature",Proc.7th.Int.Syrup.on Ballistics,pp:541-547,1983.
    122.S.R.Bodner,Y.Partom,"Constructive Equations for Eiastic-Viscoplastic Strain-Hardening Materials",Journal of Applied Mechanics,June,pp:385-389,1975.
    123.周履,范赋群,《复合材料力学》,高等教育出版社,1991
    124.李永池等,“各向异性材料中应力波传播规律理论研究”(中国科技大学为航天工业总公司14所提供的研究报告),1998.8.
    125.Wen-Shyong Kuo,Tse-Hao Ko etc,Effect of weaving process on compressive behavior of 3D woven composites,Composite,A:38(2007) 555-565
    126.Baozhong Sun,Bohong Gu,Xin Ding,Compressive behavior of 3D angle-interlock woven fabric composite at various strain rates,Polymer Testing 24(2005) 447-454
    127.易洪雷,丁辛.三维机织复合材料力学性能研究进展,力学进展,2001,31(2):161-171
    128.Jeff Garrett,Outglassing measurements on Kevlar29-10,Outglassing Services International,2003
    129.王志海,李永池等,新型碳酚醛材料状态方程研究[J]实验力学,2006,21(5):624-630
    130.经福谦,实验物态方程导引(第二版)[M].北京.科学出版社,1999
    131.B.P.Sigh.A comparsion of equations of state including the generalized Rydbeg EoS[J]Physica B:Condensed Matter,2005,369(1-4):111-116
    132.R.G.McQueen.High Velocity Impact Phenomena[M].New York and London:Academic Press,1970:294-415
    133.胡金彪,经福谦。用冲击压缩数据计算物质结合能的一个简便解析方法[J]高压物理学报vol(4)No(3):1990
    134.李永池,郭扬等.铝锂合金材料状态方程研究[J].高压物理学报,2003,17(2):81-87
    135.Yunsong Luo,Bohong Gu etc.Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites,Comp.Stru 81(2007) 202-209
    136.张建春,张华鹏,军用盔甲[M],北京长城出版社,2003
    137.Sathya Hanagud and Bernard Ross,"Large Deformation,Deep Penetration Theory for a Compressible Strain-Harding Target Material," AIAA Journal,Vol.9,No.5,pp:905-911
    138.Yankelevsky O.Z.,Adin M.A."a Simplified Analytical Method for Soil Penetration Analysis," Int.J.Numerical Analysis Methods in Geometh,4,pp:233-254,1980.
    139.曲英章,“纤维增强复合材料层压板的动态力学响应及抗侵彻性能研究”,中国科学技术大学硕士论文,1996.
    140.王肖钧,胡秀章,李永池,高速碰撞中的有限元方法及其应用[J]爆炸与冲击,1993,Vol13(4):296-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700