用户名: 密码: 验证码:
废水中难降解有机物在不锈钢不溶性电极上电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对难生物降解的有机废水处理,电催化法是一种很有发展前景的高级氧化法。本课题组研发的不锈钢不溶性电极及其电催化反应器可大大降低设备成本和提高电催化效率,已在制药废水等难降解废水处理和回用中成功应用。为扩大电催化法的应用范围和进一步提高效能,有必要从理论上更深入地研究废水中的难降解有机物在不锈钢不溶性电极上的电化学行为。
     以不锈钢不溶性电极为工作电极,采用动电位扫描法研究了电解质溶液中抗生素等有机物在电极上的电化学行为,发现在析氧电位以下会出现一个电流峰及相应的特征电位;特征电位值几乎与有机物浓度无关,对于所选用多种有机物,特征电位值保持稳定,仅随着扫描速度的加快和温度的下降而正移。在28℃,扫描速度2 mV/s的条件下,该特征电位从起始至终止的范围为600-1050 mV,出现电流峰值的电位为920 mV左右。有机物浓度越大,特征电位所对应的电流峰越高;当电解质溶液中不含有机物时,电流峰及相应的特征电位消失。当用多种有机物进行试验时,也发现了类似规律。根据电位值不因所选用有机物种类而改变等现象推测,该电位值可能与羟基自由基的生成有关。该特征电位对电解质溶液中的有机物定量、羟基自由基的跟踪及抑制电化学副反应有重大意义。
     然而,当以不锈钢基不溶性电极为阳极处理苯酚废水时,发现在电极表面形成黄褐色薄膜。通过阳极极化,循环伏安,恒电流电解氧化等手段,对成膜行为进行了研究,表明阳极电极电位为1.45 V时反应效率最高,此时阴阳极板间电压为2.5 V。通过红外光谱分析,证明了成膜产物为聚苯酚,产物中包含有大量羟基。聚苯酚分子的长链结构不仅有对位取代形成长链,而且会发生邻位取代形成侧链。利用聚苯酚产物部分溶于四氢呋喃的特性,对聚苯酚薄膜在使用四氢呋喃进行溶解清洗前后的结构进行SEM分析对比,提出苯酚聚合生长的线性与平面模型。中性水溶液条件下,聚苯酚主要按照平面生长模型,平行于电极表面逐层生长;每层聚苯酚中,以某些活性中心为聚合引发点,形成直径为50纳米的不规则薄片单元,薄片单元之间通过低聚物与未聚合单体相互连接。
     研究了聚合物膜生成后对电极过程的作用,发现聚苯酚成膜对于不锈钢在3.5%氯化钠介质中耐点蚀能力有显著提升。在相同反应条件下将部分苯酚换作苯胺,共同电聚合成膜,当溶液成分为0.09 mol/L苯酚和0.01mol/L苯胺时,电聚合成膜的抗点蚀能力最强,其点蚀电位上升至0.382 V,具有最佳耐氯离子腐蚀能力。通过红外光谱对苯酚聚合物与苯酚苯胺共聚物进行分析比较,证明苯酚苯胺共聚产物中存在聚苯胺结构,并解释耐蚀能力增强的原因。与聚苯酚相比,共聚产物中存在更多芳环的1,2,4取代现象,说明其中生成了更多侧链,使得产物成膜的结合更紧密。利用聚苯酚和聚苯胺在四氢呋喃中的部分溶解特性,使用SEM分析比较聚苯酚膜和苯酚苯胺共聚合膜表面形貌。0.09 mol/L苯酚和0.01 mol/L苯胺溶液下生成的苯酚苯胺共聚膜,由网状聚苯胺构成空间骨架,其间填充聚苯酚,形成不易开裂且结构紧密的聚合物膜,提升成膜耐氯离子腐蚀能力。
     对电聚合处理苯酚废水的进一步研究发现,苯酚浓度越高电聚合速率越快,但更高浓度的苯酚导致处理效果的下降,选用0.002 mol/L作为待处理苯酚废水的浓度。槽电压在2.9-3.1 V范围内处理效果较好,为尽可能减少副反应,选取2.9 V为处理槽电压。经过电化学处理12h后,苯酚电聚合成膜产物整体脱落,意味着苯酚基本从水中被除去。苯酚浓度由0.002 mol/L变为0.087 mmol/L,去除率95.6%,化学需氧量由500 mg/L变为COD为68 mg/L,去除率86.5%。在12h的处理过程中的平均电流效率为60.36%,处理每吨0.002 mol/L苯酚废水耗能6.96 kwh,能耗和处理成本较电催化氧化法有较大下降。
As one of advanced oxidation processes, electrocatalysis treatment was developing quickly in refractory organic wastewater treatment. Our reaearch team developed stainless steel insoluble electrodes and electrocatalysis reactors, which had been applied successfully in pharmaceutical wastewater treatment and reuse. For expanding the application range of electrocatalysis in wastewater treatment and improving the current efficiency, it was necessary to further study electrochemical behavior of refractory organics on stainless steel insoluble electrodes.
     Using stainless steel as the working electrode, the electro-catalysis process of organic compound in electrolyte solution was studied through the potentiodynamic scanning, and a characteristic electrode potential and current maximum was observed below oxygen evolution. The concentration and the choosed species of the organic compound, the scanning speed and the temperature did not affect the form of the characteristic electrode potential, which moved towards positive with the raising of the scanning speed and the falling of the temperature. At 28℃and the scanning speed of 2 mV/s, the characteristic electrode potential exists between 600 to 1050 mV, the maximum of the current appears at the electrode potential of 920 mV. The current maximum at the characteristic electrode potential became higher with the concentration of the organic compound, and the current maximum disappeared when the solution did not contain organics. Since the characteristic electrode potential was independent to the concentration and the choosed species of the organic compound in the wastewater, the characteristic electrode potential should be the synthesis of the hydroxyl radical. The characteristic electrode potential had great significance for the rapid detection of organics in wastewater, real time trace of the hydroxyl radical, and the reduction of electrochemical side reactions in wastewater treatment.
     However, a yellow brown polyphenol coating was generated on stainless steel electrode surface, when anodic oxidation treatment of phenol wastewater was carried out using stainless steel based insoluble electrode. The coating formation was discussed by linear scanning, cyclic voltammetry and constant current process. The anodic electrode potential of 1.45V was the best condition for good reaction efficiency, while the bath voltage between anode and cathode was about 2.5V. Coating product was analyzed by IR, and the chemical structure was proved to be polyphenol. Polyphenol film contained linear chain and side chain, in which large number of substitutine hydroxyl existed. Making use of part solubility of polyphenol in tetrahydrofuran, the micro structure of polyphenol film was analyzed and compared between original and tetrahydrofuran cleaned polymer coating by SEM micrograph, by which linear mode and plane mode of polyphenol growth was summarized. In neutral media major part of polyphenol grew following the flake-layer mode, layer by layer, parallel to the electrode surface. Polyphenol growth began at some active sites on electrode or polymer, and formed nearly round flakes with 50nm diameter parallel to the anode plane. Flakes connected each other through low polymer and unpolymerized phenol, and formed a layer.
     The electrochemical process of coating covered electrode was studied, and the polyphenol coating notablely enhanced the pit corrosion resistance of 304 stainless steel in 3.5% sodium chloride solution. Keeping the sum of phenol and aniline concentration, the phenol-aniline copolymer coating was synthesized at the same electrochemical condition on 304 stainless steel anodes. When the solution contained 0.09 mol/L phenol and 0.01 mol/L aniline, the copolymer coating achieved the best pit corrosion resistance, while the pit corrosion potential in 3.5% sodium chloride increased to 0.382 V. Through the infrared spectrum comparison of phenol polymer and phenol-aniline copolymer coatings, the polyaniline structure was proved in the copolymer, and the reasons of the corrosion resistance enhancement were discussed. There was more 1,2,4-ring substitution occurring in phenol-aniline copolymer than polyphenol, which caused more side chains generated during the electropolymerization and a much more compact coating product. Taking advantage of the part solubility of polyphenol and polyaniline in THF, SEM was used to analyze the microstructure of phenol-aniline copolymer coating, with the comparison of polyphenol coating. In the copolymer synthesized in the solution contained 0.09 mol/L phenol and 0.01 mol/L aniline, the bifurcate network structure was observed, which was mainly composed from polyaniline, with other copolymer, mainly polyphenol, filling the interspaces. The network structure in copolymer coating restrained the growth of cracks, enhanced the connection between layers, synthesied the copolymer coating, which raised the pit corrosion resistance against chloride ions.
     In further research, rapid electropolymerization rate was observed in higher phenol concentration. However, the phenol removel effect became lower in much higher phenol concentration, so the concentration of phenol wastewater in electropolymerization treatment was fixed at 0.002 mol/L. The COD removal efficiency was better between the bath voltages of 2.9 V and 3.1 V,2.9 V was chosen for the less oxygen evolution and energy consumption. After the 12-hour electropolymerization treatment, the polymer coating cracked and wholly dropped from the stainless steel base, which meant the exhausting of phenol in wastewater. The phenol concentration became 0.087mmol/L from 0.002 mol/L, with the removal efficiency of 95.6%, and the COD became 68 mg/L from 500 mg/L, with the removal efficiency of 86.5%. During the treatment the average current efficiency was 60.36% and power consumption was 6.96 kwh/t, which showed a great decline in power consumption and treatment cost comparing with electrocatalysis treatment.
引文
[1] 魏刚.北京科技年鉴[M].北京:北京科学技术出版社,2002.182[2] Yi J C, Mei F C, Hassell D G. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chem. Eng. J.,2009,155:1-18 [3] Guida M, Mattei M, Rocca C D, et al. Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater[J], Desalination,2007, 211:113-127 [4] Xu J Q, Duan W H, Zhou X Z. J. Extraction of phenol in wastewater with annular centrifugal contactors [J]. Hazard. Mater.,2006,131:98-102 [5] Qu X F, Zheng J T, Zhang Y Z. Catalytic ozonation of phenolicwastewater with activated carbon fiber in a fluid bedreactor[J]. J. Colloid Interface Sci.,2007,309: 429-434[6] 冯玉杰,崔玉虹,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):451-455[7] Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes(AOP)for water purification and recovery[J], Catal. Today,1999,53:51-59 [8] Iniesta J, Michaud P A, Comninellis Ch, et al. Electrochemical oxidation of phenol at boron-doped diamond electrode[J], Electrochim. Acta,2001,46:3573-3578[9] 魏刚,周庆,熊蓉春,等.水处理中的绿色化学与绿色技术[J].现代化工,2002,22(12):43-46[10] 张腾云,钟理,詹怀宇.污染治理中的高级氧化技术[J].南京师范大学学报(工程技术版),2004,4(1):16-19[11] 熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报(自然科学版),2002,29(5):34-37[12] Shukla P, Fatimah I, Wang S B, et al. Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater[J]. Catal. Today,2010,157:410-414 [13] Lee Y H, von Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment:Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateⅥ, and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Res.,2010,44:555-566 [14] Feng C P, Sugiura N, Shimada S, et al. Development of a high performance electrochemical wastewater treatment system[J]. J. Hazard. Mater.,2003,103:65-78 [15] Wang B S, Li B S, Zeng Q X, et al. Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater [J]. Food Chem.,2008,107: 1198-1204 [16] Guven G, Perendeci A, Tanyolac A. Electrochemical treatment of simulated beet sugar factory wastewater[J]. Chem. Eng. J.,2009,151:149-159 [17] Feng C P, Sugiura N, Shimada S, et al. Development of a high performance electrochemical wastewater treatment system[J], J. Hazard. Mater.,2003,103:65-78[18]贾成功.·OH的发生及其在水处理中的应用[D].北京:北京化工大学,2002
    [19]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.93
    [20]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极[J].环境污染治理技术与设备,2004,5(6):84-87
    [21]Comninellis C. Electrochemical oxidation of phenol for wastewater using SnO2 anodes[J]. J. Appl. Elecirochem.,1993,23:108-112
    [22]Correa-lozano B, Comninellis C, De Battisti B. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique[J]. J. Appl. Electrochem.,1996,26:683-688
    [23]Fleszar B, Ploszynska J. An attempt to define benzene and phenol electrochemical oxidation mechanism[J]. Electrochim. Acta,1985,30(1):31-36
    [24]Li C C. Electrochemical oxidation pretreatment of refractory organic pollutant[J]. Water Sci. Technol.,1997,35:123-130
    [25]Polcaro A M, Palmas S. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment[J]. J. Appl. Electrochem.,1999,29:147-151
    [26]Stucki S, Kotz R, Carcer B, et al. Electrochemical waste water treatment using high overvoltage anodes Part Ⅱ:Anode performance and applications[J]. J. Appl. Electrochem.,1991,21(1):99-104
    [27]Kotz R, Stucki S. Electrochemical waste water treatment using high overvoltage anodes. Part Ⅰ:Physical and electrochemical properties of SnO2 anodes [J]. J. Appl. Electrochem.,1991,21(1):14-20
    [28]陈延喜,夏晓霞,陈艳英,等.RuO2-SnO2电极的XPS研究与氧化物表面的酸碱性[J].化工学报,1995,46(5):586-592
    [29]宋卫锋,吴斌,倪亚明.形稳阳极电解处理有机废水机理及动力学的研究[J].上海环境科学,2001,20(2):13-16
    [30]贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨[J].上海环境科学,1997,16(4):19-22
    [31]Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim. Acta,1994,39: 1857-1862
    [32]Yavuz Y, Koparal A S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode[J]. J. Hazard. Mater.,2006,136: 296-302
    [33]Kuramitz H, Matsushita M, Tanaka S. Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode[J]. Water Res.,2004,38:2331-2338
    [34]Li M, Feng C P, Hu W. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt[J]. J. Hazard. Mater.,2009,162:455-462
    [35]Ma H Z, Zhang X H, Ma Q L, Electrochemical catalytic treatment of phenol wastewater[J]. J. Hazard. Mater.,2009,165:475-480
    [36]Xiong Y, He C, Karlsson H T. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol[J] Chemosphere,2003,50:131-136
    [37]Zhu X P, Ni J R, Wei J J, et al. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode[J]. J. Hazard. Mater., 2010,184:493-498
    [38]Zhu X P, Ni J R. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes[J]. Electrochim. Acta,2010,55: 5569-5575
    [39]Belhadj T N, Abdelhedi R, Savall A. Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode[J]. J. Appl. Electrochem.,2009,39:663-669
    [40]Tahar N B, Savall A. Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures[J]. Electrochim. Acta,2009, 55:465-469
    [41]沈艺程,龚翠然,王飞.苯酚及其衍生物的电化学聚合及耐蚀性能[J].腐蚀与防护,2006,27:637-639
    [42]Cheng H, Scott K, Christensen P A, Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions[J]. J. Electrochem. Soc,2003,150:D17-24
    [43]Iotov P I, Kalcheva S V, Bull. Electrochem. Electrocatalytic oxidation of phenol at potentiodynamically preanodized gold electrode in alkaline medium,2000,16: 407-414
    [44]Mengoli G, Musiani M M. An Overview of Phenol Electropolymerization for Metal Protection[J]. J. Electrochem. Soc.,1987,134:643C-652C
    [45]钱丹,苑会林.国产聚苯醚合金改性的研究[J].工程塑料应用,2007,35(9):21-23
    [46]Bruno F, Pham M C, Dubois J E. Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochim. Acta,1977,22:451-457
    [47]Pham M C, Lacaze P C, Dubois J E. Obtaining thin films of "reactive polymers" on metal surfaces by electrochemical polymerization part Ⅰ. Reactivity of functional groups in a carbonyl substituted polyphenylene oxide film[J]. J. Electroanal. Chem., 1978,86:147-157
    [48]Pham M C, Dubois J E, Lacaze P C. Obtaining thin films of "reactive polymers" on metal surfaces by electrochemical polymerization:Part Ⅱ. Alcohol substituted polyphenylene oxide films[J]. J. Electroanal. Chem.,1979,99:331-340
    [49]Mengoli G, Daolio S, U Giulio, et al. Anodic formation of thick polyoxyphenylene coatings onto Fe plates from phenol-ethylene diamine systems[J]. J. Appl. Electrochem.,1979,9:483-493
    [50]Mengoli G, Munari M T, Folonari C. Anodic formation of polynitroanilide films onto copper[J]. J. Electroanal. Chem.,1981,124:237-246
    [51]Fleischmann M, Hill I R, Mengoli G, et al. A Raman spectroscopic investigation of the electropolymerization of phenol on silver electrodes[J]. Electrochim. Acta,1983,28 (11):1545-1553
    [52]Glarum S H, Marshall J H, Hellman M Y, et al. Characterization of Polyphenylene Oxide Anodic Films[J]. J. Electrochem. Soc.,1987,134:81-84
    [53]Perrin, F X, Pagetti J. Synthesis, characterization, and electropolymerization of Mannich bases:Influence of substituents on protective ability of organic coatings[J]. J. Appl. Polym. Sci.,2000,75(8):1054-1067
    [54]Richard K M, Gewirth A A. Effects of Ring Substitution on the Binding and Oxidation of Cyanophenols onAu(111) Electrodes[J]. J. Phys. Chem.,1996,100:7204-7211
    [55]Richard K M, Gewirth A A. Observation of Electrode Poisoning during the Electro-oxidation of Aromatic Alcohols on (111)Au[J]. J. Electrochem. Soc.,1996, 143:2088-2092
    [56]Lapuente R, Cases F, Garces P, et al. A voltammetric and FTIR-ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium: Influence of sulfide[J]. J. Electroanal. Chem.,1998,451:163-171
    [57]Andion L G, Garces P, Lapuente R, et al. Corrosion behaviour at the interface of steel bars embedded in cement slurries:Effect of phenol polymer coatings[J]. Corros. Sci., 2002,44:2805-2816
    [58]何建波,周虎林.铜表面聚苯酚耐蚀膜的电化学制备及表征[J].腐蚀与防护,2008,29(9):540-543
    [59]周虎林.金属铜防腐膜的电化学制备及性能研究[D].合肥:合肥工业大学,2007
    [60]Kennedy B, Glidle A, Cunnane V J. A study of the oxidation and polymerisation of meta substituted phenol and aniline derivatives[J]. J. Electroanal. Chem.,2007,608: 22-30
    [61]Patra S, Munichandraiah N. Electro-oxidation of Phenol on Polyethylenedioxythiophene Conductive-Polymer-Deposited Stainless Steel Substrate[J]. J. Electrochem. Soc.,2008,155(3):F23-F30
    [62]Marsh J, Scantlebury J D, Lyon S B. Proceeding of the symposium on Advances in Corrosion Protection by Organic Coating Ⅱ[A]. Electrochemical Society[C], Proceeding,97-41:238-247
    [63]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part Ⅰ:A cyclic voltammetry study[J]. J. Appl. Electrochem.,2001, 31:1117-1124
    [64]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part Ⅱ:An electrochemical quartz crystal microbalance study[J]. J. Appl. Electrochem.,2002,32:49-55
    [65]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part Ⅲ:A Fourier transformed infrared spectroscopy study[J]. J. Appl. Electrochem.,2002,32:755-762
    [66]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part Ⅳ:A gas chromatography mass spectrometry study[J]. J. Appl. Electrochem.,2002,32:543-550
    [67]Iwakura C, Tsunaga M, Tamura H. Anodic oxidation of 2,6-xylenol in acetonitrile on platinum[J]. Electrochim. Acta,1972,17:1391-1400
    [68]Gattrell M, Kirk D W. A Study of Electrode Passivation during Aqueous Phenol Electrolysis[J]. J. Electrochem. Soc.,1993,140:903-911
    [69]Gattrell M, Kirk D W. A Fourier Transform Infrared Spectroscopy Study of the Passive Film Produced during Aqueous Acidic Phenol Electro-oxidation[J]. J. Electrochem. Soc.,1992,139:2736-2744
    [70]Gattrell M, Kirk D W. A Study of the Oxidation of Phenol at Platinum and Preoxidized Platinum Surfaces[J]. J. Electrochem. Soc.,1993,140:1534-1540
    [71]Gattrell M, MacDougall B. The Anodic Electrochemistry of Pentachlorophenol[J]. J. Electrochem. Soc.,1999,146:3335-3348
    [72]Ureta-Zanartu M S, Bustos P, Diez M C, et al. Electro-oxidation of chlorophenols at a gold electrode[J]. Electrochim. Acta,2001,46:2545-2551
    [73]Ureta-Zanartu M S, Bustos P, Bernos C, et al. Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode[J]. Electrochim. Acta, 2002,47:2399-2406
    [74]Herasa M A, Lupub S, Piganic L, et al. A poly (3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol[J]. Electrochim. Acta,2005,50:1685-1691
    [75]Belhadj T N, Savall A. Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode[J]. J. Appl. Electrochem 2009,39:663-669
    [76]Belhadj T N, Savall A. Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials[J]. Electrochim. Acta,2009,54:4809-4816
    [77]Pirvu C, Banu A, Radovici O, et al. Application of electrochemical impedance spectroscopy (EIS) to study of phenolic films[J]. Rev. Roum. Chim.,2008,53: 1007-1015
    [78]Cheng H, Scott K, Christensen P A. Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions[J]. J. Electrochem. Soc.,2003,150(2): D25-D29
    [79]Iotov P I, Kalcheva S V. Electrocatalytic oxidation of phenol at potentiodynamically preanodised gold electrodes in alkaline medium[J]. Bull. Electrochem.2000,16(9): 407-414
    [80]Garcia C D, Ortiz P I. Determination of tert-Butylhydroxytoluene by Flow Injection Analysis at Polymer Modified Glassy Carbon Electrodes[J]. Electroanalysis,1998, 10(12):832-835
    [81]Cui H, Li F, Shi M J, et al. Inhibition of Ru Complex Electrochemiluminescence by Phenols and Anilines[J]. Electroanalysis,2005,17(7):589-598
    [82]Wang J, Jiang M, Lu F. Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation[J]. J. Electroanal. Chem.,1998,444:127-132
    [83]陈传祥.聚苯酚等导电高聚物的合成及性质[D].扬州:扬州大学,2002
    [84]Rhodes C P, Long J W, Doescher M S, et al. Nanoscale Polymer Electrolytes:Ultrathin Electrodeposited Poly(Phenylene Oxide) with Solid-State Ionic Conductivity [J]. J. Phys. Chem. B,2004,108:13079-13087
    [85]黄凯兵,范群,李劲.苯酚电聚合膜修饰炭纤维表面对环氧基复合材料性能的影响[J].复合材料学报,2007,24(6):13-18
    [86]Tidswell B M, Doughty A G The electroinitiated polymerization of styrene:Part 1[J]. Polymer,1971,12:431-443
    [87]McKinney D S, Fugassi J P. Electrolytic polymerization of phenol[P]. U. S. Pat., 2961384,1960-11-22
    [88]Borman W H F. Electrolytic polymerization of phenol[P]. U. S. Pat.,3335075, 1967-08-08
    [89]Ferreira M, Varela H, Torresi R M, et al. Electrode passivation caused by polymerization of different phenolic compounds[J]. Electrochim. Acta,2006,52: 434-442
    [90]Zareie M H, Korbahti B K, Tanyolac A. Non-passivating polymeric structures in electrochemical conversion of phenol in the presence of NaCl[J]. J. Hazard. Mater., 2001,87:199-212
    [91]汪多仁.聚苯醚系合金的合成与应用进展[J].橡胶技术与装备,2002,28(6):18-21 [1] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim. Acta,1994,39: 1857-1862 [2] Grimm J, Bessarabov D, Sanderson R. Review of Electro-assisted methods for water purification[J]. Desalination,1998,115:285-294[3]冯玉杰,崔玉虹,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36:450-455[4]魏刚,周庆,熊蓉春,等.水处理中的绿色化学与绿色技术[J].现代化工,2002,22(12):43-46[5]赵国华,陈蕊,高廷耀.有机污染物苯胺在催化电极上氧化降解的途径[J].环境科学研究,2003,16:51-54[6] Bellagamba R, Michaud P A, Comninellis C, et al. Electro-combustion of polyacrylates with boron-doped diamond anodes[J]. Electrochem. Commun.,2002,4: 171-176 [7] Panizza M, Solisio C, Cerisola G. Electrochemical remediation of copper (Ⅱ) from an industrial effluent Part Ⅱ:three-dimensional foam electrodes[J]. Resour., Conserv. and Recy.,1999,27:299-307 [8] Panizza M, Bocca C. Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J]. Water Res.,2000,34:2601-2605 [9] Szpyrkowicza L., Kaulb S N. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater[J]. Water Res.,2005,39:1601-1613 [10] Lia X Y, Cui Y H, Feng Y J. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res.,2005,39: 1972-1981[11]张静,杨庆良,王艳,等.Pd、Ru/Ti催化电极超声电催化降解废水中苯酚的研究[J].贵金属,2004,25:24-29[12] Iniesta J, Michaud P A, Comninellis C, et al. Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode:application to electroorganic synthesis and wastewater treatment[J]. Electrochem. Commun.,2001,3:346-351 [13] Jara C C, Fino D, Spinelli P. Bio-refractory organics degradation over semiconductor foam under a superimposed electric field[J]. Catal. Today,2007,124:273-279
    [14]Oliveira R T S, Salazar-Banda G R. Electrochemical oxidation of benzene on boron-doped diamond electrodes[J]. Chemosphere,2007,66:2152-2158
    [15]Zaggout F R, Ghalwa N A. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode[J]. J. Environ. Manage., 2008,86:291-296
    [16]Han W Q, Wang L J, Sun X Y, et al. Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor. J. Hazard. Mater.,2008,151:306-315
    [17]Zhao X, Zhu Y F. Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis[J]. Environ. Sci. Technol., 2006,40:3367-3372
    [18]Wu D, Liu M, Dong D M, et al. Effects of some factors during electrochemical degradation of phenol by hydroxyl radicals[J]. Microchem. J.,2007,85:250-256
    [1]Tidswell B M, Doughty A G. The electroinitiated polymerization of styrene:Part 1[J]. Polymer,1971,12:431-443
    [2]McKinney D S, Fugassi J P. Electrolytic polymerization of phenol[P]. U. S. Pat., 2961384,1960-11-22
    [3]Borman W H F. Electrolytic polymerization of phenol[P]. U. S. Pat.,3335075, 1967-08-08
    [4]Mengoli G, Musiani M M. An Overview of Phenol Electropolymerization for Metal Protection[J]. J. Electrochem. Soc.,1987,134:643C-652C
    [5]Bruno F, Pham M C, Dubois J E. Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols [J]. Electrochim. Acta,1977,22:451-457
    [6]Pham M C, Lacaze P C, Dubois J E. Obtaining thin films of "reactive polymers" on metal surfaces by electrochemical polymerization part Ⅰ. Reactivity of functional groups in a carbonyl substituted polyphenylene oxide film[J]. J. Electroanal. Chem., 1978,86:147-157
    [7]Pham M C, Dubois J E, Lacaze P C. Obtaining thin films of "reactive polymers" on metal surfaces by electrochemical polymerization:Part Ⅱ. Alcohol substituted polyphenylene oxide films[J]. J. electroanal. Chem.,1979,99:331-340
    [8]Mengoli G, Daolio S, U Giulio, et al. Anodic formation of thick polyoxyphenylene coatings onto Fe plates from phenol-ethylene diamine systems[J]. J. Appl. Electrochem.,1979,9:483-493
    [9]Mengoli G, Daolio S, Musiani M M, The influence of amines on the anodic coupling of phenols to polyoxyphenylene films[J]. J. electroanal. Chem.,1980,10:459-471
    [10]Glarum S H, Marshall J H, Hellman M Y, et al. Characterization of Polyphenylene Oxide Anodic Films[J]. J. Electrochem. Soc.,1987,134:81-84
    [11]Lapuente R, Cases F, Garces P, et al. A voltammetric and FTIR-ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium: Influence of sulfide[J]. J. Electroanal. Chem.,1998,451:163-171
    [12]Ferreira M, Varela H, Torresi R M, et al. Electrode passivation caused by polymerization of different phenolic compounds[J]. Electrochim. Acta,2006,52: 434-442
    [13]Andion L G, Garces P, Lapuente R, et al. Corrosion behaviour at the interface of steel bars embedded in cement slurries:Effect of phenol polymer coatings[J]. Corros. Sci., 2002,44:2805-2816
    [14]沈艺程,龚翠然,王飞.苯酚及其衍生物的电化学聚合及耐蚀性能[J].腐蚀与防护,2006,27:637-639
    [15]Gattrell M, Kirk D W. A Study of Electrode Passivation during Aqueous Phenol Electrolysis[J]. J. Electrochem. Soc.,1993,140:903-911
    [16]Gattrell M, Kirk D W. A Fourier Transform Infrared Spectroscopy Study of the Passive Film Produced during Aqueous Acidic Phenol Electro-oxidation[J]. J. Electrochem. Soc.,1992,139:2736-2744
    [17]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part Ⅰ:A cyclic voltammetry study[J]. J. Appl. Electrochem.,2001, 31:1117-1124
    [18]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part Ⅱ:An electrochemical quartz crystal microbalance study[J]. J. Appl. Electrochem.,2002,32:49-55
    [19]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part Ⅲ:A Fourier transformed infrared spectroscopy study[J]. J. Appl. Electrochem.,2002,32:755-762
    [20]Ezerskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part Ⅳ:A gas chromatography mass spectrometry study[J]. J. Appl. Electrochem.,2002,32:543-550
    [21]Wang J, Jiang M, Lu F. Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation[J]. J. Electroanal. Chem.,1998,444:127-132
    [22]Wang J, Martinez T, Scanning tunneling microscopic investigation of surface fouling of glassy carbon surfaces due to phenol oxidation J. Electroanal. Chem.,1991,313: 129-140
    [23]Iwakura C, Tsunaga M, Tamura H. Anodic oxidation of 2,6-xylenol in acetonitrile on platinum[J]. Electrochim. Acta,1972,17:1391-1400
    [24]Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim. Acta,1994,39: 1857-1862
    [25]Wu D, Liu M, Dong D, et al. Effects of some factors during electrochemical degradation of phenol by hydroxyl radicals[J]. Microchem. J.,2007,85:250-256
    [26]Richard K M, Gewirth A A. Effects of Ring Substitution on the Binding and Oxidation of Cyanophenols on Au(111) Electrodes[J]. J. Phys. Chem.,1996,100:7204-7211
    [27]Richard K M, Gewirth A A. Observation of Electrode Poisoning during the Electro-oxidation of Aromatic Alcohols on (111)Au[J]. J. Electrochem. Soc.,1996, 143:2088-2092
    [1]Tidswell B M, Doughty A G The electroinitiated polymerization of styrene:Part 1 [J]. Polymer,1971,12:431-443
    [2]Wang X F, You Z, Ruan D B. Application of Polyaniline in Hybrid Electrochemical Capacitor[J]. Chin. J. Chem. Phys.2005,18:635-640
    [3]Hosseini M G, Sabouri M, Shahrabi T. Comparison between polyaniline-phosphate and polypyrrole-phosphate composite coatings for mild steel corrosion protection[J]. Mater. Corros.2006,57:407-410
    [4]Zhu R, Li G, Huang G. Two-step electrosynthesis of polypyrrole for corrosion protection of stainless steel[J]. Mater. Corros.2009,60:34-39
    [5]Samet Y, Kraiem D, Abdelhedi R. Electropolymerization of phenol, o-nitrophenol and o-methoxyphenol on gold and carbon steel materials and their corrosion protection effects[J]. Prog. Org. Coat.2010,69:335-343
    [6]Giraudeau A, Schaming D, Hao J. A simple way for the electropolymerization of porphyrins[J]. J. Electroanal. Chem.2010,638:70-75
    [7]Martins J I, Bazzaoui M, Reis T C. The effect of pH on the pyrrole electropolymerization on iron in malate aqueous solutions[J]. Prog. Org. Coat.2009, 65:62-70
    [8]McKinney D S, Fugassi J P. Electrolytic polymerization of phenol[P]. U. S. Pat., 2961384,1960-11-22
    [9]Mengoli G, Musiani M M. An Overview of Phenol Electropolymerization for Metal Protection[J]. J. Electrochem. Soc.,1987,134:643C-652C
    [10]Borman W H F. Electrolytic polymerization of phenol[P]. U. S. Pat.,3335075, 1967-08-08
    [11]Bruno F, Pham M C, Dubois J E. Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols[J]. Electrochim. Acta,1977,22:451-457
    [12]Glarum S H, Marshall J H, Hellman M Y, et al. Characterization of Polyphenylene Oxide Anodic Films[J]. J. Electrochem. Soc.,1987,134:81-84
    [13]Perrin F X, Pagetti J. Synthesis, characterization, and electropolymerization of Mannich bases:Influence of substituents on protective ability of organic coatings[J]. J. Appl. Polym. Sci.2000,75:1054-1067
    [14]Iwakura C, Tsunaga M, Tamura H. Anodic oxidation of 2,6-xylenol in acetonitrile on platinum[J]. Electrochim. Acta,1972,17:1391-1400
    [15]Herasa M A, Lupub S, Piganic L. A poly (3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol[J]. Electrochim. Acta.2005,50:1685-1691
    [16]Belhadj T N, Savall A J. Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode[J]. J. Appl. Electrochem.2009,39:663-669
    [17]Cheng H, Scott K, Christensen P A. Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions[J]. J. Electrochem. Soc.,2003,150(2): D25-D29
    [18]Iotov P I, Kalcheva S V. Electrocatalytic oxidation of phenol at potentiodynamically preanodised gold electrodes in alkaline medium[J]. Bull. Electrochem.2000,16(9): 407-414
    [19]Andion L G, Garces P, Lapuente R, et al. Corrosion behaviour at the interface of steel bars embedded in cement slurries:Effect of phenol polymer coatings[J]. Corros. Sci., 2002,44:2805-2816
    [20]Patra S, Munichandraiah N. Electro-oxidation of Phenol on Polyethylenedioxythiophene Conductive-Polymer-Deposited Stainless Steel Substrate[J]. J. Electrochem. Soc.,2008,155(3):F23-F30
    [21]Bao L Y, Xiong R C, Wei G. Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis[J]. Electrochim. Acta. 2010,55:4030-4038
    [22]Mengoli G, Daolio S, U Giulio, et al. Anodic formation of thick polyoxyphenylene coatings onto Fe plates from phenol-ethylene diamine systems[J]. J. Appl. Electrochem.,1979,9:483-493
    [23]Fleischmann M, Hill I R, Mengoli G. A Raman spectroscopic investigation of the electropolymerization of phenol on silver electrode[J] Electrochim. Acta,1983,28: 1545-1553
    [24]Moraes S R, Huerta-Vilca D, Motheo A. Corrosion protection of stainless steel by polyaniline electrosynthesized from phosphate buffer solutions[J]. J. Prog. Org. Coat. 2003,48:28-33
    [25]Genies E M, Tsintavis C. Redox mechanism and electrochemical behaviour or polyaniline deposits[J]. J. Electroanal. Chem.1985,195:109-128
    [26]Dui L, Mandi Z, Kova S. Polymer-dimer distribution in the electrochemical synthesis of polyaniline[J]. Electrochim. Acta.1995.40:1681-1688
    [27]Conroy K G, Breslin C B. The electrochemical deposition of polyaniline at pure aluminium:electrochemical activity and corrosion protection properties [J]. Electrochimica Acta,2003,48:721-732
    [28]Okamoto H M, Kotaka T. Structure development in polyaniline films during electrochemical polymerization. Ⅱ:Structure and properties of polyaniline films prepared via electrochemical polymerization[J]. Polymer 1998,39:4359-4367
    [29]Montilla F, Cotarelo M A, Morallon E, Hybrid sol-gel-conducting polymer synthesised by electrochemical insertion:tailoring the capacitance of polyaniline[J]. J. Mater. Chem.2009,19:305-310
    [30]Huang M, Tai C, Zhou Q, et al. Preparation of polyaniline coating on a stainless-steel wire using electroplating and its application to the determination of six aromatic amines using headspace solid-phase microextraction[J]. Chromatogr. A.2004,1048: 257-262
    [31]Ohsaka T, Ohnuki Y, Katagiri G, et al. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline[J]. J. Electroanal. Chem.1984,161:399-405
    [32]Gizdavic-Nikolaidis M, Travas-Sejdic J, Bowmaker G A, et al. Conducting polymers as free radical scavengers [J]. Synth. Met.2004,140:225-232
    [33]Widera J, Pays B, Bukowska J, et al. Effect of anions on the electrosynthesis, electroactivity and molecular structure of poly(o-methoxyaniline)[J]. Synth. Met. 1998,94:265-272
    [34]Matveeva E S, Patil R C, Gonzalez-Tejera M J. Optical evidence of electrochemical modification of polyaniline induced by tetra-fluoro-hydroquinone Synth. Met.2001, 123:343-348
    [1]Li Z, Wu M H, Jiao Z. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. J. Hazard. Mater.,2004,114:111-114
    [2]Xu J Q, Duan W H, Zhou X Z, et al. Extraction of phenol in wastewater with annular centrifugal contactors[J]. J. Hazard. Mater.,2006,131:98-102
    [3]Qu X F, Zheng J T, Zhang Y Z. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor[J]. J. Colloid Interface Sci.,2007,309: 429-434
    [4]王绍洪,王红军.膜萃取器设计及应用研究进[J].膜科学与技术,2002,22(1):39-43
    [5]Sarfaraza S, Thomasa S, Tewariet U K, et al. Anoxic treatment of phenolic wastewater in sequencing batch reactor[J]. Water Res.,2004,38:965-971
    [6]Chan C H, Lim P E, Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater [J]. Bioresour. Technol.,2007,98:1333-1338
    [7]Korbahti B K, Tanyolac A. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor [J]. Water Res.,2003,37:1505-1514
    [8]Kidak R, Ince N H. Catalysis of advanced oxidation reactions by ultrasound:A case study with phenol[J], J. Hazard. Mater.,2007,146:630-635
    [9]Manojlovic D. Ostojic D R, Obradovic B M, et al. Removal of phenol and chlorophenols from water by new ozone generator[J]. Desalination,2007,213: 116-122
    [10]Kusic H, Koprivanac N, Bozic A L, et al. Photo-assisted Fenton type processes for the degradation of phenol:A kinetic study[J]. J. Hazard. Mater.,2006,136:632-644
    [11]Fockedey E, Lierde A V. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J]. Water Res.,2002,36: 4169-4175
    [12]Yang X P. Zou R Y, Huo F, et al. Preparation and characterization of Ti/SnO2- Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol[J]. J. Hazard. Mater.,2009,164:367-373
    [13]Li M., Feng C. P., Hu W W, et al. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt[J]. J. Hazard. Mater.,2009,162:455-462
    [14]Ma H Z, Zhang X H, Ma Q L, et al. Electrochemical catalytic treatment of phenol wastewater[J]. J. Hazard. Mater.,2009,165:475-480
    [15]Andrade L S, Rocha-Filho R C, Bocchi N, et al. Degradation of phenol using Co-and Co, F-doped PbO2 anodes in electrochemical filter-press cells[J]. J. Hazard. Mater., 2008,153:252-260
    [16]Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim. Acta,1994,39: 1857-1862
    [17]X. P. Zhu, J. R. Ni, Wei J J, et al. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode[J]. J. Hazard. Mater., 2010,184:493-498
    [18]Zhu X P, Ni J R, Li H N, et al. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes[J]. Electrochim. Acta, 2010,55:5569-5575
    [19]Kuramitz H, Nakata Y, Kawasaki M, et al. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode[J]. Chemosphere,2001,45:37-43
    [20]Xiong Y, He C, Karlsson H T, et al. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol[J]. Chemosphere,2003,50:131-136
    [21]McKinney D S, Fugassi J P. Electrolytic polymerization of phenol[P]. U. S. Pat., 2961384,1960-11-22
    [22]Mengoli G, Daolio S, U Giulio, et al. Anodic formation of thick polyoxyphenylene coatings onto Fe plates from phenol-ethylene diamine systems[J]. J. Appl. Electrochem.,1979,9:483-493
    [23]Ferreira M, Varela H, Torresi R M, et al. Electrode passivation caused by polymerization of different phenolic compounds[J]. Electrochim. Acta,2006,52: 434-442
    [24]Gattrell M, Kirk D W. A Fourier Transform Infrared Spectroscopy Study of the Passive Film Produced during Aqueous Acidic Phenol Electro-oxidation[J]. J. Electrochem. Soc.,1992,139:2736-2744
    [25]Belhadj T N, Savall A J. Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode[J]. J. Appl. Electrochem.2009,39:663-669
    [26]Cheng H, Scott K, Christensen P A. Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions[J]. J. Electrochem. Soc.,2003,150(2): D25-D29
    [27]Iotov P I, Kalcheva S V. Electrocatalytic oxidation of phenol at potentiodynamically preanodised gold electrodes in alkaline medium[J]. Bull. Electrochem.2000,16(9): 407-414
    [28]Yavuz Y, Koparal A S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode[J]. J. Hazard. Mater.,2006,136: 296-302
    [29]Kuramitz H, Matsushita M, Tanaka S. Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode[J]. Water Res.,2004,38:2331-2338
    [30]Tahar N B, Savall A. Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures[J]. Electrochim. Acta,2009,55: 465-469
    [31]Tahar N B, Savall A. Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials[J]. Electrochim. Acta,2009,54:4809-4816
    [32]Andion L G, Garces P, Lapuente R, et al. Corrosion behaviour at the interface of steel bars embedded in cement slurries:Effect of phenol polymer coatings[J]. Corros. Sci., 2002,44:2805-2816
    [33]沈艺程,龚翠然,王飞.苯酚及其衍生物的电化学聚合及耐蚀性能[J].腐蚀与防护,2006,27:637-639
    [34]Bao L Y, Xiong R C, Wei G. Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis [J]. Electrochim. Acta. 2010,55:4030-4038
    [35]Iniesta J, Michaud P A, Comninellis C, et al. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochim. Acta,2001,46:3573-3578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700