用户名: 密码: 验证码:
基于分布估计算法的水库群联合优化调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域水库群优化调度一直是学术和工程界研究的热点问题之一。随着我国对水电能源开发进程的加快,众多的大型梯级水电站的建成与投运,梯级间水电站的水力与电力联系日益复杂,电网中多种电源之间的配合需求逐渐增加,给流域水电站群的运行管理带来了巨大的挑战。流域水库群优化调度受径流过程、下游用水需求、发电特性等诸多因素的影响,是一类高维度、非凸、非线性且具有复杂约束的优化问题,如何求解该类问题是研究库群优化调度的关键问题。随着水库群规模的扩大,调度问题的约束条件更加复杂化,传统的优化理论和方法中的如求解精度低、计算时间长等不足更加的凸显。因此,许多学者将智能优化算法引入到求解水库群优化调度的研究中,然而智能优化算法存在陷入局部最优等缺陷,且将其应用于求解水库群优化调度问题时,对复杂约束处理机制的研究较少,仍需研究更有效的优化方法及约束处理策略来求解水库群优化调度问题。文本结合智能优化算法理论、系统工程理论和最优化理论等相关理论,以一种具有较好全局搜索能力的分布估计算法为基础,以水库优化调度、流域水库群优化、水火电联合调度为研究对象,对含有复杂约束的水库群、水火电联合优化问题进行了研究,取得了一些具有理论意义和实际应用价值的成果。本文的研究工作及成果主要如下:
     (1)以一种具有较好全局搜索能力的进化算法—分布估计算法为基础,分析了算法在进化过程中的性能和算法中控制参数的作用,针对算法中因控制搜索范围的参数下降过快,导致群体多样性降低从而引起的算法陷入局部最优的问题,提出一种混合单变量边缘分布算法(HUMDA)。该算法采用两阶段参数动态控制策略来控制算法的均值与方差参数,在搜索初期保持群体的多样性,在算法后期提高了算法的局部搜索能力,并引入混沌搜索机制有效提高了算法的搜索精度与效率。通过标准测试函数测试分析了算法的性能、参数的敏感性及局部搜索策略的作用,结果表明HUMDA具有较好的全局搜索能力和较高搜索精度。此外,在HUMDA算法的基础上,将参数控制策略与文化框架相结合提出文化分布估计算法(CEDA),通过文化算法中的知识结构监测群体的信息,控制算法的参数,以提高算法的鲁棒性,通过测试表明CEDA算法具有更好的性能及寻优能力。对分布估计算法的改进研究,有效的提高了算法搜索性能,为求解水库群优化调度问题提供了有效的手段。
     (2)通过研究水库优化调度模型解空间的特性,将提出的HUMDA算法应用于求解水库发电优化调度问题,同时针对局部搜索中容易破坏约束导致搜索效率低下的问题,设计一种结合逐步优化思想的混沌局部搜索策略,使得在局部搜索过程中对等式约束的破坏减小,提高了局部搜索的效率。最后通过水库长期调度算例对算法进行测试分析,结果表明算法在求解水库调度问题时具有较好的性能,为后研究具有更复杂约束的水库群调度提供了参考。
     (3)通过分析现有的水库群优化调度约束处理方法,针对约束处理容易造成下游水库调整量过大,使得调整的随机性过大,影响算法搜索性能的问题,结合CEDA算法提出一种考虑上下游水力联系的等式约束处理策略。该策略可快速的消除不等式约束对解的影响,提高算法的求解效率。并将其应用于含有10个水库的水库群发电优化调度,得到较好的优化效果。
     (4)通过对水火电优化调度中火电机组的特性及火电负荷分配问题的解空间特性进行研究,分析了现有的约束处理策略的特性并针对其影响算法全局搜索能力等问题,提出一种结合CEDA的两阶段约束条件处理策略,测试分析该策略在求解火电机组负荷分配时具有较好的性能。将CEDA结合水电约束处理策略、火电约束处理策略应用于求解水火电联合调度,结果表明结合所提出的约束处理策略的CEDA算法具有较好的求解性能,为求解水火电联合优化调度问题提供一种新的有效方法。
The scheduling of cascaded reservoirs has been one of the hotspot academic andengineering researches. With China's hydropower energy development process to speedup, the large-scale cascade hydropower stations are completed and put into operation.The hydraulic and electrical relationship among cascade reservoirs become morecomplex, with the increasing demand for co-ordination between different power source,which bring great challenges to the management of the cascaded reservoirs. Thecascaded reservoirs scheduling considers runoff process, water supply and powergeneration characteristics, is a kind of high-dimensional, non-convex, nonlinear andcomplex constrained optimization problem. How to solve this kind of problem is a keyissue of the cascade reservoirs scheduling. With the expansion of the scale of thecascaded reservoirs, the constraints of the optimization problem become morecomplicated, the traditional optimization methods can not meet the needs of cascadedreservoirs scheduling development. Therefore, many scholars utilize intelligentoptimization algorithms to solve the optimal scheduling of cascaded reservoirs problems.However, intelligent optimization algorithms are easy trapped into local optimum andlack of constraint handling mechanism, which lead algorithm cannot obtain the globaloptimal solution when solve cascaded reservoirs optimal problems. A more effectiveoptimization method and constraint handling strategy are still needed to deeply researchfor solving cascaded reservoirs optimal problems. In this thesis, combined withintelligent optimization algorithm theory, the theory of systems engineering optimizationtheory and other related theories, a global search algorithm named estimation ofdistribution algorithm is utilized to solve cascaded reservoirs optimal problems andhydrothermal optimal problems. Some conclusions with theoretical and practical valueare obtained. The main achievements are as follows:
     (1) Estimation of Distribution Algorithms in a new evolutionary algorithm has betterglobal search capability. The research based on analysis the performance of the algorithmand the effect of control parameters in the evolutionary process. In view of the critical shortcomings such as the scope of the search down too fast which lead to reduceddiversity of the population and caused local convergence, a hybrid Univariate MarginalDistribution Algorithm (HUMDA) was proposed. In the proposed method, a two-stagedynamic parameters control strategy is used to control the mean and variance parametersin order to preserve the diversity of the population at the beginning of algorithm andimprove the local search capability of the algorithm at the end of the execution. Inaddition, the chaotic search strategy is adopted to enhance the precision of solution andsearch efficiency. The HUMDA is tested by standard test functions by analyzing thesensitivity of the parameters and the performance of the local search strategy. The resultsshow that, the algorithm has better global convergence ability and search accuracy.Furthermore, on basis of HUMDA algorithm, a cultured estimation of distributionalgorithm (CEDA) which combines cultural framework control parameters strategy isproposed to improve the robustness of the algorithm. The CEDA has better performanceuse several standard function tests the CEDA, the results show that CEDA has betterperformance and optimization ability. Research on the improvement of the estimation ofdistribution algorithm, effectively improve the search performance of the algorithm andprovide an effective means for solving cascaded reservoirs optimal problems.
     (2) By analyzing the characteristics of the solution space in reservoir optimalscheduling model, the proposed HUMDA is applied to solve reservoir optimal schedulingproblems. Considering that local search may violate the constraints which lead to reducethe efficiency of search. A chaotic local search strategy combines with POA algorithm isproposed to improve the efficiency of local search. Applying the strategy to solveLong-term reservoir scheduling problem, the results show that the algorithm has betterperformance in solving reservoir scheduling problem. This research provides a referencefor study cascaded reservoirs optimal scheduling with more complex constraints.
     (3) In order to reduce the affect the performance of the algorithm caused byconstraint handling strategy which producing a large randomness variable in solvingcascaded reservoirs optimal scheduling problem. An equality constraints handling strategywhich considers the hydraulic connection between reservoirs is proposed to combine withCEDA to improve the efficiency of the algorithm to solve cascaded reservoirs optimal scheduling problem. Applied to the reservoir system which contains10reservoirs, theresults show that the use proposed algorithm can obtain better solution.
     (4) By analyzing the characteristics of the solution space in the hydrothermal optimalscheduling model and the advantages and disadvantages of the existing constrainthandling strategy, a combination of two-stage constraint handling strategy and CEDA isproposed. Using CEDA to solve dynamic economic dispatch in thermal power generationhas better performance. Utilizing CEDA combined constraint handling strategy in thermaland hydropower to solve hydrothermal optimization problems. The results show that theCEDA combined with proposed constraint handling strategy has better performance forsolving hydrothermal optimization problems. The research provides a new effectivemethod for solving hydrothermal optimization problems.
引文
[1]水电水利规划设计总院.我国水力资源复查成果(2003年)[R].北京:中国电力出版社,2004.
    [2]水利科学与海洋工程学科发展战略研究报告(2011-2015)[R].国家自然科学基金委员会工程与材料科学部,科学出版社有限责任公司,2011.
    [3]王永强.厂网协调模式下流域梯级电站群短期联合优化调度研究[D].博士论文.华中科技大学,2012.
    [4] Little JDC. The use of storage water in a hydroelectric system[J]. Journal of theOperations Research Society of America,1955,3(2):187-197.
    [5]张景瑞.梯级水电站和水火电站群优化调度的PSO算法[D].博士论文.华中科技大学,2012.
    [6] Shawwash Z K, Siu T K, Russell SOD. The B.C. Hydro short term hydroscheduling optimization model[J]. IEEE Transactions on Power Systems.2000,15(3):1125-1131.
    [7]罗予如.梯级水电厂群短期经济运行的探讨[J].水力发电.2000,26(2):57-58.
    [8]曾勇红,姜铁兵,张勇传.三峡梯级水电站蓄能最大长期优化调度模型及分解算法[J].电网技术,2004,28(10):5-8.
    [9]都金康,周广安.水库群防洪调度的逐次优化方法[J].水科学进展,1994,5(2):134-141.
    [10]郭文献,夏自强,王远坤等.三峡水库生态调度目标研究[J].水科学进展.2009,20(4):554-559.
    [11] James E. Giles, Gregory A. Hoff. Techniques for the developments of amulti-objective optimization model[C]. Proceeding ACM-SE16proceedings ofthe16th annual southeast regional conference. New York. USA,1978.
    [12] Hui Qin, Jianzhong Zhou, Youlin Lu,et.al. Multi-objective cultured differentialevolution for generation optimal trade-offs in reservoir flood control operation[J].Water Resour Manage,2010,24:2611-2632.
    [13]邵东国,郭宗楼.综合利用水库水量水质统一调度模型[J].水利学报,2000,(8):10-15.
    [14]王兴菊,赵然杭.水库多目标优化调度理论及其应用研究[J].水利学报,2003,(3):104-109.
    [15]陈洋波,王先甲,冯尚有.考虑发电量与保证出力的水库调度多目标优化方法[J].系统工程理论与实践,1998,(4):95-101.
    [16]王本德,周惠成,程春田等.水库预蓄效益与风险控制模型[J].水文,2000,20(1):14-18.
    [17] Pérez-Díaz J I,Wilhelmi J R, Arévalo L A. Optimal short-term operationschedule of a hydropower plant in a competitive electricity market[J]. EnergyConversion and Management.2010,51(12):2955-2966.
    [18]申建建,武新宇,程春田,李刚.大规模水电站群短期优化调度方法Ⅱ:高水头多振动区问题[J].水利学报.2011,42:1168-1177.
    [19]张勇传.水电站经济运行原理[M].北京:中国水利水电出版社,1998.
    [20] Dorfman R. The multi-structure approach in design of water resource systems[R].Harvard University Press.1962.
    [21] Windsor S J. Optimization model for reservoir flood control[J]. Water ResourcesResearch.1973,9(5):1103-1114.
    [22] Needham J., Watkins D., Lund J., et al. Linear programming for flood control inthe Iowa and Des Moines rivers[J]. Journal of Water Resources Planning andManagement,2000,126(3):118-127.
    [23] Shim K. C., Fontane D., Labadie J. Spatial decision support system for integratedriver basin flood control[J]. Journal of Water Resources Planning andManagement,2002,128(3):190-121.
    [24]张庆华,颜宏亮,宋学东,李鹏.多水库联合供水的优化调度方法[J].人民长江,2006,37(2):30-32.
    [25] Lidgate, D., Amir, B. H. Optimal operational planning for a hydro-electricgeneration system [C]. IEE Proceedings C: Generation Transmission andDistribution.1988,135(3):169-181.
    [26] Barros M., Tsai R, etc. Optimization of Large-scale hydropower systemoperations[J]. Journal of Water Resource Planning.&Management,2003,129(3):178-188.
    [27] Franco P, Carvalho M F, Scares S. A network flow model for short-termhydro-dominated hydrothermal scheduling problems[J]. IEEE Transactions onPower Systems.1994,9(2):1016-1022.
    [28] Mariano SJPS., Catalao JPS., Mendes VMF, et al. Head-dependent maximumpower generation in short-term hydro scheduling using nonlinear programming
    [C]. In: Proceedings of the1-th International Conference on Energy and PowerSystems,2007:247-252.
    [29]邹鹰,宋德敦.水库防洪优化设计模型[J].水科学进展,1994,5(3):167-173.
    [30]张勇传,邮凤山.凸动态规划与水电能源[J].水力发电学报,1983,(3):19-27.
    [31]董增川,许静仪.水电站库群优化调度的多次动态线性规划方法[J].河海大学学报,1990,18(6):63-69.
    [32]黄强.用模糊动态规划法进行水电站水库优化调度[J].水力发电学报,1993,(1):27-36.
    [33] Becker L, Yeh WW-G. Optimization of Real Time Operationof a Multiple-Reservoir System [J]. Water Resources Research,1974,10(6):1107-1112.
    [34]万新宇,王光谦.基于并行动态规划的水库发电计划[J].水力发电学报,2011,30(6):166-170.
    [35] Cervellera C, Chen V.C.P, Aihong Wen. Optimization of a large-scale waterreservoir network by stochastic dynamic programming with efficient state spacediscretization[J]. European journal of Operational Research,2006,171(3):1139-1151.
    [36]任钟淳, PK Ho.用增量动态规划进行联合水资源系统分析[J].水利学报,1994,(9):32-41.
    [37]程春田,郜晓亚,武新宇,高上上.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011,31(10):26-32.
    [38]万俊.大系统分解协调技术及DDDP算法在水库群优化补偿调节中的联合应用[J].水利水电技术,1994,(5):2-5.
    [39]纪昌明,冯尚友.混联式水电站群动能指标和长期调度最优化(运用离散微分动态规划法)[J].武汉水利电力学院学报,1984,(3):.87-95.
    [40]赵铜铁钢,雷晓辉,蒋云钟等.水库调度决策单调性与动态规划算法改进[J].2012,43(4):414-421.
    [41]李爱玲.水电站水库群系统优化调度的大系统分解协调方法研究[J].水电能源科学,1997,15(4):58-63.
    [42]黄志中,周之豪.大系统分解一协调理论在库群实时防洪调度中的应用[J].系统工程理论方法应用,1995,4(3):53-59
    [43]高仕春,万飚,梅亚东,等.三峡梯级和清江梯级水电站群联合调度研究[J].水利学报.2006(4);504-507.
    [44]李亮,黄强,肖燕,等. DPSA和大系统分解协调在梯级水电站短期优化调度中的应用研究[J].西北农林科技大学学报(自然科学版).2005(10):125-128.
    [45]董子敖.水库群调度与规划的优化理论和应用[M].济南:山东科学技术出版社,1989.
    [46] Christiano Lyra, Luiz Roberto. A multiobjective approach to the short-termscheduling of a hydroelectric power system [J]. IEEE Transactions on PowerSystems,1995,10(4):1750-1755.
    [47]李义,李承军,周建中.POA-DPSA混合算法在短期优化调度中的应用[J].水电能源科学,2004,22(1):37-39.
    [48]宗航,周建中,张勇传.POA改进算法在梯级电站优化调度中的研究和应用[J].计算机工程,2003,29(17):105-109.
    [49]刘新,纪昌明,杨子俊,等.基于逐歩优化算法的梯级水电站中长期优化调度[J].人民长江,2010,41(21):32-34.
    [50] Fi-John Chang, Li Chen. Real-Coded Genetic Algorithm for Rule-Based FloodControl Reservoir Management[J]. Water Resources Management,1998,12(3):185-198.
    [51] Chang, J.X., Huang, Q., Wang, Y.M.. Genetic algorithms for optimal reservoirdispatching[J]. Water Resources Management,2005,19:321-331.
    [52] Cheng C-T, Wang W-C, Xu D-M, Chau KW.Optimizing hydropower reservoiroperation using hybrid genetic algorithm and chaos[J]. Water ResourcesManagement,2008,22:895-909.
    [53] Ahmed JA, Sarma AK. Genetic algorithm for optimal operating policy of amultipurpose reservoir[J]. Water Resources Management,2005,19:145–61.
    [54] Jothiparkash V, Shanthi G. Single reservoir operation policies using geneticalgorithm[J]. Water Resources Management,2006,20:917-929.
    [55]罗云霞,周慕逊,曹建.基于遗传算法的梯级小水电优化运行研究[J].华东电力,2003,(7):19-21.
    [56]邹进,张友权.模糊遗传算法在水库长期优化调度中的应用[J].人民长江,2011,42(增刊):50-52.
    [57]陈端,陈求进,陈进.基于改进遗传算法的生态友好型水库调度[J].长江科学院院报,2012,29(3):1-12.
    [58]李想,魏加华,傅旭东.粗粒度并行遗传算法在水库调度问题中的应用[J].水力发电学报,2012,31(4):28-33.
    [59]原文林,吴泽宁,黄强等.梯级水库短期发电优化调度的协进化粒子群算法应用研究[J].系统工程理论与实践,2012,32(5):1136-1142.
    [60]纪昌明,刘方,喻杉等.基于鲶鱼效应粒子群算法的梯级水库群优化调度[J].电力系统保护与控制,2011,39(19):63-68.
    [61]黄炜斌,马光文,王和康.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(1):102-105.
    [62] Nagesh Kumar D., Janga Reddy M. Multipurpose Reservoir Operation UsingParticle Swarm Optimization [J]. Journal of Water Resources Planning andManagement,2007,133(3):192-201.
    [63] Xiaohui Yuan, Liang Wang, Yanbin Yuan. Application of enhanced PSO approachto optimal scheduling of hydro system[J]. Energy Conversion and Management,2008,49(11):2966-2972.
    [64] Yuan X, Zhang Y, Wang L, et.al. An enhanced differential evolution algorithmfor daily optimal hydro generation scheduling[J]. Computers and Mathematicswith applications,2008,25:2458-2468.
    [65]李英海,莫莉,左建.基于混合差分进化算法的梯级水电站调度研究[J].计算机工程与应用,2012,48(4):228-231.
    [66]郑慧涛,梅亚东,胡挺等.改进差分进化算法在梯级水库优化调度中的应用[J].武汉大学学报(工学版),2013,46(1):57-61.
    [67] Li X.G, Wei X. An improved genetic algorithm-simulated annealing hybridalgorithm for the optimization of multiple reservoirs[J]. Water ResourcesManagement,2008,22(8):1031-1049.
    [68] YuChen Chiu, LiChiu Chang, Chang F.J. Using a hybrid geneticalgorithm-simulated annealing algorithm for fuzzy programming of reservoiroperation[J]. Hydrological Processes,2007,21(23):3162-3127.
    [69] Khodabakhshi F, Ghirian A.R, Khakzad N. Applying Simulated Annealing ForOptimal Operation of Multi-reservoir Systems[J]. American Journal ofEngineering and Applied Sciences,2009,2(1):80-87.
    [70]邵琳,王丽萍,黄海涛等.水电站水库调度图的优化方法与应用—基于混合模拟退火遗传算法[J].电力系统保护与控制,2010,38(12):40-49.
    [71]申建建,程春田,廖胜利等.基于模拟退火的粒子群算法在水电站水库优化调度中的应用[J].水力发电学报,2009,28(3):10-15.
    [72]吴杰康,孔繁镍.文化算法及其在梯级水电站长期优化调度中的应用[J].电工技术学报,2011,26(3):182-190.
    [73]谢维,纪昌明,吴月秋.等基于文化粒子群算法的水库防洪优化调度[J].水利学报,2010,41(4):452-457.
    [74]王赢.梯级水库群优化调度方法研究与系统实现[D].博士论文.华中科技大学,2012.
    [75]林剑艺,程春田,于滨等.基于改进蚁群算法的梯级水库群优化调度[J].水电能源科学,2008,26(4):53-55.
    [76]陈立华,梅亚东,杨娜等.混合蚁群算法在水库群优化调度中的应用[J].武汉大学学报(工学版),2009,42(5):661-664.
    [77]徐刚,马光文,梁武湖等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400.
    [78] Jalali M.R, Afshar A, Mari o M.A. Improved ant colony optimization algorithmfor reservoir operation[J]. Scientia Iranica,2006,13(3):295-302.
    [79]白小勇,苏华英,舒凯等.人工鱼群算法在水库优化调度中的应用[J].水电能源科学,2008,26(5):51-53.
    [80] Peng Yong. An improve artificial fish swarm algorithm for optimal operation ofcascade reservoirs[J]. Journal of Computers,2011,6(4):740-746.
    [81]万芳,原文林,黄强等.基于免疫进化算法的粒子群算法在梯级水库优化调度中的应用[J].水力发电学报,2010,29(1):202-206.
    [82] Chang Jianxia, Wan Fang, Huang Qiang, et al. Application of particle swarmoptimization based on immune evolutionary for optimal operation of cascadereservoirs[J]. International Journal of Modelling, identification and Control,2009,8(3):233-239.
    [83]芮钧,梁伟,陈守伦.基于变尺度混沌算法的混联水电站水库群优化调度[J].水力发电学报,2010,29(1):66-71.
    [84] Jothiprakash V, Arunkunmar R. Optimization of hydropower reservoir usingevolutionary algorithm coupled with chaos[J]. Water Resources Management,2013,1-17.
    [85]程玉虎,王雪松,郝名林.一种多样性保持的分布估计算法[J].电子学报,2010,38(3):591-597.
    [86]周树得,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124.49(10):2513-2521.
    [87]武燕.分布估计算法研究及在动态优化问题中的应用[D].博士论文.西安电子科技大学,2009.
    [88] P Larra aga, Lozano, J A.Estimation of Distribution Algorithms:A New Tool forEvolutionary Computation [M].Kluwer Academic Publishers,2002.
    [89] Bajula S. Population-Based Incremental Learning: A Method for IntegratingGenetic Search Based Function Optimization and Competitive Learning[R].Technical Report CMU-CS-94-163, Pittsburgh, Carnegie Mellon University,1994.
    [90] Miihlenbein H. The equation for response to selection and its use for prediction[J].IEEE Transaction on Evolutionary Computation,1998,5(6):303-346.
    [91] Harik G R, Lobo F G, Goldberg D E. The compact genetic algorithm[C].In:Proceeding of the IEEE Conference on Evolutionary Computation. Indianapolis,USA,1998,523-528.
    [92] De Bonet J S, Isbell C L, Viola P. MIMIC: Finding optima by estimating probabilitydensities[J]. Advances in Neural Information Processing Systems,1997,9:424-430.
    [93] Baluja S, Davies S. Using optimal dependency-trees for combinatorial optimization:Learning the structure of the search space[C]. In: Proceedings of the14thinternational Conference on Machine Learning. San Francisco, Morgan Kaufmann,1997,30-38.
    [94] Miihlenbein H, Mahnig T. Convergence theory and applications of the factorizeddistribution algorithm[J]. Journal of Computing and Information Technology,1997,7(1):19-32.
    [95] Pelikan M, Goldbery D E, Cantú-Paz E. Linkage Problem, Distribution Estimation,and Bayesian Networks[R]. University of Illinois at Urbana-Champaign, Urbana,Illinois,1999.
    [96]周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法[J].电子学报,2008,36(6):1242-1248.
    [97] J M Pena,V Robles, P Larra aga, et al. GA-EDA: hybrid evolutionary algorithmusing genetic and estimation of distribution algorithms [A]. The17th InternationalConference on Industrial and Engineering Applications of Artificial Intelligenceand Expert Systems [C]. Heidelberg: Springer Berlin,2004,3029:361-371.
    [98] J Sun,Q Zhang, E Tsang. DE/EDA: a new evolutionary algorithm for globaloptimisation [J]. Information Sciences,2005,169(3-4):249-262.
    [99] El-Abd, M., Kamel, M.S. A cooperative particle swarm optimizer with migration ofheterogeneous probabilistic models[J]. Swarm Intelligence.2010,4(1):57-89.
    [100]刘小龙,李荣钧,杨萍.基于高斯分布估计的细菌觅食优化算法[J]控制与决策,2011,26(8):1333-1238.
    [101] P Koumoutsakos, J Ocenasek, N Hansen, et.al. A mixed bayesian optimizationalgorithm with variance adaptation[A].The8th International Conference onParallel Problem Solving from Nature [C]. Heidelberg:SpringerBerlin,2004,3242:352-361.
    [102] W S Dong,X Yao. Niching EDA: utilizing the diversity inside a population ofEDAs for continuous optimization[A]. IEEE Congress on EvolutionaryComputation [C] NJ: IEEE Piscataway,2008.1260-1267.
    [103] Feng Liu, Yonghua Zeng,et al. Parallel island-based estimation of distributionalgorithms for wireless network planning[A]. Wireless Communications,Networking and Mobile Computing[C].2005.1056-1059.
    [104] J Madera, E Alba, A Ochoa. A parallel island model for estimation of distributionalgorithms[C]. Towards a New Evolutionary Computation. Heidelberg: SpringerBerlin,2006,(192):159-186.
    [105] Bonaert A P, El-Abiad A H, Koivo A J. Optimal scheduling of hydro-thermalpower systems[J]. IEEE Transactions on Power Apparatus and Systems.1972,PAS-91(1):263-270.
    [106]袁晓辉,袁艳斌,张勇传.水火电系统短期发电计划研究[J].华中科技大学学报(自然科学版),2006,34(4):70-72.
    [107] Contaxis GC, Kavatza SD. Hydrothermal scheduling of a multi-reservoir powersystem with stochastic inflows. IEEE Transactions on Power Systems [J].1990,5(3):766-73.
    [108]陈刚,相年得,陈雪青.水火联合电力系统长期优化调度模型与算法[J].水电能源科学,1992,10(1):48-57.
    [109]朱建全,吴杰康.水火电力系统短期优化调度的不确定性模型[J].电力系统自动化,2008,32(6):51-55.
    [110]吴杰康,唐力.含不确定性负荷的水火电力系统随机优化调度[J].中国电机工程学报,2012,32(28):36-43.
    [111] Youlin Lu, Jianzhong Zhou, HuiQin, et.al. Environmental/economic dispatchProblem of Power system by using enhanced multi-objective differential evolutionalgorithm[J], Energy Conversion and Management,2011,52(2):1175-1183.
    [112] Pandit N, Tripathi A, Tapaswi S, et al. An improved bacterial foraging algorithmfor combined static/dynamic environmental economic dispatch[J]. Applied SoftComputing,2012,12(11):3500-3513.
    [113] Liao G C. Solve environmental economic dispatch of Smart Micro-Gridcontaining distributed generation system-Using chaotic quantum geneticalgorithm[J]. International Journal of Electrical Power and Energy Systems,43(1):779-787.
    [114] Jayakumar D N, Venkatesh P. Diversity Preserved Multi-objective EvolutionaryProgramming Algorithm for Environmental/Economic Dispatch Problem[J].International Review of Electrical Engineering,7(4):5174-5185.
    [115] Niknam T, Doagou-Mojarrad H. Multiobjective economic/emission dispatch bymultiobjective theta-particle swarm optimization[J]. IET GENERATIONTRANSMISSION&DISTRIBUTION,6(5):363-377.
    [116] Guan X, Peter B. Nonlinear approximation method in Lagrangian relaxation basedalgorithms for hydrothermal scheduling[J]. IEEE Trans Power Syst1995;10(2):772-778.
    [117] Salam M, Mohamed K. Hydrothermal scheduling based Lagrangian relaxationapproach to hydrothermal coordination[J]. IEEE Trans Power Syst1998;13(1):226-235.
    [118]吴宏宇,管晓宏,翟桥柱,等.水火电联合短期调度的混合整数规划方法[J].中国电机工程学报,2009,29(28):82-88.
    [119] Y.G.Wu, C.Y. Ho, D.Y.Wang. Adiploid genetic approach to short-term schedulingof hydrothermal systems[J], IEEE Trans. Power Syst.2000;15(5):1268-1274.
    [120]伍永刚,张勇传,王定一.水火电混合系统经济调度的双链态遗传算法[J].华中理工大学学报,1997,25(7):94-96.
    [121] S.O. Orero, M.R. Irving, A genetic algorithm modeling framework and solutiontechnique for short-term optimal hydrothermal scheduling[J], IEEE Trans. PowerSyst.13(2)(1998)501-518.
    [122] Yu B, Yuan X, Wang J. Short-term hydro-thermal scheduling using particle swarmoptimization method[J]. Energy Convers Manage2007;48(7):1902-1908.
    [123] P.K. Hota, A.K. Barisal, R. Chakrabarti. An improved PSO technique forshort-term optimal hydrothermal scheduling[J]. Electric Power Systems Research2009;79(2):1047-1053.
    [124] Lakshminarasimman L, Subramanian S. A modified hybrid differential volutionfor short-term scheduling of hydrothermal power systems with cascadedreservoirs[J]. Energy Convers Manage2008;49(10):2513-2521.
    [125] Xiaohui Yuan, Bo Cao b, Bo Yang, Yanbin Yuan. Hydrothermal scheduling usingchaotic hybrid differential evolution[J]. Energy Convers Manage2008;49(8):3627-3633.
    [126] Youlin Lu, Jianzhong Zhou, Hui Qin, Ying Wang, Yongchuan Zhang. An adaptivechaotic differential evolution for the short-term hydrothermal generationscheduling problem[J]. Energy Convers Manage2010;51(3):1481-1090.
    [127] Sinha N, Chakrabarti R, Chattopadhyay PK. Fast evolutionary programmingtechniques for short-term hydrothermal scheduling[J]. Electr Power Syst Res2003;66:97-103.
    [128] Wong K, Wong Y. Short-term hydrothermal scheduling. Part1: simulatedannealing approach[J]. IEE Proc Gener Transm Distrib1994;141(5):497-501.
    [129] Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao.Analysis of ComputationalTime of Simple Estimation of Distribution Algorithms[J].IEEE Transaction onEvolutionary Computation,2010,14(1):1-22.
    [130] P Koumoutsakos, J Ocenasek, N Hansen, et al. A mixed bayesian optimizationalgorithm with variance adaptation[C]. The8th International Conference onParallel Problem Solving from Nature. Heidelberg:SpringerBerlin,2004,3242:352-361.
    [131] Roberto Santana, Pedro Larra aga and Jose A Lozano. protein folding insimplified models with estimation of distribution algorithms[J]. IEEEtransactions on Evolutionary Computation,2008,12(4):418-438.
    [132]刘小龙,李荣钧,杨萍基于高斯分布估计的细菌觅食优化算法[J]控制与决策,2011,26(8):1333-1238.
    [133] Li-Vang, Lozada-Chang, Roberto Santana Univariate marginal distributionalgorithm dynamics for a class of parametric functions with unitationconstraints[J] Information Sciences,2011,181(11):2340-2355.
    [134]武燕,王宇平,刘小雄,冶继民动态优化问题的自组织进化算法[J].控制与决策,2009,24(5):653-662.
    [135] Zinchenko L, Radecker M, Bisogno F Application of the univariate marginaldistribution algorithm to mixed analogue-digital circuit design and optimization
    [C] Applications of Evolutionary Computing Proceedings, Berlin2007:431-438.
    [136] Caponetto R, Fortuna L Chaotic sequences to improve the performance ofevolutionary algorithms[J] IEEE Transactions on Evolutionary Computation.2003,7(3),289-304.
    [137] Tavazoeia M, Haeri M, Comparison of different one-dimensional maps as chaoticsearch pattern in chaos optimization algorithms[J]. Applied Mathematics andComputation2007,187(2),1076-1085.
    [138] El-Abd, M., Kamel, M.S. A cooperative particle swarm optimizer with migrationof heterogeneous probabilistic models[J]. Swarm Intelligence.2010,4(1):57-89.
    [139] Gu Wei, Wu Yonggang, Xiao Xiaohong, et al. A Hybrid Chaotic Estimation ofDistribution Algorithm for Global Numerical Optimization[J]. Journal ofComputational Information Systems,2012,8(14):6087-6094.
    [140] Reynolds R. An introduction to cultural algorithms[A]. Proceedings of the thirdannual conference on evolutionary[C]. River Edge, New Jersey, USA,1994,131-139.
    [141]卢有麟,周建中,李英海,等.混沌差分文化算法及其仿真应用研究[J].系统仿真学报,2009,21(16):5107-5111.
    [142] Sharma V., Jha R., Naresh R. Optimal multi-reservoir network control bytwo-phase neural network[J]. Electric Power Systems Research,2004,68:221-228.
    [143]覃辉.流域梯级水电站群多目标联合优化调度与多属性风险决策[D].博士论文.华中科技大学,2011.
    [144] Sharma V., Jha R., Naresh R. Optimal multi-reservoir network control byaugmented Lagrange programming neural network[J].Applied Soft Computing,2007,7:783-790.
    [145] Markos papageorgiou. Optimal multi-reservoir network control by the discretemaximum principle [J]. Water Resources Research,1985,21(12):1824-1830.
    [146] Yuan X, Wang L, Zhang Y, and Yuan Y, A hybrid differential evolution methodfor dynamic economic dispatch with valve-point effects[J]. Expert Syst. Appl.,.2009,36(2):4042-4048.
    [147] Wang Y, Zhou J, Qin H, and Lu Y, Improved chaotic particle swarmoptimization algorithm for dynamic economic dispatch problem withvalve-point effects[J]. Energy Convers Manage,2010,51(12):2893-2900,.
    [148] C.K.Panigrahi, P.K. Chattopadhyay, R.N.Chakrabarti, and M.Basu, Simulatedannealing technique for dynamic economic dispatch[J]. Electric PowerComponents and Systems,2006,34(5):577-586,.
    [149] S.Hemamalini, and Sishaj P.Simon, Dynamic economic dispatch using artificialbee colony algorithm for units with valve-point effect[J]. Euro Trans ElectrPower,2011,21(1):70-81.
    [150] Panigrahi B, Ravikumar PV, and Sanjoy D., Adaptive particle swarmoptimization approach for static and dynamic economic load dispatch[J]. EnergyConvers. Manage,2008,49(6):1407-1415.
    [151] Hemamalini S, and Simon SP, Dynamic economic dispatch using artificialimmune system for units with valve-point effect[J]. Int J Elect Power EnergySyst.,2011,33(4):868-874.
    [152] Hemamalini S, and Simon SP., Dynamic economic dispatch using Maclaurinseries based lagrangian method[J]. Energy Convers Manage,2010,51(11):2212-2219.
    [153] Alsumait J, Qasem M, Sykulski J, and Al-Othman A., An improved patternsearch based algorithm to solve the dynamic economic dispatch problem withvalve-point effect[J]. Energy Convers Manage,2010,51(10):2062-2067.
    [154] Manoharan P, Kannan P, Baskar S, Willjuice IM, and Dhananjeyan V.,Covariance matrix adapted evolution strategy algorithm-based solution todynamic economic dispatch problems[J]. Eng. Optim.,2009,41(7):635-657.
    [155] Behnam Mohammadi-ivatloo, Abbas Rabiee, and Mehdi Ehsan, Time-varyingacceleration coefficients IPSO for solving dynamic economic dispatch withnon-smooth cost function, Energy Conversion and Management[J].2012,56:175-183.
    [156] B. Balamurugan, and R. Subramanian, Differential evolution-based dynamiceconomic dispatch of generating units with valve-point effects[J]. Elect. PowerCompon. Syst.,2008,36(8):828-843.
    [157] Balamurugan R, and Subramanian S., An improved differential evolution baseddynamic economic dispatch with non-smooth fuel cost function[J]. J. ElectricalSystems,2007,3(3):151-161.
    [158] Yuan X, Wang L, Yuan Y, Zhang Y, Cao B, and Yang B., A modifieddifferential evolution approach for dynamic economic dispatch with valve pointeffects[J]. Energy Convers. Manage,2008,49(12):3447-3453.
    [159] Dakuo H, Dong G, Wang F, and Mao Z, Optimization of dynamic economicdispatch with valve-point effect using chaotic sequence based differentialevolution algorithms[J]. Energy Convers Manage,2011,52(2):1026-1032.
    [160] Lu Y, Zhou J, Qin H, Wang Y, and Zhang Y, Chaotic differential evolutionmethods for dynamic economic dispatch with valve-point effects[J]. Eng Appl.Artif. Intell.,2011,24(2):378-387.
    [161] Victoire T, and Jeyakumar A., A modified hybrid EP-SQP approach for dynamicdispatch with valve-point effect[J]. Int. J Elect Power Energy Syst.,2005,27(8):594-601.
    [162] T.A.A. Victoire, and A.E. Jeyakumar, Reserve constrained dynamic dispatch ofunits with valve-point effects[J]. IEEE Trans. Power Syst.,2005,20(3):1272-1282.
    [163] Pandi VR, and Panigrahi BK., Dynamic economic load dispatch using hybridswarm intelligence based harmony search algorithm[J]. Expert Syst. Appl.,2011,38(7):8509-8514.
    [164] M. BASU. Hybridization of artificial immune systems and sequential quadraticprogramming for dynamic economic dispatch[J]. Elect Power Compon. Syst.,2009,37(9):1036-1045.
    [165] Victoire T, and Jeyakumar A., Deterministically guided PSO for dynamicdispatch considering valve-point effect[J]. Elect Power Syst. Res.,2005,73(3):313-322.
    [166] Yuan X, Su A, Yuan Y, Nie H, and Wang L., An improved PSO for dynamic loaddispatch of generators with valve-point effects[J]. Energy,2009,34(1):67-74.
    [167] S.Chakraborty, T.Senjyu, A.Yona, A.Y. Saber, and T. Funabashi, Solvingeconomic load dispatch problem with value-point effects using a hybrid quantummechanics inspired particle swarm optimisation[J]. IET Generation,Transmission&Distribution,2011,5(10):1042-1052.
    [168] Lakshminarasimman L, Subramanian S. Short-term scheduling of hydrothermalpower system with cascaded reservoirs by using modified differentialevolution[J]. IEE Proc Gen Transm Distr2006;153(6):693-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700