用户名: 密码: 验证码:
钛合金扭动微动腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭动微动是在法向载荷下接触副发生的往复微幅相对扭动。扭动微动现象在工业各领域普遍存在,且常运行于特定的腐蚀性介质中。作为4种基本微动运行模式之一的扭动微动,至今研究甚少,已有的研究也都集中在干态,关于液体介质中的扭动微动腐蚀的研究尚未见报道。因此,本研究具有探索未知的科学意义,不仅丰富和发展了微动摩擦学的基本理论,而且对于认识人工关节的损伤失效机理,也有一定的价值。
     论文基于高精度低速往复回转台,外加恒温循环水系统和电化学分析系统,成功研制了恒温扭动腐蚀磨损试验装置,真实模拟了恒温液体介质中的扭动微动腐蚀过程,试验结果有很好的可比性和重现性。
     论文选用人工关节常用材料Ti6A14V合金与ZrO2陶瓷配副,在多种环境(干态、纯水、Saline溶液和Hank's溶液)下系统地进行了的扭动微动磨损和扭动微动腐蚀试验研究。在动力学特性和腐蚀电化学行为分析的基础上,结合表面轮廓仪、光学显微镜(OM)、激光共焦扫描显微镜(LCSM)、扫描电子显微镜(SEM)、电子能谱(EDX)、X射线光电子能谱(XPS)和原子吸收光谱等微观分析手段,系统地研究了钛合金的扭动微动磨损和扭动微动腐蚀的运行与损伤行为,并对磨损与腐蚀的交互作用进行了定性和定量分析。获得的主要结论如下:
     (一)钛合金在模拟体液中的电化学腐蚀行为
     钛合金在两种模拟体液(Saline和Hank's溶液)中都存在较明显的钝化现象,腐蚀速度很低;带缝隙试样的腐蚀速度略高于自由表面试样,但并未出现明显的缝隙腐蚀或孔蚀。缝隙的存在阻碍了试样表面钝态的形成,降低钝态稳定性,从而略微加速钛合金的腐蚀。相同条件下,钛合金在Hank's溶液中的腐蚀电位略高于Saline溶液,腐蚀速度略低。
     (二)钛合金扭动微动磨损运行和损伤机理
     研究建立了空气和纯水两种环境下,钛合金的扭动微动运行工况图。在纯水中,三个运行区域的摩擦扭矩时变曲线显示出不同的规律。由于纯水对钛合金几乎没有腐蚀作用,两种环境下钛合金的扭动微动磨损机理相似,但由于纯水的润滑与排屑作用,二者也存在一些差别:
     (a)部分滑移区:接触中心黏着无损伤,微滑和损伤发生在接触边缘的圆环内,磨痕呈环状,磨痕宽度不随循环次数变化;损伤机制主要表现为接触边缘的轻微磨粒磨损和擦伤。
     (b)混合区:随着循环周次的增加,中心黏着区逐渐缩小,损伤区逐渐向心部扩展,直至完全覆盖整个接触区;磨痕轮廓呈“W”型,干态下磨屑排出困难,存在一定的磨屑层堆积现象。混合区的损伤机理主要是磨粒磨损、氧化磨损和剥层,并伴有轻微的材料转移。
     (c)滑移区:钛合金试样发生较严重的磨损,磨痕呈“U”型轮廓,纯水下轮廓深度更大;两种环境下损伤区都存在较明显材料转移现象,该区的损伤机制主要表现为严重的磨粒磨损、剥层和氧化磨损。
     (三)钛合金扭动微动腐蚀运行和损伤机理
     在两种模拟体液中,钛合金的腐蚀电化学行为与扭动角位移幅值密切相关。当角位移幅值增大到一定程度时,扭动开始后,腐蚀电位负移,腐蚀电流增大;相同载荷下,对Hank's溶液中的钛合金腐蚀电位产生影响所需的最小扭动角位移幅值低于Saline溶液。扭动对钛合金电化学腐蚀的阴极反应影响不大,而对钛合金阳极反应产生显著影响,扭动磨损造成钛合金表面钝化膜破坏,使磨损区露出的新鲜金属成为腐蚀活性点,并导致钛合金试样表面较严重的缝隙腐蚀。
     研究建立了两种模拟体液中钛合金的扭动微动腐蚀运行工况图。与Saline溶液相比,钛合金在Hank's溶液中的混合区向滑移区扩展,宽度大于Saline液。三个运行区域的摩擦扭矩曲线显示出不同的演变规律。
     法向载荷、角位移幅值、循环周次对钛合金的扭动微动腐蚀行为有显著影响。两种模拟体液中的材料损失体积都随角位移幅值和法向载荷增大而增大;在相同试验工况下,Hank's溶液中的损伤体积均大于Saline溶液。在不同微动运行区域,钛合金的扭动微动腐蚀损伤机理存在较大的差异:
     (a)部分滑移区:损伤轻微,主要以磨损为主,腐蚀不明显;磨痕呈环状,损伤机制同干态和纯水。
     (b)混合区:随循环周次的增加,中心黏着区逐渐缩小,损伤区域逐渐向心部扩展,磨痕轮廓主要呈“W”型,存在较明显的腐蚀痕迹。损伤机理主要是磨粒磨损、氧化磨损和剥层,其中在Hank's溶液中还伴有一定的材料转移和电化学腐蚀。
     (c)滑移区:整个接触区自始至终均处于完全滑移状态,发生较严重的损伤,磨痕轮廓呈“U”型,在接触区表面覆盖较厚的磨屑层,并伴有较明显的材料转移现象。损伤机制主要表现为磨粒磨损、氧化磨损和剥层,并伴有较严重的材料转移和电化学腐蚀。
     (四)钛合金扭动微动腐蚀过程中磨损与腐蚀的交互作用
     大量定量分析的结果显示:扭动对腐蚀的加速作用与扭动角位移幅值、法向载荷及介质种类密切相关。在较小角位移幅值下,扭动对腐蚀几乎不产生影响;在较大角位移幅值下,扭动对腐蚀的加速作用显著,且随角位移幅值增大,扭动加速腐蚀增量增大。在相同角位移幅值下,载荷越大,扭动对腐蚀的加速作用增强。在相同工况下,Hank's溶液中扭动加速腐蚀的作用强于Saline溶液。
     腐蚀对磨损的加速作用受载荷控制。在低载荷下,两种模拟体液的腐蚀作用都不会加速钛合金扭动磨损,反而有减缓作用,磨损增量为负;而在高载荷下,获得相反的结果。
     在模拟体液中,钛合金扭动微动腐蚀过程材料损伤以磨损为主,交互作用总量与腐蚀加速磨损增量具有相似的规律。在低载荷下出现较明显的负交互作用,且Hank's溶液中的负交互作用强于Saline溶液;在高载荷下出现较明显的正交互作用,且Saline溶液的正交互作用强于Hank's溶液。
Torsional fretting can be defined as a relative angular motion which is induced by reciprocating torsion in an oscillatory vibratory environment. It often occurs in varied industrial fields, and frequently runs in corrosive media. As one of the four basic motion modes of fretting, the torsional fretting has been rarely studied up to now. The existing researches on torsional fretting were carried out mostly in the dry environment, and the researches on torsional fretting corrosion in fluid media have not been reported yet. Therefore, this research has scientific significance to explore unknown, and will not only enrich and develop the basic theory of fretting tribology, but also has some practical values for understanding the failure mechanism of the artificial joints.
     In this paper, a new-style device for torsional corrosion wear test rig in liquid media at constant temperature was successfully developed on a low speed reciprocating rotary system with a constant temperature circulating water system and an electrochemical analysis system. The test device can actually simulate torsional fretting corrosion process in the liquid media at constant temperature, and its test results presented better comparability and repeatability.
     In this paper, Ti6A14V titanium alloy and ZrCO2 ceramic, which are commonly used as artificial joint materials, were selected as the counter-pair. The studies on torsional fretting wear and torsional fretting corrosion in varied environments (dry, pure water, Saline solution and Hank's solution) were carried out systemically. The running and damage behaviors of the torsional fretting wear and torsional fretting corrosion were investigated systematically, based on the analyses of torsional dynamics and electrochemical corrosion behaviors and combined with many micro-analytical means such as surface profile-meter, optical microscope (OM), laser confocal scanning microscopy (LCSM), scanning electron microscopy (SEM), electron energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy and so on. The qualitative and quantitative analyses for the interaction of wear and corrosion during the torsional fretting corrosion were conducted. The conclusions obtained in this thesis are as follows:
     (1) Electrochemical corrosion behaviors of titanium alloy in simulated body fluid
     The obvious passive phenomenon of titanium alloy presented in simulated body fluids (Saline and Hank's solutions), and their corrosion rates were very low. The corrosion rates of the samples with crevice were slightly higher than that of the samples without crevice, but no significant crevice corrosion or pitting corrosion appeared on all samples. The existence of the crevice impeded the formation of passive state of the samples to reduce the passive stability. Thus, the corrosion rate of titanium alloy slightly accelerated. Under the same conditions, the corrosion potential of titanium alloy in Hank's solution was slightly higher than that of in the Saline solution, and the corrosion rate was slightly lower than that of in the Saline solution.
     (2) Running and damage mechanisms of titanium alloy during torsional fretting wear process
     The running condition fretting maps (RCFMs) of torsional fretting for titanium alloy in two environments of air and pure water were established, respectively. The friction torque time-varying evolution curves presented different principles in the three running regimes. As pure water was almost no corrosiveness on titanium alloy, the torsional fretting wear mechanisms of titanium alloy in the both environments were very similar, but some differences existed because of the lubrication and debris removal action in pure water.
     (a) In the partial slip regime (PSR):No damage was observed in the contact center due to the sticking. The micro-slip and slight wear occurred in the ring area of the contact boundary. So, the wear scar appeared in shape of annularity and the width of scar unchanged with the increase of the number of cycles. In the PSR, the damage mechanisms of torsional fretting for titanium alloy in air and pure water mainly were slight abrasive wear and scuffing at the contact edge zone.
     (b) The mixed fretting regime (MFR):With the increase of the number of cycles, the sticking zone in the contact center gradually reduced, and the damage zone spread to the contact center until all the contact zone was covered. The profile of the wear scar presented the type of "W". Under dry conditions, the wear debris was difficult to remove from the wear scar, and the debris layer covered on the wear scar surface. In the MFR, the damage mechanisms for titanium alloy in air and pure water mainly were abrasive wear, oxidation wear and delamination, and companied with some slight materials transfer.
     (c) In the slip regime (SR):The much severer wear and the typical "U"-type profile of wear scar appeared on titanium alloy samples. The depth of wear scar in pure water was greater than that of in air. Obvious material transfer occurred on damage areas of test samples in the both environments. In the SR, damage mechanisms of titanium alloy mainly were severe abrasive wear, delamination and oxidation wear.
     (3) Running and damage mechanisms of torsional fretting corrosion for titanium alloy
     Electrochemical corrosion behaviors of titanium alloy during the torsional fretting corrosion in the both simulated body fluids were closely related to the torsional angular displacement amplitudes. When the angular displacement amplitude increased to a certain degree, the corrosion potential shifted negatively and the corrosion current increased at the beginning of torsional motion. The requisite minimum torsional angular displacement amplitude for the corrosion potential negatively shifting in the Hank's solution was lower than that of in the Saline solution. The torsional fretting had a little effect on the cathodic reaction but a significant impact on the anode reaction in the electrochemical corrosion of titanium alloy. The passive film on surface of titanium alloy samples damaged due to the torsional fretting wear, and the exposed fresh metal surface on the worn zone became the active sites of corrosion, which induced serious crevice corrosion on the titanium alloy sample surface.
     The running condition fretting maps (RCFMs) of torsional fretting corrosion for titanium alloy in the both simulated body fluids were established, respectively. To compare with the Saline solution, the MFR of titanium alloy in Hank's solution enlarged to the PSR, and its width was greater than that of in the Saline solution. The friction torque curves in the three running regimes showed different evolutions.
     The normal load, angular displacement amplitude and number of cycles had a significant effect on torsional fretting corrosion damage behaviors of titanium alloy. In the both simulated body fluids, the damage volumes increased with the increase of the angular displacement amplitudes and normal loads. Under the same test conditions, the damage volumes in Hank's solution were higher than that of in the Saline solution. In the different torsional fretting running regimes, there were some differences on torsional fretting corrosion damage mechanisms of titanium alloy:
     (a) In the partial slip regime (PSR):The damages were main wear that was slight, and the corrosion was hardly observed. The wear scars appeared in shape of annularity and the damage mechanisms were similar to that in dry environment and pure water.
     (b) In the mixed fretting regime (MFR):With the increase of the cycles, the center sticking zones gradually shrank, and the damage zones extended to the contact center. The profile of the wear scar presented the type of "W", and some obvious traces of corrosion were observed. In the MFR, the damage mechanisms of titanium alloy in the both simulated body fluids mainly were abrasive wear, oxidation wear and delamination, and companied with slight material transfer and electrochemical corrosion in the Hank's solution,
     (c) In the slip regime (SR):The gross slip state presented on entire contact zones all time, and much severer wear occurred. The typical "U"-type profile of wear scar appeared, and a thick layer of debris covered the contact surface. In the SR, the damage mechanisms of titanium alloy of torsional fretting corrosion mainly were abrasive wear, oxidation wear and delamination, accompanied with severer material transfer and electrochemical corrosion.
     (4) Interaction between wear and corrosion of torsional fretting corrosion of titanium alloy
     A large number of quantitative analysis results indicated that the accelerated effect of torsional fretting on corrosion was closely related to the angular displacement amplitudes, normal loads and the medium types. When the angular displacement amplitudes were lower, the torsional fretting had almost no effect on the corrosion. Under the larger angular displacement amplitudes, the torsional fretting significantly accelerated the corrosion, and the corrosion increment induced by the torsional fretting increased with the increase of the angular displacement amplitudes and normal loads. Under the same test conditions, the accelerated effect of torsional fretting on corrosion in the Hank's solution was greater than that of in the Saline solution.
     The accelerated effect of corrosion on torsional fretting was controlled by the normal load. When the normal load was lower, the corrosive effect of the simulated body fluids did not speed up the wear of titanium alloy, inversely slowed it down, and the increment of wear volume was negative. However, under the higher normal loads, a reverse result can be obtained.
     In the simulated body fluids, the damage of titanium alloy of the torsional fretting corrosion mainly was wear, and there was a similar law between the interaction volume and the wear volume increment. Under the lower normal loads, the significant negative interaction occurred, and the negative interaction in the Hank's solution was stronger than that of in the Saline solution. Under the high normal loads, much obvious positive interaction appeared, and the interaction in the Saline solution was stronger than that of in the Hank's solution.
引文
[1]温诗铸,黄平.摩擦学原理(第三版)[M].北京:清华大学出版社,2008.
    [2]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [3]王国彪,雷源忠.关注和发展摩擦学推动经济可持续发展.表面工程资讯,2005,25(5):3-4.
    [4]张嗣伟.我国摩擦学工业应用的节约潜力巨大—谈我国摩擦学工业应用现状的调查[J].中国表面工程,2008,21(2):50-52.
    [5]张嗣伟.摩擦学是节能、降耗、减排的重要手段[J].表面工程咨讯,2007,21(6):1-3.
    [6]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [7]R.B. Waterhourse. Fretting corrosion[M]. Pergamon Press, Oxford,1972.
    [8]R.B. Waterhourse. Fretting fatigue[M]. Elsevier Applied Science, London,1981.
    [9]周仲荣,L.Vincent微动磨损[M].北京:科学出版社,2002.
    [10]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [11]M.H. Zhu, Z.R. Zhou, Ph. Kapsa, L. Vincent. An experimental investigation on composite fretting mode[J]. Tribology International,2001,34:733-738.
    [12]M.H. Zhu, Z.R. Zhou. Dual-motion fretting wear behaviour of 7075 aluminium alloy[J]. Wear,2003,255:269-275.
    [13]M.H. Zhu, Z.R. Zhou. Composite Fretting Wear of Aluminum Alloy[J]. Key Engineering Materials,2007,353-358:868-873.
    [14]朱旻昊.径向与复合微动的运行和损伤机理研究[D].成都:西南交通大学博士学位论文,2001.
    [15]B.J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Contact damage of poly (methylmethacrylate) during complex microdisplacements[J]. Wear,2000,240(1-2): 27-39.
    [16]Z.R. Zhou, S.R. Gu, L. Vincent. An investigation of fretting wear for two aluminium alloys[J]. Tribology International,1997(30):1-7.
    [17]D.A. Hill. Mechanics of fretting fatigue. Wear,175,1994:107-113.
    [18]R.B. Waterhouse. Fretting wear. In: P.J. Blau, Editor, ASM Handbook, Friction[J]. Lubrication and Wear Technology, ASM,1992,18:242-256.
    [19]R.B. Waterhouse. Fretting fatigue. International Materials Reviwer,1992,37(2):77-97.
    [20]O. Vingsbo, S. Soderberg. On fretting maps[J]. Wear,1988,126:131-1471.
    [21]Z.R. Zhou, S. Fayeulle, L. Vincent, Cracking behaviour of various aluminium alloys during fretting wear[J]. Wear,1992,155:317-330.
    [22]Z.R. Zhou. Fissuration Induite en Petits Debattements:Application Aucasd'Allages d'Aluminium Aeronautiques. Thesis, Ecole Cenle Centrale de Lyon,1992.
    [23]Z.R. Zhou, L. Vincent, Effect of external loading on wear maps of aluminium alloys[J]. Wear,1993,162-164:619-623.
    [24]Z.R. Zhou, L. Vincent, Mixed fretting regime[J]. Wear,1995,181-183:531-536.
    [25]Z.R. Zhou, L. Vincent, Cracking induced by fretting of aluminium alloys[J]. Journal of Tribology, ASME, Vol.119,1997,36-42.
    [26]蔡振兵.扭动微动磨损机理研究[D].成都:西南交通大学博士学位论文,2009.
    [27]朱旻昊,蔡振兵,莫继良,林修洲,周仲荣.微动磨损的研究进展.机械工程材料,2008(7):2.
    [28]朱旻昊,周仲荣,石心余,刘启跃.新型径向微动装置[J].摩擦学学报,2000,20(1):102-105.
    [29]M.H. Zhu, H.Y. Yu, Z.B. Cai, Z.R. Zhou. Radial fretting behaviours of dental feldspathic ceramics against different counterbodies[J]. Wear,259(7-12),2005: 996-1004.
    [30]朱旻昊,周仲荣.关于复合式微动的研究[J].摩擦学学报,2001,21(3):182-186.
    [31]朱旻昊,周仲荣.7075铝合金复合微动行为的研究[J].摩擦学学报,2003,23(4):320-325.
    [32]朱旻昊,李政,周仲荣.低碳钢的复合微动磨损特性研究[J].材料工程,2004.257(10):12-15,20.
    [33]蔡振兵,朱旻昊,俞佳,周仲荣.扭动微动的模拟及其试验研究[J].摩擦学学报,2008,28(1):18-22.
    [34]J.Yu, Z.B. Cai, M.H. Zhu, S.X. Qu, Z.R. Zhou. Study on torsional fretting behavior of UHMWPE[J]. Applied surface science,2008,225:616-618.
    [35]俞佳.超高分子量聚乙烯的扭动微动磨损研究[D].成都:西南交通大学硕士学位论文,2008.
    [36]Z.B. Cai, M.H. Zhu, H.M. Shen, Z.R. Zhou, X.S. Jin. Torsional fretting wear behaviors of 7075 aluminum alloy in various relative humidity environment[J]. Wear,2009,267: 330-339.
    [37]莫继良,廖正军,朱旻昊,周仲荣.转动微动的模拟与试验研究[J].中国机械工程,2009,20(6):631-634.
    [38]朱旻昊,罗唯力,周仲荣.表面工程技术抗微动损伤的研究现状[J].机械工程材料,2003,27(4):1-3+29.
    [39]徐进.固体润滑涂层抗微动磨损研究[D].成都:西南交通大学博士学位论文,2003.
    [40]朱旻昊,徐进,周仲荣.抗微动损伤的表面工程设计[J].中国表面工程2007(6)5-10.
    [41]M.H. Zhu, Z.B. Cai, X.Z. Lin, P.D. Ren, J. Tan, Z.R. Zhou. Fretting wear behaviour of ceramic coating prepared by micro-arc oxidation on Al-Si alloy. Wear,2007,263: 472-480.
    [42]M.H. Zhu, Z.B. Cai, X.Z. Lin, J.F. Zheng, J.Luo, Z.R. Zhou. Fretting wear behaviors of micro-arc oxidation coating sealed by grease. Wear,2009,267:299-307.
    [43]W.G. Zhang, W.M. Liu, Y. Liu, C.T. Wang. Tribological behaviors of single and dual sol-gel ceramic films on Ti-6A1-4V[J]. Ceramics International,2009,35(4): 1513-1520.
    [44]C.H. Hager Jr., J. Sanders, S. Sharma, A. Voevodin, Albert Segall. The effect of temperature on gross slip fretting wear of cold-sprayed nickel coatings on Ti6A14V interfaces [J]. Tribology International,2009,42(3):491-502.
    [45]林修洲,莫继良,郑健峰,罗军,朱旻昊.A1-Si合金微弧氧化涂层的制备与组织结构分析.东北大学学报,20]0,31(SUPPL.1):80-83.
    [46]Y.W. Park, T.S.N. Sankara Narayanan, K.Y. Lee. Fretting corrosion of tin-plated contacts [J]. Tribology International,2008,41(7):616-628.
    [47]林修洲,郑健峰,林志君,朱旻昊.TC4钛合金微弧氧化涂层的制备与微动磨损性能研究.航空材料学报,2009,29(2):43-47.
    [48]X.Z. Lin, M.H. Zhu, J.F. Zheng, J. Luo, J.L. Mo. Fretting wear of micro-arc oxidation coating prepared on Ti6A14V alloy. Transactions of Nonferrous Metals Society of China.2010,20:537-546.
    [49]M.H. Zhu, Z.B. Cai, W. Li, H.Y Yu, Z.R. Zhou. Fretting in prosthetic devices related to the human body[J]. International Tribology,2009,42(9):1360-2364.
    [50]X.Z. Lin, M.H. Zhu, Z.B. Cai, J.F. Zheng, J.F. Peng. Microstructure and Reciprocating Sliding Tribological Performance of Micro-arc Oxidation Coating Prepared on Al-Si Alloy. Advanced Materials Research.2010,97-101:1518-1526
    [51]Z.B. Cai, M.H. Zhu, X.Z. Lin, J.L. Mo, Z.R. Zhou. Tribological Behavior of Laser-cladding Ni60 and Co-Cr-W Coatings at Elevated Temperature. Key Engineering Materials,2007,353-358:878-881.
    [52]朱旻昊,蔡振兵,谭娟,林修洲,邓栋才.微弧氧化涂层的微动磨损行为研究.摩擦学学报,2006,26(4):306-309.
    [53]王成焘.人体生物摩擦学[M].北京:科学出版社,2008.
    [54]郑靖.牙齿的摩擦学特性研究[D].成都:西南交通大学博士论文,2004.
    [55]于海洋,蔡振兵,朱旻昊,周仲荣.人股骨密质骨横断面的微动磨损特性研究[J].摩擦学学报,2004,(5):448-452.
    [56]H.Y. Yu, Z.B. Cai, Z.R. Zhou, M.H. Zhu. Fretting damage of cortical bone against titanium and its alloy[J]. Wear,2005,259:910-918.
    [57]H.Y. Yu, H.X. Quan, Z.B. Cai, S.S. Gao, M. H. Zhu. Radial fretting behavior of cortical bone against titanium[J]. Tribology Letters,2008,31:69-76.
    [58]S.S. Gao, L.M. Qian, H.Y. Yu. Anisotropic wear resistance of human mandible cortical bone[J]. Tribology Letter,2009,33:73-81.
    [59]C. Paulin, S. Fouvry, C. Meunier.Finite element modelling of fretting wear surface evolution:Application to a Ti-6A1-4V contact[J]. Wear,2008,264(1-2):26-36.
    [60]C. Mary, S. Fouvry. Numerical prediction of fretting contact durability using energy wear approach:Optimisation of finite-element model[J]. Wear,2007,263(1-6): 444-450.
    [61]R.H. Wang, V.K. Jain, S. Mall. A non-uniform friction distribution model for partial slip fretting contact[J]. Wear,2007,262(5-6):607-616.
    [62]S. Fouvry, V. Fridrici, C. Langlade, Ph. Kapsa, L. Vincent. Palliatives in fretting:A dynamical approach[J]. Tribology International,2006,39(10):1005-1015.
    [63]J.B. Teng, Kenkichi Sato. In situ observations of fretting wear behavior in PMMA/steel model[J]. Materials & Design,2004,25(6):471-478.
    [64]T.T. Vuong, P.A. Meehan. Wear transitions in a wear coefficient model[J]. Wear,2009, 266(9-10):898-906.
    [65]I. Paczelt, Z. Mroz On the analysis of steady-state sliding wear processes[J]. Tribology International,2009,42(2):275-283.
    [66]Z.B. Cai, M.H. Zhu, J. Liu, H.M. Shen, H.Y. Yu, Z.R. Zhou. Investigation of microcracking behaviors of human femur cortical bone during radial fretting[C].3rd International Conference on Mechanics of Biomaterial and Tissues,13-17, Dec,2009, Clearwater Beach, Flofida, USA.
    [67]戴淑红.货车心盘损坏的原因与改进建议[J].铁道机车车辆工人,2003,(1):16-17.
    [68]韩建民,崔世海,李卫京,李荣华,王金华.铁路货车心盘材料的耐磨性研究[J].摩擦学学报,2004,24(1):79-82.
    [69]http://www.eternalrollerz.com/TechArticles/Reinforcement.htm.
    [70]P. Courtney, M. Doherty. Joint aspiration and injection and synovial fluid analysis[J]. Best Practice & Research Clinical Rheumatology,2009,23(2):161-192.
    [71]J.B. Morrison. The mechanics of the knee joint in relation to normal walking[J]. Journal of Biomechanics,1970,3(1):51-61.
    [72]http://www.baileydds.com/tmd/tmd.html.
    [73]http://www.kettering.edu/visitors/storydetail.jsp?storynum=322.
    [74]http://www.eorthopod.com/public/patient_education/6638/hip_resurfacing_arthr-oplasty.html.
    [75]H.R. Hertz. On the contact of elastic solids[J]. J. Reine Angew Math.,1881,92: 156-171. (in German).
    [76]J.L. Lubkin. The Torsion of Elastic Sphere in Contact[J]. Journal of Applied Mechanics, 1951,(7):183-187.
    [77]K.L. Johnson(著).徐秉业,罗学富,宋国华,孙学伟(译),接触力学[M].北京:高等教育出版社,1992.
    [78]J. Jaeger. Torsional impact of elastic spheres[J]. Archive of Applied Mechanics,1994, 64:235-248.
    [79]J. Jaeger. New Solutions in Contact Mechanics[M]. Southampton, U.K.:WIT Press, 2004.
    [80]B. J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Fretting wear behaviour of polymethyl- methacrylate under linear motions and torsional contact conditions [J]. Tribology International,1998,31(11):701-711.
    [81]B. J. Briscoe, A. Chateauminois. Measurements of friction-induced surface strains in a steel/polymer contact[J]. Tribology International,2002,35(4):245-254.
    [82]A. Chateauminois, B. J. Briscoe. Nano-rheological properties of polymeric third bodies generated within fretting contacts [J]. Surface and Coatings Technology,2003, 163-164(30):435-443.
    [83]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.
    [84]E.M. Eden, W,N, Rose, F.L.Couningham. Endurance of Metals [J]. Inst. Mech. Eng. 1911,4:839-974.
    [85]B. Bethune, R.B. Waterhouse. Electrochemical studies of fretting corrosion [J]. Wear, 1968,12:27.
    [86]R. Smallwood, B.R. Pearson, P.A. Brook. The influence of dissolved oxygen in seawater on the fretting corrosion of roping steel[J]. Wear,1988,125:97.
    [87]王勇.钛及钛合金在三种介质下的微动腐蚀特性[D].成都:西南交通大学硕士学位论文,2005.
    [88]S. Price, D.E. Taylor. Fretting corrosion of a high strength low alloy steel in synthetic seawater environments[J]. Wear,1988,125:107.
    [89]任平弟.钢材料微动腐蚀行为研究[D].成都:西南交通大学博士学位论文,2005.
    [90]尹晓丽.纯钛及Ti6A14V合金在生理盐水和Hank's溶液中的复合微动腐蚀特性研究[D].成都:西南交通大学硕士学位论文,2008.
    [91]H.H. Uhlig. Mechanism of fretting corrosion[J]. J. Appl. Mech.,1954,21:401-407.
    [92]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987.
    [93]K.Y. Kim, S. Bhattacharyya, V. Agarwala. An Electrochemical Polarization Technique for Evaluation of Wear-Corrosion in Moving Components Under Stress[J]. Wear of Materials,1981,772-778.
    [94]B.W. Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus [J]. Wear,1998,123:127-142.
    [95]姜晓霞,李诗卓.腐蚀磨损的交互作用[J].化工机械,1991,18(3):150-154.
    [96]张天成,姜晓霞,路新春,李诗卓.腐蚀磨损交互作用的定量研究[J].材料研究学报,1994,8(5):397-400.
    [97]赵国鹏,于欣伟,吴荫顺,等.腐蚀磨损协同作用率的研究[J].摩擦学学报,1998,18(2):157-161.
    [98]段成田,姜晓霞,李诗卓.几种金属材料的腐蚀磨损研究[J].中国腐蚀与防护学报,1987,7(3):225-231.
    [99]X.X. Jiang, S.Z. Li, D.D. Tao, J.X. Yang. Accelerative Effect of Wear on Corrosion of High-Alloy Stainless Steel[J]. Corrosion,1993,49(10):836-841.
    [100]李诗卓,李明,姜晓霞,张丹.18-8不锈钢在不同极化电位下的腐蚀磨损行为[J].中国腐蚀与防护学报,1988,8(4):267-273.
    [101]S.M. El-Raghy, H. Abd-El-Kader, M.E. Abou-Hassan. Electrochemistry of Abrasion Corrosion of Low-Alloy Steel in 1% NaC1 Solution[J]. Corrosion,1984,40(2):60-61.
    [102]R.E.J. Noel, A. Ball, On the synergistic effect of abrasion and corrosion during wear[J]. Wear,1983,87(3):351-361.
    [103]J. Heidemeyer. Influence of the plastic deformation of metals during mixed friction on their chemical reaction rate[J]. Wear,1981,66:379-387.
    [104]X.X. Jiang, S.Z. Li, C.T. Duan, M. Li. A Study of the Corrosive Wear of Ti-6A1-4V in Acid Medium[J]. Wear,1989,129(2):293.
    [105]姜晓霞,李诗卓,林晓聘等.不锈钢的负交互作用[J].金属学报,1991,27(1):21-23.
    [106]王志刚等.1Cr13不锈钢微动腐蚀中腐蚀与磨损交互作用[J].北京科技大学学报, 2000,22(2):138-141.
    [107]王成焘.天然与人工关节中的摩擦学问题[J].医用生物力学,2009,24(5):317-325.
    [108]盖学周,饶平根,赵光岩,吴建青.人工关节材料的研究进展[J].材材料导报,2006,20(1):46-49.
    [109]葛世荣,熊党生,王纪湘.人工关节的摩擦学问题及其研究现状[C].生物摩擦学与人工关节学术研讨会论文集.上海,2000.09:27-30.
    [110]冯颖芳.钛及钛合金人工关节植入材料[[J].稀有金属快报[J].2002,6:15-18.
    [111]张亚平,高家成,王勇.人工关节材料的研究与进展[[J].世界科技研究与发展,22(1):47-50.
    [112]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理,2005,30(3):33-36.
    [113]U.I. Thomann, P.J. Uggowitzer. Wear-corrosion Behavior of Biocompatible Austenitic Stainless Steels [J]. Wear,2000,239(1):48-58.
    [114]阎建中,吴荫顺,李久青,等.316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究[J].中国腐蚀与防护学报,2000,20(6):354.
    [115]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报,2002,16(2):12-15.
    [116]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004.
    [117]周殿阁.骨科生物材料应用进展[J].新材料产业,2004(12):39-44.
    [118]何宝明.生物医用钛及其合金材料的开发应用进展、市场状况及问题分析[J].新材料产业,2003,7:23-28.
    [119]郭亮,梁成浩,隋洪艳.模拟体液中纯钛及Ti6A14V合金的腐蚀行为[J].中国有色金属学报,2001,11(1):107-109.
    [120]R. Noort. Titanium:the implant material of today [J]. Mater. Sci.,1987, 22(14):3801-3811.
    [121]P. Temgralll, I. Lunfsytom. Physico-chemical consideration of titamium as a biomaterial[J]. Clin. Mater.,1992,9(1):115-134.
    [122]M. Donachie. Biomedical Alloys[J]. Advanced Materials&processes,1998,154(1): 63-65.
    [123]M. Niinomi. Mechnical properties of biomedical titanium alloys[J]. Materials Science and engineering,1998,243:231-236.
    [124]W. Kathy. The use of titanium for medical application in the USA[J]. Mater. Sci. Eng. A,1996,213:134-137.
    [125]O. Yoshimitsu, I. Yoshimasa. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without Al and V[J]. Mater. Sci. Eng.,1996, 213:138-147.
    [126]H. Schmidt, H. E. Exner. Wear, Corrosion and Fatigue Properties of Ion Implanted Titanium Alloy Ti6A14V[J]. Z. Metallkd,1999,90(8):594-601.
    [127]L. Rieu, A. Pichat, L. M. Rabbe, et al. Structural modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses[J]. Materials Science and Technology,1992,8:589-593.
    [128]R. Zwicker, K. Buehler, et al. Mechanica properties and tissue reactions of a titanium alloy for implant material. In:H. Kimura, editor. Titanium'80 Science and Technology[M]. TMSAIME.1980:505-514.
    [129]陈长春.髋关节置换用股骨假体材料的研究与应用[[J].材料导报,1998,12(6):1.
    [130]F. Torregrosa, L. Barralier, L. Roux. Phase analysis, microhardness and tribological behaviour of Ti-6A1-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis[J]. Thin Solid Films.1995,266(2):245-253.
    [131]M. Semlitsch, M. Lehmann, H. Weber, E. Doerre, H. Willert. New prospects for a prolonged functional life-span of artificial hip joints by using the material combination polyethylene/aluminium oxide ceramic/metal[J]. J.Biomed Mater, Res. 1977,11:537-552.
    [132]R.C. Garvie, R. Hannink, R.T. Pascoe. Ceramic steel[J]. Nature,1975,25(8): 703-704.
    [133]T.K. Gupta, F.F. Lange, J.H. Bechtold. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing tetragonal phase[J]. J. Mater. Sci,1978.13:1464.
    [134]P. Boutin, P. Christel, J.-M. Dorlot, A. Meunier, A. de Roquancourt, D. Blanquaert, S. Herman, L. Sedel, J. Witvoet. The use of dense alumina-alumina ceramic combination in total hip replacement J]. Journal of Biomedical Materials Research, 1988,22(12):1203-1232.
    [135]C. Priconi, G. Maccauro. Zirconia as a ceramic biomaterial[J]. Biomaterials,1999,20: 1-25
    [136]B. Cales, Y. Stefani. Advantages of the ziconia UHMWPE system for orthopaedic prostheses[J]. J. Biomed. Mater.Res.,1997,22:1203.
    [137]Y S. Zhou, M. Ohashi, N. Tomita, K. lkeuchi, K. Takashima. Study on the possibility of silicon nitride-silicon nitride as a material for hip prostheses[J]. Materials Science and Engineering,1997,(5):125-129(a5).
    [138]赵铭,郑启新.人工关节材料的研究进展[J].生物骨科材料与临床研究,2004,1(7):53-57.
    [139]袁楠.填料改性超高分子量聚乙烯的摩擦磨损性能研究[D].南京:南京理工大学硕士学位论文.2006.
    [140]M.A. Mcgee, D.W. Howise, S.D. Neale, et al. The role of polyethylene wears in joint replacement failure[J]. Proc Instn Mech Engrs Part H,1997,211:65-72.
    [141]熊党生,葛世荣.超高分子量聚乙烯生物摩擦学行为的研究现状[J].中国矿业大学学报,1999,28:49-52.
    [142]A. Wang, R. Lin, C. Stark, et al. Suitability and limitations of carbon fibre reinforced PEEK composites as bearing surfaces for total joint replacements[J]. Wear,1999, 225(2):724-727.
    [143]W.H. Harris. The problem is osteolysis [J]. Chin Orthop,1995,311:46-53.
    [144]刘锋,范卫民,陶松年.微动对人工关节无菌性松动影响的实验研究[J].南京医科大学学报,2001,21(6):527-529.
    [145]黄传辉.人工髋关节的磨损行为及磨粒形态研究[D].徐州:中国矿业大学博士学位论文.2004:2-2.
    [146]李宏斌,朱振安.磨损颗粒、微动、压力与人工关节松动[J].国外医学·骨科学分册,2003,24(1):38-40.
    [147]Z.M. Jin, M. Stone, E. Ingharm, J. Fisher. Biotribology[J]. Current Orthopaedics,2006, 20(1):32-40.
    [148]B.J. Briscoe, S K Sinha. Wear of polymers[J]. Proc. Instn. Mech. Engrs. Part J:J. Engineering Tribology,2002.216:401-412.
    [149]N. Saklakglu, I.E. Saklakglu, K.T. Short, G.A. Collins. Tribological behavior of PⅢ treated AISI 316 L austenitic stainless steel against UHMWPE counterface[J]. Wear, 2006,261:264-268.
    [150]H. Unal, U. Sen, A. Mimaroglu. Dry sliding wear characteristics of some industrial polymers against steel counterface[J]. Tribology International,2004,37:727-732.
    [151]J.D. DesJardins, B. Burnikel. Martine LaBerge UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation[J]. Wear,2008,264:245-256.
    [152]V.A. Gonzalez-Mora, M. Hoffmann, R. Stroosnijder. F.J. Gil. Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE [J]. Materials Science and Engineering,2009,29(1):153-158.
    [153]M. Hoseini, A. Jedenmalm, A. Boldizar. Tribological investigation of coatings for artificial joints[J]. Wear,2008,264:958-966.
    [154]V. Banchet, V. Fridrici, J.C. Abry, Ph. Kapsa. Wear and friction characterization of materials for hip prosthesis[J]. Wear,2007:263:1066-1071.
    [155]M.A. Wimmer, J. Loos, R. Nassutt, M. Heitkemper, A. Fischer. The acting wear mechanisms on metal-on-metal hip joint bearings:in vitro results[J]. Wear,2001,250: 129-139.
    [156]I.C. Clarke, S. Johnson, W. Phipatanakul, V. Good. Effects of hip-loading input on simulated wear of Al2O3-PTFE materials[J]. Wear,2001,250:159-166.
    [157]张建华,苏世虎,陶德华.基于仿生人工关节的评价装置及磨损试验研究[J].摩擦学学报,2006,21(1):32-35.
    [158]浦素云.金属植入材料及其腐蚀[M].北京:北京航空航天大学出版社,1990.
    [159]J. Cohen. Corrosion testing of orthopaedic implants[J]. J. Bone Joint Surg (Am.), 1962,44:307-316.
    [160]J. Cohen, B. Lindenbaum. Fretting corrosion in ortho-paedic implants [J]. Clin Orthop Res.,1968,61:167-178.
    [161]V. Colangelo, N. Greene. Corrosion and fracture of type 316 SMO orthopedic implants[J]. J Biomed Mater Res.,1969,3:247-265.
    [162]B.C. Syrett, S.S. Wing. Electrochemical investigation of fretting corrosion of surgical implant materials [J]. Corrosion.1978,34(11):379-386.
    [163]R.B. Waterhouse, M. Lamb. Fretting corrosion of orthopaedic implant materials by bone cement[J]. Wear,1980,60:357-368.
    [164]E.L. Sloter. Corrosion fatigue performance stainless steel hips nails-jewett type. In: Corrosion and Degradation of Implants Materials, B.C. Syrett and A. Acharya, Editors, [C]. ASTM STP 684, Philadelphia, PA,1979:173-195.
    [165]S.A. Brown, K. Meritt. Fretting Corrosion in saline and serum, J. Biomed. Mater Res., 1981.15:479.
    [166]S.D. Cook, G.J. Gianoli, A.J.T. Clemow, R.J. Haddad. [J]. Biomater Med Dev Art Org.,1983-1984,11:281-292.
    [167]J. Gianoli, S.D. Cook, A.J.T. Clemow, R.J. Haddad. Conf on Biomedical Engineering: Recent Developments[C]. San Antonio, TX, September,26-27,1983, Pergamon, New York,1983:413-416.
    [168]S.A. Brown, K. Merritt. Corrosion and Degradation of Implant Materials[C]. ASTM STP 859, Philadelphia, PA.1983:105-116.
    [169]K. Merrittt, S.A. Brown. Effect of proteins and pH on fretting corrosion and metal ion release[J]. J Biomed Mater Res.,1988,22(2):111-120.
    [170]J.P. Collier, V.A. Surprenant, R.E. Jensen, et al. Corrosion between the components of modular femoral hip prostheses[J]. J. Bone Joint Surg.,1992,74B:511-517.
    [171]J.S. Kawalec, S.A. Brown, J.H. Payer, K. meritt, Mixed-mixed fretting corrosion of Ti-6A1-4V and wrought cobalt alloy[J]. J. Biomed Mater Res.,1995,29:867-873.
    [172]M. Viceconti, O. Ruggeri, A. Toni, A. Giunti. Design-related fretting wear in modular neck hip prosthesis [J]. J Biomed Mater Res,1996,30:181-186.
    [173]C. Mevellec, T.D. Burleigh, A.S. Shanbhag. Corrosion in modular femoral hip prostheses:A study of 22 retrieved implants[C]. Southern, Biomedical Engineering Conference Processdings IEEE, Piscataway, NJ, USA,1996.
    [174]R.F. Coleman, J. Herrington, J.T. Scales. Concentration of wear products in hair, blood and urine after total hip replacement J]. Brit Med.1973,1:527-529.
    [175]H. Dobbs, M.J. Minski.-Metal ion release after total hip replacement[J]. Biomater. 1980,1:193-198.
    [176]P.F. Doom, P.A. Campbell, H.C. Amstutz. Metal versus polyethylene wear particles in total hip replacement[J]. Clin Orthop,1996,329:206-216.
    [177]Bruno Tritschler, Bernard Forest, Jean Rieu. Fretting corrosion of materials for orthopaedic implants:a study of a metal/polymer contact in an artificial physiological medium[J]. Tribology International,1999,32(10):587-596.
    [178]J. Geringer, B. Forest, P. Combrade. Fretting-corrosion of materials used as orthopaedic implants[J]. Wear,2005,259(7-12):943-951.
    [179]S. Kumar, T.S.N. Sankara Narayanan, S. Ganesh Sundara Raman, S.K. Seshadri. Evaluation of fretting corrosion behaviour of CP-Ti for orthopaedic implant applications [J]. Tribology International,2010,43(7):1245-1252.
    [180]GB-T 10127-2002《不锈钢三氯化铁缝隙腐蚀试验方法》
    [181]GB10124-88《金属材料实验室均匀腐蚀全浸试验方法》
    [182]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1985.
    [183]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988.
    [184]Y. Bedhier, L. Vincent, M. Godet. Velocity accommodation in fretting [J]. Wear,1988, 125:25-38.
    [185]. R.B. Waterhouse(著),周仲荣(译).微动磨损与微动疲劳[M].成都:西南交通大学出版社,1999.
    [186]. R.B. Waterhouse. Role of adhesion and delamination in the fretting wear of metallic materials[J]. Wear,1977,45:355-364.
    [187]M. Godet. Third-bodies intribology[J]. Wear,1990,136:29-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700