用户名: 密码: 验证码:
B68拮抗机理及在蕉果上定殖规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1香蕉冠腐病菌致病机制研究
     应用分光光度法对活体内外半裸镰刀菌产生的细胞壁降解酶进行活性分析,初步明确了果胶酶类和纤维素半纤维素酶类在该菌侵染香蕉果实过程中起关键作用。
     1.1活体外半裸镰刀菌产生的细胞壁降解酶活性的变化
     随着培养天数的增加F.s分泌的PME和PGTE的活性在第3d呈现急剧上升趋势,前者总是先于后者到达峰值,Cx和β-G的活性都于第二天开始显著增强,Cx也是先于β-G到达峰值。前期各种酶活性上升的很快,接着所有酶在达到培养期间的最大值后,都陆续开始下降。
     1.2活体内细胞壁降解酶活性的变化
     蕉梳切口接种F.s后,接种组织内没有检测到PG, PMG活性,而PME、PGTE、PMTE活性迅速增高,PME活性的最大值要先于PGTE和PMTE到达,说明PME在时间上要先于果胶裂解酶产生。果指切口受病原菌侵染后,Cx和β-葡萄糖苷酶活性迅速增加,同时由于Cx两次活性高峰出现的都比β-G出现的早,表明其对寄主细胞壁降解先于β-葡萄糖苷酶。而半纤维素酶(β-D-Xyl)尽管在相对数值上要小于纤维素酶,但在病菌侵染寄主组织产生半纤维素酶的时序性上却要先于纤维素酶。
     1.3 B68发酵滤液对F.s细胞壁降解酶活体外合成的影响
     当发酵滤液浓度为50%时,完全抑制了半裸镰刀菌的各种果胶酶的合成,但没有完全抑制Cx和β-葡萄糖苷酶,β-D木聚糖苷酶合成。除PG和PMG之外的六种酶在几种浓度处理下的酶活性均与对照达极显著差异,而PG和PMG也在除5%浓度处理外的其它四种浓度处理下与对照达极显著差异。
     2.拮抗菌处理后香蕉果实抗病机制研究
     选择抗氧化物酶类APX, SOD, POD, CAT和防御酶类PPO, PAL,β-1-3葡聚糖酶,几丁质外切酶,几丁质内切酶作为抗病性反应的指标,对接种半裸镰刀菌(F.s)和拮抗菌(B68)后香蕉果实内这些酶活性水平变化进行比较,结果表明,抗氧化物酶类:拮抗菌(B68)+半裸镰刀菌(F.s),拮抗菌(B68),半裸镰刀菌(F.s)三个处理的POD活性最先于第三天达到最大值,B68和F.s处理的SOD活性于第四天达到最大值,三个处理的CAT和APX活性分别于第5d和第6d达到最大值。B68+F. s和F.s处理的PAL活性于第3d达到最大值,而三个处理的PPO活性于第5d和三个处理的β-1-3葡聚糖酶,几丁质外切酶,几丁质内切酶活性于第6d都分别达到极大值。这些酶活性高峰出现的早迟可能与它们在植物体内所起作用的时间有关。比较不同接种处理诱导产生各种酶活性的强弱可发现在大多少时间内B68+F. s处理的酶活性要大于其他处理的酶活性。
     拮抗菌十病原菌处理的木质素和HRGP含量都于第四天达到最大值,F.s和B68处理的HRGP含量于第5d到达最大值,而F.s和B68处理的木质素含量都于第7d达到极大值,在整个试验期间B68+F. s处理的木质素和HRGP含量均高于另外两个处理的木质素含量和HRGP含量。
     β-1,3-葡聚糖酶,几丁质酶,β-1,3-葡聚糖+几丁质3种粗酶液在体外对半裸镰刀菌孢子萌发的抑制程度表现不同,混合酶的抑制作用最强要显著大于单一酶液的抑制作用,当粗酶液浓度为50%时,抑制率达到90.43%,孢子萌发抑制率(Y)和混合酶液浓度(X), Y=l.5093X+14. 686, R2=99.29%说明随着混合酶液浓度提高,孢子萌发抑制率按线性规律下降。
     3.B68在香蕉果实表-面的定殖及其部分增效因子增效作用机制研究
     生防菌B68在香蕉果表的定殖与引进浓度、接种灰霉病菌时间和环境因子有关,拮抗细菌在香蕉果表的定殖能力与最初引进的细菌浓度呈正相关,即引进的浓度越高,定殖时间越长,定殖的菌量也越大。与对照相比,接种半裸镰刀菌对B68的定殖有一定的影响。但是,先接种B68后接种半裸镰刀菌(间隔ld)要比B68与半裸镰刀菌同时接种以及先接种半裸镰刀菌后接种B68影响小。这表明半裸镰刀菌与1368间存在营养、空间的竞争,这也显示生防菌B68在冠腐病害发生前使用要比发生后使用效果好。试验得出,最有利于细菌定殖的条件是温度25℃-30℃,相对湿度95%-100%。初步研究了分散剂和湿润剂类增效因子对枯草芽孢杆菌B68的促生长作用、增效因子引起B68在香蕉果实上的定殖差异。结果发现:NNO、木质素磺酸钠、CMC、茶皂素、皂角粉、SDS6种增效因子可不同程度地促进芽抱杆菌生长:分散剂MF、湿润剂茶皂素在香蕉果实贮藏期均可促进生防细菌B68在果面的定殖。
1.Study on the Pathogenesis of Fusarium semitectum
     Activities of the cell wall degrading enzymes(CWDEs)produced by Fusarium semitectum both in vitro and in vivo were studied.The results primarily demonstrated that pectinase enzymes and cellulose and hemicellulose play a key role in the process of infecting banana fruit by F.s. 1.1 Changes in activities of CWDE produced by F.s. in vitro PME and PGTE activities showed a sharp rise trend in the third day produced by F.s with the increase of culturing days,the former always precede the latter to reach the peak,, Cx, andβ-G activity both significantly enhanced in the next day,Cx always precedeβ-G to reach the peak. Enzyme activities increased quickly in the early days,and then all the enzymes began to come down when they had reached the maximum during the incubation period,
     1.2 Changes in activities of CWDE produced by F.s. in vivo
     inoculated tissue hadn't been detected PG, PMG activity when banana comb incision was inoculated by F.s, while PME, PGTE, PMTE activity increased rapidly,while the maximum of PME arrived prior to PGTE, PMTE. Cx, andβ-glucosidase activity in the incision spot increased rapidly after being infected by F.s,it bad been demonstrated that Cx degrade the cell wall beforeβ-glucosidase owing to twice peak of Cx activity prior toβ-G activity.Alougth the semi-cellulose (β-D-Xyl) was lower than the cellulose in the relative value,the former emerged before the latter on the timing.
     1.3 The effect of ferment filtrate of B68 on the synthesis of CWDE produced by F.s in vitro
     When the concentration of fermentation filtrate come to 50%, the synthesis of pectinase had been completely inhibited, but did not completely inhibit the Cx andβ-glucosidase.β-D xylan glycosidase synthesis.the six enzymes activities in addition to PG,PMG differed significantly from the CK in several kinds of treatment concentration, while the PG,JPMG activities differed significantly from the CK in four kinds of treatment concentration except 5% concentration treatment.
     2.Study on the disease resistance mechanism after being treated with antagonist and pathogen
     Selecting antioxidant enzymes APX, SOD, POD, CAT and defense enzymes PPO, PAL.β-1-3 glucanase, chitinase exonuclease, chitinase enzyme reaction as a disease resistance Indicators,the change in the level of enzyme activities in the banana fruit after been inoculated by the F.s and B68 had been compared.The results showed that antioxidant enzymes:POD activity under the treatment of antagonists (B68)+Fusarium semitectum (Fs). antagonists (B68), Fusarium semitectum (Fs) firstly reached the maximum on the third day,SOD activity under the treatment of antagonists (B68), Fusarium semitectum (Fs) reached the maximum on the fourth day,CAT and APX activities with the four treatments reached the maximum on the fifth and sixth day respectively. PAL activity under the treatment of B68+F.s and F.s reached the maximum on the third day,PPO activity with three treatment andβ-1-3 glucanase, exon-chitinase,endo-chitinase activities with three treatment reached the maximum on the fifth and sixth day respectively.The peak of enzyme activity may occur relevant to their functioning time in banana.varieties of enzyme activities.Comparison of he strength of varieties of enzyme activities induced by different inoculation can be found that many of the enzyme activities dealt with the B68+Fs was larger than the enzyme activities of other treatments.in large amount of time.
     The content of lignin and HRGP after being inoculated with B68+F.s reached the maximum value on the fourth day.the content of HRGP inoculated with F.s and B68 peak at fifth day,while the content of lignin inoculated with F.s and B68 both peak at seventh day.the content of lignin and HRGP inoculated with B68+F.s were higher than those inoculated with F.s and B68
     β-1,3-glucanase, chitinase,β-1,3-glucan+chitin presented different inhibition to spore germination. The mixture ofβ-1,3-glucanase and chitinase presented obvious inhibition to spore germination. Inhibition of the mixture was significantly higher than that of singleβ-1,3-glucanase.when the crude enzyme concentration reached 50%, the inhibition rate reached 90.43 percent, spore germination rate (Y) and mixed enzyme concentration (X). Y= 1.5093X+14.686, R2= 99.29%, spore germination rate decreased by a linear law with increase of mixture of enzyme concentration.
     3.Bs68 on the colonization of banana fruit surface and study on the machanism upon part of synergistic factor
     The colonizing ability of B68 was related to temperature,humidity,introduced bacterial concentration and inoculation pathogen.The colonizing capacity of antagonistic bacterium on fruit surface had positive relationship to the introduced bacterial concentration. the higher concentration of the introduction, the longer colonization is, the greater amount of bacteria colonization is.Inoculation F.s had some influences on the colonization of antagonistic bacterium.The bacterial amount of inoculating pathogens after introducing bacteria was more than that of inoculating pathogens and bacteria together and introducing bacteria after pathogens.This indicated that there existed nutrition, space competition,which also showed the use of B68 prior to occurrence of banana crown rot was superior to the use of B68 later on occurrence of banana crown rot.It had been concluded that the most favorable conditions for bacterial colonization was 25℃-30℃,the relative humidity was 95%-100%.It had been preliminarily studied the effect of dispersant and wetting agent class as synergistic factor on the promoting B68 growth,the effect of synergistic factor on the B68 colonization differences.The results showed that:NNO, Lignin sulfonate, CMC, tea saponin, saponins powder, SDS 6 species of factors may contribute to the growth of Bacillus spores by degree.dispersing agent MF, tea saponin wetting agent could promote colonization of bacterial strain B68 on the surface of storage life of banana fruit.
引文
[1]Wood R K S.Physiological Plant Pathology[M].Oxford:Blackwell Scientific Publi.,Ltd.1967
    [2]李宝聚,周长力,赵奎华,等.黄瓜黑星病菌致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用[J].植物病理学报,2001,31(1):63-69
    [3]Sathyanarayana N Gummadi.T Panda.Purification and biochemical properties of microbial pectinases-a review.Process Biochemistry 2003,38:987-996.
    [4]M Carmen Ruiz,Antonio Di Pietro.M Isabel G Roncero.Purification and characterization of anacidic endo-β-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f.sp.Lycopersici.FEMS Microbiology Letters.148(1):75-82.
    [5]Lalaoui F, Halama P,Dumortier V,et al.Cell wall-degrading enzymes produced in vitro by isolates of Phaeosphaeria nodorum differing in aggressiveness.Plant Pathology.2000,49(6):727-733.
    [6]Showalter A M.Structure and Function of Plant Cell Wall Proteins[J].Plant Cell,1993.5:9-23.
    [7]Cooper R.M,Longman D,Campbell A,et al.Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall[J].Physio Mol Plant Pathol,1988,32:33~47.
    [8]冯书亮,王容燕,林开春,张用梅,杜立新,范秀华,曹伟平.拮抗细菌Bs一208菌株鉴定及对几种植物病原茵的抑菌测定.[J]中国生物防治,2003,19(4):171—174
    [9]何红.辣椒内生枯草芽抱杆菌(Bacillus subtilus)防病促生作用的研究.[D]2003,福建农林大学博士学位论文.
    [10]陈志谊,高太东,倪寿坤,陆凡,史阿宝.枯草芽抱杆菌B—916防治水稻纹枯病的田间试验.[J]中国生物防治.1997,13(2):75—75
    [11]Baker C J,stavely J R.Biocontrol of bean rust by Bacillus subtilus under field conditions.Plant Disease,1985,69(9):770-772
    [12]林福呈,李德葆.枯草芽抱杆菌(Bacillus subtilus)S9对植物病原真菌的溶菌作用.[J]植物病理学报.2003,33(2):174—177
    [13]Algam A S,Xie G L,Li B,Hao X J,Jef,Liu B.Biocontrol of bacterial wilt of tomato by Bacillus spp.under greenhouse environment. [J]Acta Phytopathologica sinica.2006.36(1):80-85
    [14]Ryu C M,Murphy J F,Mysore K S.Plant growth-promoting rhizobacteria systemically protect Arabidopis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. [J]Plant journal,2004,39(3):381-392
    [15]丁国春,付鹏,李红梅,郭坚华.枯草芽抱杆菌AR11菌株对南方根结线虫的生物防治.[J]南京农业大学学报,2005,28(20):46—9
    [16]Asaka O,Shoda M.Biocontrol of Rhizoctonia silani damping-off of tomato with Bacillus subtilus RB 14.[J]Appl environ Microbiol, 1996.62(11):4081-4085
    [17]张学君,凌宏通,李洪连,王金生.生物农药麦丰宁B3对小麦纹枯病的抑制作用.[J]植物病理学报,1994,24(4):361-366
    [18]Wilson C.L.Pusey P.L.Potential for biological control of postharvest plant diseases[J].Plant Disease,1985,69:375~378
    [19]KORSTEN L, JAGER EE-de.Mode of action of Bacillus subtilis for control of avocado postharvest pathogens[J].Yearbook South African Avocado Growers' Association,1995, 18:124-130.
    [20].KORSTEN L, DE VILLIERS E E, Wehner F C.Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa[J].Plant Disease,1997,81 (5):455-459.
    [21]蒋跃明等.生物菌剂防治荔枝采后病害的初步研究[J].果树科学,1997,14(3):185-186
    [22]凌筝.地衣芽孢杆菌对部分水果采后病害生防机理及其防病作用研究[D].2006,扬州大学硕士学位论文.
    [23]谭志琼,淦国英,张荣意.枯草芽孢杆菌B68对香蕉果实潜伏炭疽菌的抑制作用[J].广西热带农业,2006(5):1-4.
    [24]王星云,宋卡魏,张荣意.枯草芽孢杆菌B68拮抗物质对香蕉冠腐病菌的抑菌作用及其稳定性测定[11].中国生物防治.2007,23(4):391-393.
    [25]赵白鸽,孔建,王文夕,申效诚.枯草芽孢杆菌B-903对苹果轮纹菌的抑菌作用及其对病害的控制效果[J].植物病理学报,1997,27(3):213-214.
    [26]杨佐忠,叶建仁.寿古草芽孢杆菌PRS5菌剂控制水果贮藏期病害的研究[J].南京林业大学学报:自然科学版,2006,30(1):89-92.
    [27]辛玉成,秦淑莲,李宝笃,尹士采,丁锡花,雷彩霞.枯草芽孢杆菌XM16菌株制剂对苹果霉心病的防治及病原的抑制作用[J].植物病理学报,2000,30(1):66-70.
    [28]STEIN T.Bacillus subtilis antibiotics structures, syntheses and specific functions[J].Molecular Microbiology,2005,56:845-857.
    [29].KATZ E, DEMAIN A L.The peptide antibiotics of Bacillus:chemistry, biogenesis,and possible functions[J].Bacterial Review,1977,41:449-474.
    [30]范青,田世平,李永兴,徐勇,汪沂.枯草芽孢杆菌(B-912)对桃和油桃褐腐病的抑制效果[J].植物学报,2000,42(11):1137-1143.
    [31]范青,田世平,李永兴,汪沂,徐勇,李久蒂.枯草芽孢杆菌(Bacillus subtilis) B-912对采后柑桔果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(4).343-348.
    [32]GUELDER R C, REILLY C C, PUSEY P L.Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis[J].Journal of Agricultural Food Chemistry,1988,36 (4):366-370.
    [33]ZHANG Jing, GONG Meng, YUAN Yu, YANG Hao, LU Yan-rong, CHENG Jing-qiu.Biological control of Bacillus subtilis PY-1 on the reduction of green mold disease on citruses[J].Modern Preventive Medicine,2008,35 (5):858-859.
    [34]檀根甲,李增智,薛莲,李丽.枯草芽孢杆菌和丙环唑对采后苹果炭疽病的防治效果[J].激光生物学报,2008,17(2):245-250.
    [35]ONGENA M, JACQUES P, TOUREY, DESTAIN J, JABRANE A, THONART P.Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis[J].Appllied Micro-biology Biotechnology,2005,69:29-38.
    [36]齐东梅,惠明,梁启美,牛天贵.枯草芽孢杆菌H110对苹果梨采后青霉病和黑斑病的抑制效果[J].应用与环境生物学报,2005,11(2):171-174.
    [37]穆常青,潘玮,陆庆光,蒋细良,朱昌雄.枯草芽孢杆菌对稻瘟病的防治效果评价及机制初探[J].中国生物防治,2006,22:158-160.
    [38]PRUSKY D, FREEMAN S, DICKMAN M B.Collectotrichum host specificity, pathology and host-pathogen interaction[M].St.Paul:APS Press,2000.
    [39]史凤玉,朱英波,吉志新,宋士清.枯草芽孢杆菌QDH-1-1对采后苹果青霉病的抑制效果[J].中国食品学报.2007,7(4):80-84.
    [40]赵妍,邵兴锋,屠康,陈继昆.枯草芽孢杆菌(Bacillus sublilis)B10对采后草莓果实病害的抑制效果[J].果树学报,2007,24(3):339-343.
    [41JSTICHER L, MAUCH-MANIB, METRAUX J P.Systemic acquired resistance[J].Phytopathology,1997 (35):235-270.
    [42]BENHAMOUN, REYP, CHERIF M, et al.Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-relatedreactions in tomato roots when challenged with Fusarium oxysporum f.sp.Radicis-lycopersici[J].Phytopathology,1997 (87):108-122.
    [43]DROBY S, VINOKUR V, WEISS B, et al.Induction of resistance toPenicillium digitatum in grapefruit by the yeast biocontrol agent, Candidaoleophila[J].Phytopathology,2002 (92): 393-399.
    [44]BENHAMOU N, BRODEUR J.Pre-inoculation of Ri TDNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection[J].Physiological and Molecular Plant Pathology,2001 (58):133-146.
    [45]BENHAMOUN.Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of greenmold:A comparison with the effect of chitosan[J].Phytopathology,2004 (94):693-705.
    [46]檀根甲.枯草芽孢杆菌BS80-6对苹果采后炭疽病的控病效果及作用机制[J].植物保护学报,2008,35(3):228-232.
    [47]高伟.海洋芽孢杆菌B-9987生物防治机制研究[M].青岛科技大学
    [48]秦国政.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导[J].中国农业科学,2003,36(1):89-93.
    [49]杜良成,王钧.病原相关蛋白及其在植物抗病中的作用[J].植物生理学报,1990(4):1-6.
    [50]URITANI I.Protein changes in diseased plants[J].Phytopathology,1971 (9):211-234.
    [51]徐韶.内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性[J].中国生物防治,2005,21(4):254-259.
    [52]范青.果实采后病害生物防治及其机理研究[M].中国科学院植物研究所.
    [53]Jijakli, M.H.and LePoivre, P. Characterization of an exo-β-1-3-Glucanase produced by Piehia anomala strain K, antagonist of Botrytis cinerea on Apples.Biologieal Control.1998.88:335—343.
    [54]余朝阁,李天来,杜妍妍,等.植物诱导抗病信号传导途径[J].植物保护,2008,34(1):1-8.
    [55]COMPANT S, DUFFY B, NOWAK J, et al.Use of plant growth promoting bacteria for biocontrol of plant diseases:Principles, mechanisms of action, and future prospects[J]. Applied and Environm ental Microbiology,2005,71 (9):4951-4959.
    [56]鹿秀云,马平,董金皋,等.拮抗细菌C-28在棉苗体内定殖与传导[J].华中农业大学学报,2002,21(4):359-36]
    [57]仝赞华,郭荣君.生防菌AS(818)抗药性标记株在大豆根际定殖[J].微生物学通报,2001,28(4):40-44
    [58]余国运,唐文华,陈延熙.增产菌在小麦叶面定殖的研究[J].生物防治通报,1992,8(2):83-86
    [59].张学君,赵君,王金生.枯草芽胞杆菌B3菌株对小麦根系和茎基部的定殖作用研究[J].生物防治通报,1994,10(4):171-174
    [60]吴蔼民,顾本康,傅正擎,等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物病理学报,2901,31(4):289-294
    [61]吴亚鹏等.生防细菌13-1对魔芋软腐病的控制及机理研究[J].中国生物防治,2010,26(2)193-199.
    [62]Misaghi I J and Donndelinger C R.Endophytic bacteria in symptom-free cotton plants[J].Phytopathology,1990,80(9):808-811
    [63]Chen C,Bauske E.M,Musson G et al.Biological control of Fusarium wilt on cotton by use of endophytic bacteria[J].Biol.Control.,1995,5:83-91
    [64]李湘民,许志刚.井冈霉素对混剂中拮抗细菌B-5423-R和稻株上土著细菌群体数量的影响[J]植物保护学报,2007,34(6):657-658
    [65]李湘民,许志刚.拮抗细菌菌株Pseudomonas fluorescens 7-14在水稻植株上的时间、空间定殖型[J]植物病理学报,2003,33(5):468-473
    [66]孙建波等.拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响[J]热带作物学报,2010,31(2)212-215.
    [67]冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学[J].中国生物化学与分子生物学报,2002,18(1):85-91
    [68]刘云霞,张青文,周明牂.电镜免疫胶体金定位水稻内生细菌的研究[J].农业生物技术学报,1996,4(4):354-358
    [69]高增贵.庄敬华,陈捷等.应用免疫胶体金银染色技术定位玉米内生细菌[J].植物病理学报,2005,35(3):262-266
    [70]Qazi S N A. Rees C E D, Mellits K H,et al. Development ofgfpvectors for expression inListeria mono-cyttogenesand other low G+C gram positive bacteria[J].Microbial Ecology. 2001,41(4):301-309.
    [71]Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP)[J]. Gene,1996,173:33-38.
    [72]Errampalli D, Leung K, Cassidy M B,et al. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms [J]. Journal of Microbiological Methods,1999,35:187-199.
    [73]田涛,元雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-351
    [74]杨震元,赵军等用gfp基因标记法研究金龟子绿僵菌在玉米根际的定殖动态[J].中国生物防治,2009.25(3)215—219.
    [75]O'Toole G A, Kolter T. Mol Microbiol[J],1998a,30:295-304
    [76].O'Toole G A, Kolter R. Mol Microbiol[J],1998b,28:449-461
    [77]胡小加.刘胜毅, Daniel Roberts.中国油料作物学报[J],2002,24(4):54-56
    [78]Chin-A-WoengTF C, de Priester W, van der Bij A J, et al. Mol Plant-Microbe Interact[J], 1997,10:79~6
    [79]SimonsM. van der Bij A J, Brand I, et al. Mol Plant-Microbe Interact[J],1996,9:600-607
    [80]Lugtenberg B, Kamilova F. Annual Review of Microbiology[J],2009,63:541-556
    [81].Appleby J L, Parkinson J S, Bourret R B. Cell[J],1996,86:845-848
    [82]de Weert S, Vermeiren H, Mulders I HM, et al. Mol Plant-Microbe Interact[J],2002,15: 1173-1180
    [83]Compant S, Duffy B, Nowak J, et al. Applied and Environmental Microbiology[J],2005, 71:4951-4959
    [84]Haas D, Defago G. Nature ReviewsMicrobiology[J],2005,3:307-319
    [85]Raaijmakers J M, Paulitz TC., Steinberg C, et al. Plant and Soil[J],2008,321:341-361
    [86]van Loon L, Bakker P AHM. Biocontrol and Biofertilization[M]. Dordrecht:Springer, 2005.39-66
    [87]Trust T J. Antimicrobial Agents and Chemotherapy [J],1975,7:500-506
    [88]Gutterson N,Howie W and Suslow T.Enhancing effects of biocontrol agents by use of biotechnology[J].In:Baker R R and Dunn P edus.New Directions in Biological Control Alternatives for Suppressing Agricultural Pestsand Diseases.New York:Alanl:R.Liss,Inc,1990,749-765.
    [89]Dughri MHand BottomleyPJ.1984.Soilacidity and the composition of an indigenous population of Rhizobium trifolii in nodules of different cultivars of Trifolium subterraneum L.Soil Biol Biochem,16:405-411.
    [90]Snimoff W. A. The possible use of Bacillus thuringiensis plus chitinase formation for the control of spruce budworm outbreak.New york Entomological Society,1993(6):196-200.
    [91]邱立友.链霉菌A048几丁质酶的性质及其对苏云金杆菌杀虫的增效作用.武汉大学学报(自然科学版),1998,44(增刊):133—134.
    [92].阿地力.低温条件下苏云金芽抱杆菌增效剂的研究,林业科学研究,2005,18(1):70-73
    [93]Nicoie Benhamou,Joseph W.Kloepper,Sadik Tuzum.Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain:ultrastructure and cytochemistry of the host response. Plant,1998(204):153-198
    [94]Veena Jain,Kaushalya Gupta.The flavonoid naringenin enhances intercellular colonization of rice roots by Azorhizobium caulinodans.Biol Fertil Soils,2003(38):119-123.
    [95]Ruth Fuetsky,D.shtienberg,Y.Elad,et al.Improving Biological Control by Combining Biocontrol Agents Each with several Mechanisms of Disease Supression.Phytopathology;2002,92(9):976-985.
    [96]方中达.植病研究方法[M].北京:中国农业出版社,1998.
    [97]Marcus.. L, Barash I, Sneh B, et al. Purification and characterization of theendo-polygalactu-ronases and pectinesterases of the fungus Botrytis cinerea Pers[J]. Physiol. Plant Pathol.,1983,23:1-13.
    [98]Marcus L, Barash I, Sneh B, et al. Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn[J]. Physiol. and Mol. Plant Pathol.,1986,29:325-336.
    [99]Jeng-sheng Huang Lecture outlines and laboratory Manual for Plant Pathogenesis[M]. North Carolina State University, Raleigh, NC,1989
    [100]吴洁云.重蕴慧,徐敬友,灰葡萄孢角质酶、胞壁降解酶种类及其对番茄植株的致病作用[D].扬州:扬州大学,2007,24.
    [101]李宝聚,周长力,陈红漫.黄瓜黑星病菌致病机理的研究Ⅱ细胞壁降解酶及其在致病中的作用[J]植物病理学报,2000,30(1):14-18
    [102]YOSHIOKA H,KASHIMURA Y,KANEKO K.β-D-Galactosidase and α-L-arabinofuranosidase activities during the softening of apples[J].Journal of the Japanese Society for Horticultural Science,1995,63(4):871-878.
    [103]X.H.波钦诺克,(荆家海,丁钟荣译).植物生物化学分析方法[M].北京:科学出版社,1981,178-181.
    [104]李建华,李雄彪.细胞壁的制备及其羟脯氨酸含量的测定[J].植物生物学通讯.1993.29(5):363-365.
    [105]Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiology,22(5):867-880.
    [106]Polle A,Tilman T,Seifert F.Apoplastic peroxidases and lignification in needles of Norway Spruce(Picea abies L).[J]Plant Physiology,l994,53-60.
    [107]AebiH.Catalasein vitro.[J]Methods Enzymology,1984,105:121-126.
    [108]鞠志国,朱广廉.水果贮藏期间的组织褐变问题[J].植物生理学通讯,1988(4):46-48.
    [109]写长志良.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [110]林植芳,李双顺,张东林,等.采后荔枝果皮色素,总酚及有关酶活性的变化[J]植物生理学报,1998.30(1):40-45.
    [111]Mauch F.Hadwiger L A,Boller T.Ethylene:symptom,not signal for the induction of chitinase and β-1,3-glucanase in pea pods by pathogens and elicitors.Plant Physiology,1984,76:607-611.
    [112]汤章城等.现代植物生理学实验指南[M].北京:科学出版社,1999,P.129-130
    [113]蒋跃明.香蕉采后炭疽病发生于几丁质酶,β 1-3葡聚糖酶和多巴胺的关系,植物生理学报.1997,23(2):158-162
    [114]Valette-Collet O.Disruption of Botrytis cinerea pectin methylesterase gene Bcpmel reduces virulence on several host plants.Plant Microbe Interact.2003,16:360-367.
    [115]Ilona Kars,Melysia McCalman,Lia Wagemakers,Jan A L Van kan.Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis:Bcpmel and Bcpme2 are dispensable for virulence of strain B05.10.Molecular Plant Pathology.2005,6(6):641-652.
    [116]Bateman DF, Basham HG (1976). Degradation of plant cell walls and membranes by microbial enzymes. Physiol. Plant. Pathol.4:316-35.
    [117]ten Have A.The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens.In The Mycota Ⅺ:Application in Agriculture.2002:341-358.
    [118]Van Etten H D,Maxwell D P,Bateman D F.Leision maturation,fungal development,and distribution of endopolygalacturonase and cellulase in Rhizoctonia-infected bean hypocotyl tissues. Phytopathology.1967.57:121-126.
    [119]Jayasinghe C K,Fernando T H P S,Priyanka U M S.Production of cell wall degrading enzymes by Corynespora cassiicola in culture and infected rubber tissue.Journal of the Rubber Research Institute of Sri Lanka.1998,81:1-13.
    [120]Marcus L,Barash I,Sneh B,et al.Purification and characterization of pectolytic emzumes produced by virulent and hypovirulent isolates of Rhizoctia solanion Kuhn[J].Physiol and Mol.Plant Pathology,1986,29:325-336
    [121]Lunsden R D.Pectolytic enzymes of Sclerotinia sclerotiorumm and their localization in infected bean[J].Can.J.Bot.,1976,54:2630-2641
    [122].Lorito M,Broadway R M,Hayes C K,et al.Proteinase inhibitors from plants as a novel class of fungicides[J].Mol Plant Microbe Interact, 1994,7:525~527.
    [123].Chigrin,V.V.,Oxidative,lipolytic and protective enzymes in the leaves of rust resistant and susceptible plants of wheat,Fiziologiya Rastenii,1988,35:1198-1208.
    [124]Scheffer,R.J., Mechanisms involved in biological control of Dutch elm disease. J.Phytopathol.1990,130:265-276.
    [125]李靖,等.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277-282.
    [126]李洪连,等.黄瓜对炭疽病诱导抗性的初步研究[J].植物病理学报,1993,23(4):327-332.
    [127]Wessels J G H,Sietsma J H.Fungal cell walls:A survey.In Tannerw,loewus FA(eds),Encyclopedia of plant physicol,New Series,Voll 3B.Springger-Verlag,New York,1981,p.352-394.
    [128]Wessels J G H.Role of cell wall architecture in fungal tip growth generation[M].Tip growth in plant and fungal cell 1911,1~29
    [129]Bonfante P,Perotto S,Testa B,et al.Ultrastructural localization of cell surface sugar residues in ericoid mycorrhixal fungi by gold labeled lectins[J].Protoplasma,1987,137:25~35
    [130]Ziegler E,Pontzen R.Specific inhibition of glucan-elicited glyceollin accumulation in soybeansby an extracellular mannan-protein of Phytophthora megasperma f.sp.glycinea[J].Plant Pathology,1982,20:321-331.
    [131]Kim Y J,Hwang B K.Isolation of a basic 34KD β-1,3-glucanase with inhibitory activity againstPhytophthora capsici from pepper stems[J].Physiology Molecule Plant Pathology,1997,50:103~115.
    [132]Keefe D.planta,1990,182:43~51.
    [133]Kaufimnn S.EMBOJ,1987,6:3209~3212.
    [134]蓝海燕,陈正华.葡聚糖酶及其在植物中的发育调节和防卫反应[J].生物技术通报,1998,4:10~15.
    [135]Anfoka G,Buchenauer H.Systemic acquired resistance in tomato against Phytophtora infestans by pre-inculation with tobacoo necrosis virus[J].Physiology Molecule Plant Pathology,1997,50:85~101.
    [136]Wnbben JP, Joosten MHAJ, Kan JAL, et al.1992.Physiol.Mol.Plant pathol.41:23-32.
    [137]彭于发,王慧敏,彭友良主编.1997.植物病理学研究.中国农业出版社.
    [138]左豫虎,康振生,杨传平等p-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J].植物病理学报,2009,39(6):600-607
    [139]童蕴慧,纪兆林,徐敬友等.灰葡萄孢拮抗细菌在番茄植株体表的定殖[J].中国生物防治,2003,19(2):78-81
    [140]张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定嫡及对灰霉病害的控制效果[J].植物病理学报,2000,30(1):91
    [141]Anderson AJ, Guerea D. Responses of bean to root colonization with Pseudomonas putidain a hydroponic system [J]. Phytopathology,1985,75:992-95.
    [142]Zdor RE, Anderson AJ. Influence of root colonizing bacteria on the defense responses of bean plant soil [J]. Phytopathology,1992,140:99-107.
    [143]Jetiyanon K. Wei G, Tuzun S, Kloepper JW. Induced systemic resistance (ISR) of cucumber by stemjection and seed treatment with PGPR [J]. Phytopathology,1995,85:114.
    [144]Kivirikko KI. Modifications of a specific assay for hydroxyproline in urine.Anal Biochem,1967,18:249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700