用户名: 密码: 验证码:
长杆弹侵彻半无限靶的数值模拟和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对长杆弹侵彻半无限金属靶板的问题进行了较全面地数值模拟和理论研究。对不同弹靶组合产生的不同侵彻形态,均进行了数值模拟和分析,获得了清晰的侵彻图像、材料变形过程和一些物理量如压力、质点速度等的分布、变化。然后在对数值模拟结果分析的基础上分别建立了理论模型,并成功地以材料性能和初始打击参数来预测侵彻深度和开坑直径。本文的研究和结论对长杆弹动能武器、防护结构的设计和安全评估有重要的理论和实际指导意义,主要内容包括以下几个方面:
     用ALE方法和Steinberg本构模型模拟了三类长杆弹侵彻问题。(Ⅰ)对消蚀的钨合金长杆弹侵彻装甲钢靶,得到不同打击速度下均与实验数据吻合的侵彻深度,成功地再现了实验观察到的四个侵彻阶段(瞬态高压段、准定常阶段、惯性扩展阶段和弹性回弹阶段),模拟结果表明弹靶界面附近的材料行为主要由静水压力控制。(Ⅱ)对刚体长杆弹侵彻铝合金靶,使用流固耦合的方法,得到的侵彻深度也与实验数据吻合,发现弹体的横向开坑可分为两阶段-弹体头部开坑和随后靶体材料的惯性运动。(Ⅲ)对变形非消蚀的钢长杆弹侵彻铝合金靶,模拟得到的侵彻深度与实验数据具有相同的变化趋势。撞击初期主要是弹头变粗,其后杆身变粗,变形期间弹尾速度下降较快,侵彻速度较稳定。
     建立了长杆弹侵彻半无限靶的理论模型。弹靶组合可根据弹体强度Y_p与靶板静阻力S的关系分为两类:
     (1)Y_p≤S。弹体只能以消蚀的状态侵彻靶板,并且直接从刚体状态转变为消蚀状态。基于数值模拟分析结果,靶板在高速侵彻下的响应区被划分为流动区、塑性区和弹性区,流动区内材料视为无粘流体,用修正Bernoulli方程描述,塑性区和弹性区的材料行为用空穴膨胀模型描述,从而建立了长杆弹侵彻的新一维模型并给出了界面失效速度(Interface Defeat Velocity)的表达式。模型的预测侵彻深度与实验数据非常吻合。
     (2)Y_p>S。根据打击速度的大小,长杆弹可能存在三种状态,即刚性弹、变形非消蚀弹和消蚀弹。针对这三种状态,确定了临界转化条件即刚体速度(V_R)和流体动力学速度(V_H)的确定方法。对刚体侵彻,由之前得到的弹靶界面压力与侵彻速度的关系容易得到弹体受到的阻力;对于变形非消蚀弹侵彻,根据Forrestal和Piekutowski的4340钢长杆弹侵彻半无限6061-T6511铝合金靶实验结果提出了开坑面积随打击速度变化的关系,利用质量和动量守恒定律以及靶板阻力随侵彻速度的变化规律建立了变形非消蚀状态的弹体的u~v关系(其中u、v分别为侵彻速度和弹尾速度),进而根据运动学关系求解了侵彻深度。结果表明:模型预测与实验结果较吻合,体现了相同的变化趋势。
     建立了长杆弹侵彻半无限靶的横向开坑模型。对弹体的变形和材料流动引入假定,利用新的一维模型得到的u~v关系和质量、动量、能量三大守恒定律并结合实验观察分别给出了Y_p≤S和Y_p>S的开坑直径计算公式,模型应用于不同弹靶材料,均得到与实验数据一致的预测结果。
     研究了夹心长杆弹侵彻半无限靶问题。首先对不同外套-弹芯外径比的夹心长杆弹侵彻进行了数值模拟,模拟结果表明在r_(j0)/r_(c0)(外套外半径与弹芯半径之比)不太大的情形下,夹心长杆弹的u~v关系与去掉外套(或外套与弹芯材料相同)时的均质长杆弹差别很小,可直接用均质长杆弹的u~v关系代替。然后利用三大守恒定律和新的一维模型的u~v关系建立了夹心长杆弹开坑模型,并给出了产生co-erosion状态的临界条件(r_(j0)/r_(c0))_C的计算方法。理论模型较准确地预测了外套为EN24钢的钨合金夹心长杆弹侵彻装甲钢靶的开坑半径,并指出(r_(j0)/r_(c0))_C随打击速度增大而增大,可用减小r_(j0)/r_(c0)和增大打击速度来避免产生bi-erosion状态。
A combined numerical and theoretical study is presented in this thesis on the penetration of long rod penetrators into semi-infinite metallic targets. For different penetration configurations according to different combinations of penetrators and targets, numerical simulations and analysis are performed to obtain transient penetration images, deforming process of materials and distribution of physical parameters such as pressure, particle velocity, etc. Based on the insights into the penetration process from numerical simulation, corresponding theoretical models are established to predict the depth of penetration (DOP) and the diameter of the crater. The findings and conclusions of the investigations conducted in the thesis is helpful for the design of long rod kinetic energy weapons, protective structures and safety assessment, which mainly consists of following parts:
     Three types of long rod penetration are numerically simulated using ALE method and Steinberg constitutive model. (Ⅰ) For the penetration of eroding tungsten alloy long rod penetrators into semi-infinite armor steel targets, it is found that numerical predictions are in good agreement with available experimental observations in terms of DOP and four different penetration phases (i.e. transient phase, quasi-steady phase, phase three, and recovery phase). It is also found that the behavior of materials near the penetrator-target interface is controlled mainly by hydrostatic pressure. (Ⅱ) For the penetration of rigid rod penetrators into semi-infinite aluminum alloy targets, the solid-fluid coupling method is employed in numerical simulations. It is shown that numerically predicted DOP is in good agreement with the experimental data and that the cratering process includes two phases: first, the cratering by the penetrator head and followed by the inertia expansion of the target material. (Ⅲ) For the penetration of deforming 4340 steel long rod penetrators into semi-infinite aluminum alloy targets, it transpires that the numerical predictions are in reasonable agreement with the experimental observations. It also transpires that the head of the penetrator becomes bigger only in initial phase and followed by the subsequent thickening of the shank during which the velocity of the penetrator tail decreases rapidly whilst penetration velocity remains relatively steady.
     Theoretical models are suggested of long rod penetration into semi-infinite targets. It depends on the relative strength of the long rod penetrator (Y_p) and the target (S), There are two cases, viz. Y_p≤S and Y_p > S, which need to be dealt with separately:
     (1) Case 1: Y_p≤S. The penetrator can penetrate the target only in the eroding state with the transition from rigid to fluid being ignored. Based on the insights into the penetration process from the numerical simulations, the response regions in the target are constructed as flow region, plastic region, and elastic region; the material in the flow regions is treated as non-viscous incompressible fluids and described using the modified Bernoulli's equation whilst the cavity expansion model is employed for the material in the plastic and elastic regions. Hence, a new 1D model is proposed for long rod penetration, together with the expression for Interface Defeat Velocity. It is found that the theoretical predictions are in good agreement with experimental observations in terms of DOP.
     (2) Case 2: Y_p > S. There exist three types of penetration, namely, penetration by rigid long rods, penetration by deforming non-erosive long rods and penetration by erosive long rods. The critical conditions for the transition between these three penetration modes, i.e. rigid body velocity (V_r) and hydrodynamic velocity (V_H) are determined. For a rigid penetrator, the resistance force acting on the penetrator can be easily derived from the known relationship between pressure and penetration velocity at the penetrator-target interface; for a deforming non-erosive penetrator, based on the experiments performed by Forrestal and Piekutowski on 4340 steel long rod penetration into semi-infinite 6061-T6511 aluminum alloy targets, an empirical relation between crater area and impact velocity is suggested and then the u~v curve is obtained by using the laws of conservation of mass and momentum, together with the relationship between target resistance and u, where u and v are penetration velocity and the velocity of the penetrator tail, respectively. It is demonstrated that the present model predictions are in reasonable agreement with the experimental results and that both the models and the experiments follow the same trend as impact velocity increases.
     Models for the diameter of crater in semi-infinite targets by long rod penetrators are suggested based on the assumptions made about the deformation and the flow of the material of the penetrator, the u~v relation of the new 1D model, the laws of conservation of mass, momentum, and energy and the experimental observations. It is evident that the model predictions are in good agreement with available experimental data obtained for the combinations of penetrator and target made of different materials.
     Jacketed long rod penetration into semi-infinite targets is examined. Numerical simulations on the penetration of semi-infinite targets by jacketed long rods with different r_(j0)/r_(c0) are first performed, where r_(j0) and r_(c0) are the radii of the jacket and the core, respectively. The numerical results show that for smaller r_(j0)/r_(c0) ratio the u~v relation changes only a little compared to that of unitary long rod penetrator of the same core material, hence, the u~v relation of unitary (homogenous) long rod penetration is also applicable for jacketed long rod penetration. Model for cratering in semi-infinite targets by jacketed long rods is then suggested by using the laws of conversation of mass, momentum and energy, together with the u ~ v relation of unitary (homogenous) long rod penetration. The critical condition (r_(j0)/r_(c0))_C for co-erosion is also suggested. The present model is compared with the experimental data for EN24 steel jacketed tungsten alloy long rod penetration into semi-infinite armor steel targets and good agreement is obtained.
引文
[1]沈剑,王伟.国外高超声速飞行器研制计划.飞航导弹.2006,8:1-9
    [2]范金荣.发展中的高超声速武器及其战略意义.现代防御技术.2006,34(2):1-5
    [3]Robins B.New principles of gunnery(Mathematical Tracts of the late Benjamin Robins ).London:Nourse.1761
    [4]Backman ME,Goldsmith W.The mechanics of penetration of projectiles into targets.International Journal of Engineering Science.1978,16:1-99
    [5]Corbett GG,Reid SR,Johnson W.Impact loading of plates and shells by free-flying projectiles.International Journal of Impact Engineering.1996,18:144-230
    [6]Bulson PS.Explosive loading of Engineering Structures.London:Chapman & Hall.1997:141-164
    [7]Goldsmith W.Non-ideal projectile impact on targets.International Journal of Impact Engineering.1999,22:95-395
    [8]Orphal DL.Explosions and Impacts.International Journal of Impact Engineering.2006,33:496-545
    [9]Poncelet JV.Cours de Mecanique Industrielle.Paris.1829/1835
    [10]Bahsforth F.Motion of projectile.Asher London.1873
    [11]Krupp F.Uder das Durchschlagen yon Pazzerplattern.Essen.1883
    [12]Robertson HP.Terminal ballistics.National Research Council Washington.1941
    [13]文鹤鸣.混凝土靶板冲击响应的经验公式.爆炸和冲击.2002,23(3):267-274
    [14]Brown SJ.Energy release protection for pressurized system.Part Ⅱ:Review of studies into impact/terminal ballistics.Applied Mechanics Reviews.1986,39(2)
    [15]ACE.Fundamentals of protective design.Office of the Chief of Engineers,Army Corps of Engineers,Report AT 1207821.1946
    [16]Young CW.Depth prediction for earth-penetrating projectiles.Journal of the Soil Mechanics and Engineering Foundations Division,ASCE,SM3.1969:803-817
    [17]NDRC,Effects of impact and explosion.National Deffence Research Committee,Vol 1,Summarry Technical Report of Division 2,Washington DC.1946
    [18]Hughes G.Hard missile impact on reinforced concrete.Nuclear Engineering and Design.1984,77:23-35
    [19]Forrestal M J,Altman BS,Cargile JD,et al.An empirical equation for penetration of ogivenose projectiles into concrete target.International Journal of Impact Engineering.1994,15:395-405
    [20] Reid SR, Wen HM. Predicting penetration, cone cracking, scabbing and per-ofration of reinforced concrete targets struck by flat-faced projectiles. UMIST Report ME/AM/0201/TE/G/018507/Z. 2001
    
    [21] Wen HM. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Composite Structures. 2000, 49(3):321-329
    
    [22] Wen HM. Penetration and perforation of thick FRP laminates. Compos Sci Technol. 2001,61(8):1163-1172
    
    [23] Reid SR, Wen HM. Perforation of FRP laminates and sandwich panels subjected to missile impact. Impact Behaviour of Fibre-Reinforced Composite Materials and Structures, Reid SR and Zhou G (eds), Woodhead Publishing Limited, Cambridge. 2000
    
    [24] Wen HM. Predicting the penetration and perforation of targets struck by projectiles at normal incidence. Mech Struct Mach. 2002, 30(4):543-577
    
    [25] Christman DR, Gehring JW. Final report on penetration mechanisms of high velocity projectiles. Report No TR65-50 prepared for Ballistic Research Laboratories under Contract No DA-04-495-AMC-534(X), GM Defense Research Laboratories, Santa Barbara, CA. 1965
    
    [26] Hohler V, Stilp AJ. Penetration of steel and high density rods in semi-infinite steel targets.Proc 3rd Int Symp Ballistics, H3, Karlsruhe. 1977
    
    [27] Silsby GF. Penetration of semi-infinite steel targets by tungsten rods at 1.3 to 4.5 km/s.Proceeding of the Eighth International Symposium on Ballistics, TB/31-35, Orlando, Florida.1984
    
    [28] Hohler V, Stilp AJ. Hypervelocity impact of rod projectiles with L/D from 1 to 32. International Journal of Impact Engineering. 1987, 5:323-331
    
    [29] Anderson Jr CE, Morris BL, Littlefield DL. A penetration mechanics database. SwRI Report 3593/001, Southwest Research Institute, San Antonio, TX. 1992
    
    [30] Subramanian R, Bless SJ, Cazamias J, et al. Reverse impact experiments against tungsten rods and results for aluminum penetration between 1.5 and 4.2 km/s. International Journal of Impact Engineering. 1995, 17:817-824
    
    [31] Hohler V, Stilp AJ, Weber K. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum. International Journal of Impact Engineering. 1995, 17:409-418
    
    [32] Forrestal MJ, Piekutowski AJ. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s. International Journal of Impact Engineering. 2000, 24:57-67
    
    [33] Anderson Jr CE, Walker JD, Hauver GE. Target resistance for long-rod penetration into semi-infinite targets. Nuclear Engineering And Design. 1992, 138:93-104
    [34] Walker JD, Anderson Jr CE. A time-dependent model for long-rod penetration. International Journal of Impact Engineering. 1995, 16(1):19-48
    [35] Behner T, Orphal DL. Hohler V. Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km-s. International Journal of Impact Engineering. 2006, 33:68-79
    [36] Anderson Jr CE, Orphal DL, Franzen RR. On the hydrodynamic approximation for long-rod penetration. International Journal of Impact Engineering. 1999, 22:23-43
    [37] Orphal DL, Anderson Jr CE. The dependence of penetration velocity on impact velocity.International Journal of Impact Engineering. 2006, 33:546-554
    [38] Orphal DL, Franzen RR, Piekutowski AJ, et al. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s. International Journal of Impact Engineering.1996, 18(4):355-368
    [39] Orphal DL, Franzen RR, Charters AC, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. International Journal of Impact Engineering. 1997, 19(l):15-29
    [40] Orphal DL, Franzen RR. Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. International Journal of Impact Engineering. 1997,19(1):1-13
    
    [41] Subramanian R, Bless SJ. Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s. International Journal of Impact Engineering. 1995,17:807-816
    [42] Piekutowski AJ, Forrestal MJ. Penetration into aluminum nitride targets with L/D = 10 tungsten rods at impact velocities of 1.7, 2.2, and 2.7 km/s. Report SAND91-0088/90/00007 Albuquerque, NM: Sandia National Laboratories. 1991
    [43] Lundberg P, Westerling L, Lundberg B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets. International Journal of Impact Engineering. 1996,18(4):403-416
    [44] Lundberg P, Lundberg B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials. 2005, 31:781-792
    [45] Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities. International Journal of Impact Engineering. 2001, 25:703-714
    [46] Gold VM, Vradis GC, Pearson JC. concrete penetration by eroding projectiles: experiments and analysis. Journal of engineering mechanics. 1996, 2:145-152
    [47] Orphal DL. Phase three penetration. International Journal of Impact Engineering. 1997,20:601-616
    [48] Bishop RF, Hill R, Mott NF. The theory of indentation and hardness. Proceedings of the Physical Society. 1945, 57:147-159
    [49] Hill R. The mathematical theory of plasticity. Oxford University Press, London. 1950
    
    [50] Goodier JN. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft sphere. Proceedings of the 7th symp Hypervelocity Impact,AIAA J. 1965, 3:215-259
    
    [51] Ross B, Hanagud S. Report 7000-452-4. Stanford Research Institure, Mento Park, California.1969
    
    [52] Ross B, Hanagud S. Report N0014-71A0243. Stanford Research Institute, Mento Park,California. 1971
    
    [53] Hanagud S, Ross B. AIAAJ. 1971. 9:905
    
    [54] Luk VK, Forrestal MJ, Amos DE. Dynamic spherical cavity expansion of strain-hardening materials. Journal of Applied Mechanics. 1991, 58:1-6
    
    [55] Forrestal MJ, Brar NS, Luk VK. Penetration of strain-hardening targets with rigid spherical-nose rods. Journal of Applied Mechanics. 1991, 58:7-10
    
    [56] Forrestal MJ, Luk VK, Rosenberg Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods. International Journal of Solids and Structures. 1992, 29:1729-1736
    
    [57] Forrestal MJ, Tzou DY, Askari E, et al. Penetration into ductile metal targets with rigid spherical-nose rods. International Journal of Impact Engineering. 1995, 16:699-710
    
    [58] Warren TL, Forrestal MJ. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. International Journal of Solids and Structures. 1998, 35:3737-3753
    
    [59] Piekutowski AJ, Forrestal MJ, Poormon KL. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s. International Journal of Impact Engineering. 1999, 23:723-734
    
    [60] Butler DK. An analytical study of projectile penetration in rock. US Army Waterways Experiment Station, Vicksburg, Misc Paper S-75-7 AD-A 012140. 1975
    
    [61] Rohani B. Analysis of projectile penetration into concrete and rock targets. US Army Waterways Experiment Station, Vicksburg, Misc Paper S-75-25 AD-A 016909. 1975
    
    [62] Luk VK, Forrestal MJ. Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles. International Journal of Impact Engineering. 1987, 6(4):291-301
    
    [63] Forrestal MJ, Longcope DB. Target strength of ceramic materials for high-velocity penetration. Journal Of Applied Physics. 1990, 67(8):3669-3672
    
    [64] Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets.International Journal of Solids and Structures. 1997, 34(31-32):4127-4146
    [65]Satapathy S,Bless SJ.Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis.Mechanics of Materials.1996,23:323-330
    [66]Satapathy S.Dynamic spherical cavity expansion in brittle ceramics.International Journal of Solids and Structures.2001,38:5833-5845
    [67]Xu Y,Luk VK Keer LM.Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles.International Journal of Solids and Structures.1997,12:1479-1491
    [68]Zhou H,Wen HM.Penetration of Bilinear Strain-Hardening Targets Subjected to Impact by Ogival-Nosed Projectiles.Proceeding of 2003 International Autum Seminar on International Autumn Seminar on Propellants,Explosives and Pyrotecnics,In:Theory And Practice Of Energetic Materials,Science Press,Beijing/New York.2003,5:933-942
    [69]周辉,文鹤鸣.动态柱形空穴膨胀模型及其在侵彻问题中的应用.高压物理学报.2006,1:67-78
    [70]周辉.弹塑性材料中的空穴膨胀理论及其在侵彻力学中的应用[硕士论文].合肥:中国科学技术大学.2004.6
    [71]何涛,文鹤鸣.卵形钢弹对铝合金靶板侵彻问题的数值模拟.高压物理学报.2006,20(4):404-414
    [72]He T,Wen HM,Qin Y.Finite element analysis to predict penetration and perforation of thick FRP laminates struck by projectiles.International Journal of Impact Engineering.2008,35:27-36
    [73]Bernard RS,Creighton D.Projectile penetration in soil and rock:analysis for non-normal impact.US Army Waterways Experiment Station,Vicksburg,Technical Report SL-79-15AD-A 081044.1979
    [74]Ben-Dot G,Dubinsky A,Elperin T.Shape optimization of high velocity impactors using analytical models.Int J Fract.1997,87(1):LT-L10
    [75]Ben-Dot G,Dubinsky A,Elperin T.Shape optimization of penetrators nose.Theor Appl Fract Mech.2001,35(3):261-270
    [76]Ben-Dor G,Dubinsky A,Elperin T.Ballistic Impact:Recent advances in analytical modeling of plate penetration dynamics-A review.Applied Mechanics Reviews.2005,58:355-371
    [77]Ben-Dor G,Dubinsky A,Elperin T.Applied High-Speed Plate Penetration Dynamics.Springer Netherlands.2006
    [78]Amini A,Anderson J.Modeling of projectile penetration into geologic targets based on energy tracking and momentum impulse principles.Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with structures.May 1993
    [79] Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids. 1967, 15:387-399
    [80] Alekseevskii VP. Penetration of a rod into a target at high velocity. Combustion, Explosion and Shock Waves. 1966, 2:63-66
    [81] Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for flow speeds. Journal of Computational Physics. 1974, 14:227-253
    [82] Zukas JA. Survey of computer codes for impact simulation. High velocity impact dynamics (edited by Zukas J ), New York: John Wiley & Sons Inc. 1990:593-708
    [83] Johnson WW, Anderson CE. History and application of hydrocodes in hypervelocity impact.International Journal of Impact Engineering. 1987, (5):423-439
    
    [84] Rosenberg Z, Dekel E. A computational study of the influence of projectile strength on the performance of long-rod penetrators. International Journal of Impact Engineering. 1996,18(6):671-677
    
    [85] Rosenberg Z, Dekel E. A computational study of the relations between material properties of long-rod penetrators and their ballistic performance. International Journal of Impact Engineering. 1998, 21(4):283-296
    
    [86] Mchenry MR, Choo Y, Orphal DL. Numerical simulations of low L/D rod aluminum into aluminum impacts compared to the tate cratering model. International Journal of Impact Engineering. 1999, 23:621-628
    [87] Anderson Jr CE, Walker JD, Bless SJ, et al. On the L/D effect for long-rod penetrators. International Journal of Impact Engineering. 1996, 18(3):247-264
    [88] Anderson Jr CE, Walker JD, Bless SJ, et al. On the velocity dependence of the L/D effect for long-rod penetrators. International Journal of Impact Engineering. 1995, 17:13-24
    [89] Pidsley PH. A numerical study of long rod impact onto a large target. Journal of the Mechanics and Physics of Solids. 1984, 32(4):315-333
    [90] Batra RC, Wright TW. Steady state penetration of rigid perfectly plastic targets. International Journal of Engineering Science. 1986, 24(1):41-54
    [91] Ferguson GL. Replica model scaling for high strain rate events. International Journal of Impact Engineering. 1995, 16(4):571-583
    [92] Rosenberg Z, Dekel E. More on the secondary penetration of long rods. International Journal of Impact Engineering. 2001, 26:639-649
    [93] Partom Y. On the hydrodynamic limit of long rod penetration. International Journal of Impact Engineering. 1997, 20:617-625
    
    [94] Anderson Jr CE, Orphal DL. Analysis of the terminal phase of penetration. International Journal of Impact Engineering. 2003, 29:69-80
    [95]孙庚辰,吴锦云,赵国志等.长杆弹垂直侵彻半无限厚靶的简化模型.兵工学报.1981,4
    [96]赵国志,查宏振,杨小青.有攻角长杆体垂直侵彻半无限厚靶的简化模型.兵工学报弹箭分册.1989.1:22-32
    [97]赵国志.长杆弹斜侵彻有限厚钢甲的简化模型.兵工学报.1989,4:1-8
    [98]王道荣.高速侵彻现象的工程分析方法和数值模拟研究.中国科学技术大学博士学位论文.2002.6
    [99]Rosenberg z.On the hydrodynamic theory of long-rod penetration.International Journal of Impact Engineering.1990,10:483-486
    [100]王政.弹靶侵彻动态响应的理论与数值分析.复旦大学博士学位论文.2005.11
    [101]王政,倪玉山,曹菊珍等.基于速度势侵彻模型的应用研究.高压物理学报.2005,19(1):11-16
    [102]魏雪英.钨杆弹高速侵彻陶瓷靶的理论分析.兵工学报.2002,23(2):167-170
    [103]魏雪英.长杆弹侵彻问题的理论研究.西安交通大学博士学位论文.2002.6
    [104]魏雪英,张春燕,马淑芳.射流侵彻作用下陶瓷材料的性态与阻力.兵工学报.2005,26(4):481-485
    [105]魏志刚.钨合金材料的变形、破坏行为及其动能弹侵彻机理研究.中国科学技术大学博士学位论文.2001.9
    [106]张连生,黄风雷.抗弹陶瓷材料抗弹性能的理论表征.北京理工大学学报.2005,25(7):651-654
    [107]李平,李大红,宁建国.Al2O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究.爆炸与冲击.2003,23(4):289-294
    [108]宋扬.贫铀穿甲弹头部参数对均质装甲侵彻能力的影响.弹道学报.1995,7(1):76-81
    [109]张若棋,汤文辉,赵国民等.长杆射弹侵彻三种混凝土靶的实验研究.国防科技大学学报.2004,26(5):22-25
    [110]张德志,张向荣,林俊德等.高强钢弹对花岗岩正侵彻的实验研究.岩石力学与工程学报.2005,24(9):1612-1618
    [111]韩永要,赵国志,李向东等.长管体与长杆体侵彻靶板对比研究.力学与实践.2004,26:56-59
    [112]李永池,胡秀章,胡时胜.预扭钨弹侵彻厚钢靶的三维数值模拟.弹道学报.2002,14(1):32-36
    [113]曹德青.钢筋混凝土侵彻数值模拟分析.北京理工大学博士学位论文.2000.7
    [114]程兴旺,王富耻,李树奎等.不同头部形状长杆弹侵彻过程的数值模拟.兵工学报.2007,28(8):930-933
    [115]许沭华.钨合金杆弹侵彻复合靶板的实验和数值研究.中国科学技术大学博士学位论文.2000.6
    [116]杜忠华,赵国志,李文彬.长杆弹垂直侵彻复合装甲机理的研究.弹道学报.2001,13(1):27-31
    [117]宋顺成,王军,王建军.钨合金长杆弹侵彻陶瓷层合板的数值模拟.爆炸与冲击.2005,25(2):102-106
    [118]欧阳春,赵国志,李向东等.长杆弹对陶瓷复合装甲斜侵彻的数值模拟.南京理工大学学报.2005,29(3):277-280
    [119]韩永要,赵国志,芳清等.动能弹侵彻多层陶瓷靶板数值模拟研究.工程力学.2006,23(6):182-186
    [120]麻震宇,曾首义,蒋志刚.陶瓷复合靶板抗长杆弹侵彻的数值模拟分析.中国科学技术大学学报.2007,87(7):727-731
    [121]Steinberg D J,Cochran SG,Guinan MW.A constitutive model for metals applicable at high strain rate.Journal of Applied Mechanics.1980,51(3):1498-1504
    [122]Steinberg D J,Lund CM.A constitutive model for strain rates from 10~(-4) to 10~6 s~(-1).Journal of Applied Mechanics.1989,65(4):1528-1533
    [123]Johnson GR,and Cook WH.A constitutive model and data for metals subjectde to large strains,high strain rates,and high temperatures[A].In..Procof the 7th Intern Symp on Ballistics[C]Netherlands:Am Def Orp(ADPA).1983:541 - 547
    [124]陈大年,刘国庆,俞宇颖等.高压、高应变率与低压、高应变率实验的本构关联性.高压物理学报.2005,19(3):193-200
    [125]曹德青,恽寿榕,丁刚毅等.用ALE方法实现射流侵彻靶板的三维数值模拟.北京理工大学学报.2000,20(2):171-173
    [126]桂毓林,于川,刘仓理.带尾翼的翻转型爆炸成形弹丸的三维数值模拟.爆炸与冲击.2005,25(4):313-318
    [127]张伟,马文来,马志涛等.弹丸超高速撞击铝靶成坑数值模拟.高压物理学报.2006,20(1):1-5
    [128]张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报.1997,14(1):91-102
    [129]谭多望.高速杆式弹丸的成形机理和设计技术.中国工程物理研究院博士学位论文.2005.5
    [130]张奇,张若京.ALE方法在爆炸数值模拟中的应用.力学季刊.2005,26(4):639-642
    [131]Livermore Software Technology Corporation.LS-DYNA Keyword User's Manual(970v)[M].Livermore.2003
    [132]Monaghan JJ.Why particle methods work.SIAM Stat Comput.3 1992,4:422
    [133]Lee WH,Painter JW.Material void-opening computation using particle method.International Journal of Impact Engineering.1999,22:1-22
    [134]华劲松.高温高压下钨合金的本构方程研究[博士论文].绵阳:中国工程物理研究院研究生部.1999.8
    [135]李茂生,陈栋泉.高温高压下材料的本构模型.高压物理学报.2001,15(1):24-31
    [136]Anderson Jr CE,Hohler V,Walker JD,et al.Time-resolved penetration of long rods into steel targets.International Journal of Impact Engineering.1995,16(1):1-18
    [137] Hohler V, Stilp AJ. A penetration mechanics database (edited by Anderson Jr CE, Morris BL, Littlefield DL). SwRI Report 3593/001, Southwest Research Institute, San Antonio, TX.1992:A76-A82
    [138] Eichelberger RJ, Gehring JW. Effects of meteoroid impact on space vehicles. Am Rocket Soc J. 1962, 32:1583-1591
    [139] Hill R. Cavitation and the influence of headshape in attack of thick targets by non-deforming projectiles. Journal of the Mechanics and Physics of Solids. 1980, 28:249-263
    
    [140] Lee M, Bless SJ. Cavity models for solid and hollow projectiles. International Journal of Impact Engineering. 1998, 21(10):881-894
    
    [141] Tate A. Further results in the theory of long rod penetration. Journal of the Mechanics and Physics of Solids. 1969,17:141-150
    
    [142] Anderson Jr CE, Walker JD. An Examination of long-rod penetration. International Journal of Impact Engineering. 1991, 11(4):481-501
    [143] Dekel E Rosenberg Z. Numerical study of the transition from rigid to eroding-rod penetration.J Phys IV Fr. 2003, 110:681-686
    
    [144] Sternberg J. Material properties determing the resistance of ceramics to high velocity penetration. Journal Of Applied Physics. 1989, 65(9):3417-3424
    [145] Jones SE, Gillis PP, Foster JC. On the penetration of semi-infinite targets by long rods.Journal of the Mechanics and Physics of Solids. 1987, 35(1):121-131
    [146] Wang P, Jones SE. An elementary theory of one-dimensional rod penetration using a new estimate for pressure. International Journal of Impact Engineering. 1996, 18(3):265-279
    [147] Cinnamon JD, Jones SE. A one-dimensional analysis of rod penetration. International Journal of Impact Engineering. 1992, 12(2):145-166
    [148] Galanov BA, Ivanov SM, Kartuzov W. On one new modification of Alekseevskii-Tate model for nonstationary penetration of long rods into targets. International Journal of Impact Engineering. 2001, 26:201-210
    [149] Galanov BA, Ivanov SM, Kartuzov W. Investigation of penetration resistance using a new modification of the Alekseevskii-Tate model. International Journal of Impact Engineering.2003, 29:263-272
    [150] Grace FI. Nonsteady penetration of long rods into semi-infinite targets. International Journal of Impact Engineering. 1993, 14:303-314
    [151] Rubin MB, Yarin AL. On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. Journal of Non-Newtonian Fluid Mechanics. 1993,50:79-88
    [152]Rubin MB,Yarin AL.A generalized formula for the penetration depth of a deformable projectile...International Journal of Impact Engineering.2002,27:387-398
    [153]Yarin AL,Rubin MB,Roisman IV.Penetration of a rigid projectile into an elastic-plastic target of finite thickness.International Journal of Impact Engineering.1995,16:801-831
    [154]Yossifon G,Rubin MB,Yarin AL.Penetration of a rigid projectile into a finite thickness elastic-plastic target-comparison between theory and numerical computations.International Journal of Impact Engineering.2001,25:265-290
    [155]Godwin RP,Chapyak EJ.Apparent target strength in long rod penetration.International Journal of Impact Engineering.1998,21(1-2):77-88
    [156]Walters WP,Segletes SB.An exact solution of the long rod penetration equations.International Journal of Impact Engineering.1991,11(2):225-231
    [157]Segletes SB,Walters WP.Extensions to the exact solution of the long-rod penetration/erosion equations.International Journal of Impact Engineering.2003,28:363-376
    [158]Anderson Jr CE,Littlefield DL,Walker JD.Long-rod penetration,target resistance,and hypervelocity impact.International Journal of Impact Engineering.1993,4:1-12
    [159]谭华.实验冲击波物理导引.北京:国防工业出版社.2007.2
    [160]Forrestal MJ,Luk VK.Dynamic spherical cavity-expansion in a compressible elastic-plastic solid.Journal of Applied Mechanics.1988,55:275-279
    [161]Tate A.Long rod penetration models - Part Ⅱ.Extensions to the hydrodynamic theory of penetration.International Journal of Mechanics Science.1986,28:599-612
    [162]经福谦.实验物态方程导引(第二版)[M].北京:科学出版社.1999:61-64
    [163]Forrestal MJ,Okajima K,Luk VK.Penetration of 6061-T651 aluminum Targets with rigid long rods.Journal of Applied Mechanics.1988,55:755-760
    [164]Bowden FP,Tabor D.The friction and lubrication of solids,Part 2,Chap.22.Oxford University Press,London.1968
    [165]Montgomery RS.Surface Melting of Rotating Bands[M].Wear.1976,38:235-243
    [166]Li QM Chen XW.Transition from non-deformable projectile penetration to semi-hydrodynamic penetration.ASCE J Eng Mech.2004,130(1):123-127
    [167]Segletes SB.The erosion transition of tungsten-alloy long rods into aluminum targets.International Journal of Solids and Structures.2007,44:2168-2191
    [168]Hohler V,Stilp AJ.Influence of length-to-diameter ratio in the range of 1 to 32 on the penetration performance of rod projectiles.Proc 8th Int Syrup Ballistics,Orlando,F1.1984
    [169]Kivity Y,Hirsch E.Penetration cuteoff velocity for ideal jets.Proc 8th Int Syrup Ballistics,San Diego,CA.1987
    [170] Szendrei T. Analytical model for crater formation by jet impact and its application on penetration curves and profiles. Proc 7th Int Symp Ballistics, Netherlands. 1983, 1:575-584
    [171] Naz P. Penetration and perforation of a steel target by copper rods - measurement of crater diameter. Proc 11th Int Symp Ballistics, Brussels, Belgium. 1989
    [172] Szendrei T. Analytical model for high-velocity impact cratering with material strengths:extensions and validation. Proc 15th Int Symp Ballistics, Israel. 1995, 1:123-131
    [173] De Rosset WS, Merendino AB. Radial hole growth: experiment vs calculation. Proc 8th Int Symp Ballistics, Orlando, F1, TB-1. 1984
    [174] Bjerke TW, Silsby GF, Scheffler DR, et al. Yawed long-rod armor penetration. International Journal of Impact Engineering. 1992, 12(2):281-292
    [175] Shinar GI, Barnea N, Ravid M. An analytical model for cratering of metallic targets by hypervelocity long rods. Proc 15th Int Symp Ballistics, Israel. 1995, 1:59-66
    [176] Scott BR, Walters WP. A model of the crater growth rate under ballistic impact conditions.Proceedings of the 12th Southeastern Conference on Theoretical and Applied Mechanics,Georgia. 1984
    [177] Ravid M, Bodner SR, Holcman I. Analysis of very high speed impact. International Journal of Engineering Science. 1987, 25(4):473-482
    [178] Ravid M, Bodner SR, Holcman I. Analytical investigation of the initial stage of impact of rods on metallic and ceramic targets at velocities of 1 to 9 km/sec. Proc 12th Int Symp Ballistics,San Antonio, Texas. 1990
    [179] Lee M. Analysis of jacketed rod penetration. International Journal of Impact Engineering.2000, 24:891-905
    
    [180] Cullis IG, Lynch NJ. Hydrocode and experimental analysis of scale size jacketed KE projectiles. 14th International Symposium on Ballistics Vol TB-7, Quebec, Canada. 1994:271-280
    [181] Lehr HF, Wollman E, Koerber G. Experiment with jacketed rods of high fineness ratio.International Journal of Impact Engineering. 1995, 17:517-526
    [182] Sorensen BR, Kimsey KD, Zukas JA, et al. Numerical analysis and modeling of jacketed rod penetration. International Journal of Impact Engineering. 1999, 22:71-91
    [183] Pedersen BA, Bless SJ, Cazamias JU. Hypervelocity jacketed penetrators. International Journal of Impact Engineering. 2001, 26:603-611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700