用户名: 密码: 验证码:
固体氧化物高温电解池材料制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温电解制氢(HTSE)可以利用先进核反应堆提供的工艺热和电能,在高温下将水蒸气高效电解为氢气和氧气,实现高达48~59%的热转化效率,是未来可能用于大规模制氢的方法之一。HTSE的核心装置是固体氧化物电解池(SOEC),原理上是目前研究较多的固体氧化物燃料电池(SOFC)的逆过程。但是从SOFC模式转变到SOEC模式后,由于工作环境和电极极化方向的改变,SOEC对材料和运行工艺都提出新的要求,直接将SOFC逆向运行不能得到性能优化的SOEC,开发适用于电解模式下的高效电解质和电极材料是SOEC技术实用化所需解决的一个关键问题。本论文主要的研究结果如下:
     1、氢电极预烧温度、YSZ电解质烧结温度和印刷厚度是影响YSZ电解质薄膜致密度的关键因素。经过1000℃预烧的氢电极机械强度更好,更有利于印刷操作。YSZ较适合的烧结温度范围为1350~1400℃,当烧结温度高于1450℃,SOEC的性能下降。当印刷层数达到4层(约10μm)时,可满足SOEC对YSZ电解质气密性的要求。在致密电解质上制备一层多孔的YSZ进行微结构改性,可有效增加电极的活性面积,提高电解性能。
     2、分别采用氨水沉淀法和尿素燃烧原位合成法成功制备了高性能的NiO-YSZ复合粉体,通过对两种工艺路线合成的粉体材料比较选用尿素燃烧原位合成法来制备NiO-YSZ目标粉体,并对其合成工艺条件进行了优化。梯度化设计后的氢电极制备的单体电解池的制氢性能明显高于非梯度化的SOEC。
     3、原位合成法制备的LSM-YSZ复合粉体在合成重现性、电解性能和运行的稳定性上均优于机械混合法制备的LSM-YSZ,更适合用来制备SOEC氧电极。LSM-YSZ氧电极在SOEC模式下的活化机理表明:阳极极化/电流能够将Mn离子还原,并使偏析于LSM表面的SrO进入到LSM的晶格内,使得LSM中产生氧空位,增加氧电极的反应活性位置,从而提高LSM-YSZ氧电极的性能。
     4、利用本论文所研究的制备工艺组装的单电解池表现了良好的电解性能,在以0.33 Acm-2恒流电解50 h的过程中,电解电压稳定在0.93~0.95 V, SOEC的性能未出现衰减,SOEC的产氢速率可高达138 Nmlcm-2h-1。研究还发现,电解温度的升高和氢电极进气中水蒸气含量的升高有利于电解反应的进行,适宜的水蒸气含量为70%~80%。Pt集流体中的Bi和Na等低熔点元素对SOEC微结构具有破坏作用,在改进集流体后,SOEC运行稳定。
     本文开发的电解质表面微结构改性技术和电极原位合成方法有利于SOEC电解性能和稳定性的提高,可为高温蒸汽电解制氢奠定基础。
High temperature steam electrolysis (HTSE), which is the highly efficient electrolysis of steam at high temperature and utilizes the heat and electrical power supplied simultaneously by advanced nuclear reactor, provides a very promising way for the large-scale production of hydrogen in the future. The conversion efficiency of thermal energy to hydrogen in HTSE can be up to 48-59%. Solid oxide electrolysis cell (SOEC), a reverse reaction of solid oxide fuel cell (SOFC) developed vigorously worldwide in principle, is the key component of HTSE system. However, Operation in SOEC mode is fundamentally different from that in SOFC mode due to the obvious change in direction of the electrochemical reaction and various operating conditions. It is hard to get optimized performance of SOEC based on the direct reverse operation of SOFC. Therefore, SOEC puts forward new demands for materials and technology. And, it is of great importance to improve the performance of electrolyte and electrodes for the practicability of SOEC technology in the future. The main aims of this dissertation were the preparation and fabrication technique of SOEC components for the application of HTSE.
     1. Pre-sintering temperature of hydrogen electrode, sintering temperature of YSZ electrolyte and the thickness of electrolyte are the key factors to affect the density of the electrolyte film. When the pre-sintering temperature is over 1000℃, it is beneficial for the improvement of mechanical strength of the hydrogen electrode and in favor of the printing operation. The suitable sintering temperature of YSZ is between 1350℃and 1400℃. When the temperature is over 1450℃, the performance of SOEC will decrease quickly. And the more appropriate thickness of the electrolyte is about 10μm. The active electrode area and the electrolysis performance can be increased effectively by the microstructure modification of YSZ through the preparation of a layer porous YSZ on the surface of the dense electrolyte.
     2. NiO-YSZ composite powder was highly efficient synthesized via in situ urea combustion method and ammonia precipitation method, respectively. Through the comparative analysis of products, in situ urea combustion method was adopted as the preparation method in the research and the optimization of technological conditions for the synthesis was investigated. The hydrogen production performance of the single SOEC with optimized gradient hydrogen electrodes is obvious higher than that of cells with non-gradient hydrogen electrodes.
     3. The in-situ LSM-YSZ powder shows better reproducibility, electrolysis performance and stability than traditionally direct mixture LSM and YSZ oxygen electrode. A mechanism which involves the incorporation of SrO segregated on the surface into the LSM lattice and the generation of oxygen vacancies in the LSM electrode is proposed for the activation process with O2- oxidation on LSM electrodes.
     4. The electrochemical test of the single button cells assembly of the above self-prepared electrodes and electrolyte shows excellent electrolysis performance. The electrolysis voltage can be kept at 0.93-0.95 V with a hydrogen production rate up to 138 Nmlcm-2h-1 and no degradation for 50h at the current density of 0.33 Acm-2 Moreover, it is found that the increase of temperature and steam content are conducive to the electrolysis reaction. The suitable steam content is from 70% to 80%. Bi and Na elements with low melting point in the Pt collector can damage the microstructure of SOEC.
     In this paper, the R&D of microstructure modification technology on the surface of dense electrolyte and the novel in situ synthesis method of electrodes are beneficial for the improvement of the performance and stability of SOEC, which are the basis for the further application of HTSE technology.
引文
1. World Energy Outlook, International Energy Agency, OECD/IEA Publications, Second Edition,2002
    2. Hydrogen Strategy Group of the Federal Ministry of Economics and Labour (2005).Strategy Report on Research Needs in the Field of Hydrogen Energy Technology. Berlin, Federal Ministry of Economics and Labour.
    3. http://www.chinahyyj.com/news/w_2008090410354415870.html
    4.江泽民.对中国能源问题的思考[J],上海交通大学学报,2008,42(3):345-359.
    5. Richard D, Diana M, Robert L. DOE Solar-Hydrogen Workshop UMUC Conference in University of Chicago, November 2004
    6. Johnston B, Mayo C M, Khare A. Hydrogen:the energy source for the 21st century [J], Technovation.2005,6:569-585.
    7. Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario [J], International Journal of Hydrogen Energy,2003, 28:267-284.
    8.毛宗强.氢能—21世纪的绿色能源[M],北京:化学工业出版社,2005
    9. International Atomic Energy Agency. Hydrogen as an energy carrier and its production by nuclear power [J], IAEA-TECDOC-1085,1999:101-130.
    10. Yurum, Y, Hydrogen production methods [J], Fuel and Energy Abstrct.1996,37:344.
    11. Bollinger R B, Aaron T M, U.S. DOE Hydrogen Program Review,2002
    12. Brown L C, Besenbruch G E, Funk J E, Presentation at U.S. Department of Energy Hydrogen Fuel Cells and Hydrogen Review,2002
    13. Spath P L, Mann M K.Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis.National Renewable Energy Laboratory,2004.
    14. Kubo S, Kasahara S, Okuda H,et al. A pilot test plan of the thermochemical water-splitting iodine-sulfur process [J], Nuclear Engineering and Design, 2004:355-362.
    15. Hinoa R, Hagaa K, Aitab H,et al. R&D on hydrogen production by high-temperature electrolysis of steam [J], Nuclear Engineering and Design,2004,233:363-375.
    16. Bolton,James R. Solar photoproduction of hydrogen:a review [J], Solar energy,1996, 1:37-50.
    17. Debabrata D, Veziroglu T. Hydrogen production by biological processes:a survey of literature [J], J Hydrogen Energy,2001,26:13-28.
    18. International Atomic Energy Agency, Power reactor information system,2008, [2008-03-20], http://www.iaea.org/programmes/a2/.
    19. Herring J S, Lessing P, James E O B, et al, Hydrogen Production through High-Temperature Electrolysis in a Solid Oxide Cell, Second Information Exchange Meeting on Nuclear Production of Hydrogen,2003
    20. Herring J S, O'Brien J E, Stoots C M, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology [J], Int Journal Hydrogen Energy,2007,32:440-450.
    21. Yu B, Zhang W Q, Chen J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis [J], Sci China Ser B,2008,51(4):289-304.
    22. Hiroyuki Uchida, Norikazu Osada, Masahiro Watanabe. High-Performance Electrode for Steam Electrolysis Mixed Conducting Ceria-Based Cathode with Highly-Dispersed Ni Electrocatalysts [J], Electrochem and Solid-State Lett,2004,7(12):A500-A502.
    23. A Technology Roadmap for Generation Ⅳ Nuclear Energy System.U.S.DOE Nuclear Energy Research Advisory Committee and the generation Ⅳ International Forum,2002.
    24. Forsberg C. Hydrogen, nuclear energy, and the advanced high-temperature reactor [J], Journal of Hydrogen Energy,2003,28:1073-1081.
    25. Yu B, Zhang W Q, Chen J, Xu J M, Wang S R, Advance in highly efficient hydrogen production by high temperature steam electrolysis [J], Sci. China Ser. B, 51(2008):289-304.
    26. Ni M, Leung M K H,et al..A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. Journal of Power Sources [J],163(2006):460-466.
    27. Spacil H S, Tedmon.JR C S. Electrochemical Dissociation of Water Vapor in Solid oxide Electrolyte Cells I.Thermodynamics and Cell Characteristics [J], Journal of the Electrochemical Society,1969,116:1618.
    28. Ni M, Leung M K H, Leung D Y C. A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. Journal of Power Sources [J],2006,163:460-466.
    29. Herring J, Lessing P, O'Brien J, et al. OECD/NEA Workshop on Nuclear Production of Hydrogen, ANL, US,2-3 October 2003.
    30. Yildiz B, Kazimi M S, MIT Report: MIT-NES-TR-001, September 2003.
    31. Yildiz, Kazimi. Efficiency of hydrogen production systems using alternative nuclear energy technologies. GA report on SI process,2003
    32. O'Brien J E, McKellar M G, Hawke G L, et al, Development and Validation of a One-Dimensional Model for Use in Large-Scale Process Modeling Analysis, Fifth International Fuel Cell Science, Engineering, and Technology Conference, New York, NY, June 18-20,2007
    33. Yildiz B., Kazimi M., Efficiency of hydrogen production systems using alternative nuclear energy technologies[J], International Journal of Hydrogen Energy, 2006,31:77-92.
    34. O'Brien J, Stoots C, Herring J et al. Performance Measurements of Solid-Oxide Electrolysis Cells for Hydrogen Production,Journal of Fuel Cell Science and Technology [J],2005,2,156-163.
    35.魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J],稀有金属,2003,27(2):286-292
    36. Brett D J L, Atkinson A, Brandon N P, et al. Intermediate temperature solid oxide fuel cells [J], Chem. Soc. Rev.2008,37,1568-1578.
    37.王常珍.冶金物理化学研究方法[M],北京:冶金工业出版社,2002,136-137
    38.韩敏芳,李伯涛,彭苏萍,刘敬.参杂ZrO2基复合电解质材料性能.第十二届全国复合材料学术会议,复合材料—生命、环境和高技术,2002,10:130-132
    39.韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M],北京:科学出版社,2004
    40. Badwal S P S, Ciacchi F T, Milosevic D. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation [J], Solid States Ionics,2000, 136:91.
    41. Yashima M, Kakihana M, Yoshimura M. Metastable-stable phase diagrams in the Ziconia-containing systems utilized in solid-oxide fuel cell application [J], Solid State Ionics,1996,86-88:1131-1149
    42. Hirano M, Watanabe S, Kato E et al. Science and Technology of Zirconia [J], Technomic,USA,1993:733-741
    43. Yuzaki A, Kishimoto A, Effect of alumina dispersion on ionic conduction of toughened zirconia base composite [J], Solid State Ionics,1998,109:273-277
    44. Yamamura H,Utsunomiya N, Mori T,Atake T. Electrical conductivity in the system ZrO2-Y2O3-Sc2O3 [J], Solid State Ionics,1998,111:161-169
    45. Minh N Q, Takahashi T. Science and technology of ceramic fuel cells. Elsevier Science B.V., ISBN:0-444-895668-X,U.S.A.1995,11:92-96
    46.刘旭俐,马俊峰,刘文化等.固体氧化物燃料电池材料的研究进展.硅酸盐通报,200,1:24.
    47.蒋凯,张秀英,郭崇峰.固体氧化物燃料电池中的电解质[J],稀有金属,2001,25(2):121
    48. Will J, Mitterdorfer A, Kleinlogel C, et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells [J], Solid State Ionics,2000,131:79-96
    49. Zhang Y H, Huang X Q, Lu Z, et al. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing[J]. Journal of Power Sources,2006,160:1065-1073
    50. Ge X D, Huanga X Q, Zhang Y H, et al. Screen-printed thin YSZ films used as electrolytes for solid oxide fuel cells[J]. Journal of Power Sources,2006, 159:1048-1050
    51. Zhang X G, Robertson M, Dec'es-Petit C. et al. NiO-YSZ cermets supported low temperature solid oxide fuel cells [J]. Journal of Power Sources,2006,161:301-307
    52.韩敏芳,王玉清,李伯涛等.流延成型制备8YSZ电解质薄片及其性能研究[J].北京科技大学学报,2005,27(2):209-212
    53. Snijkers F, Wilde A.de, Mullens S, et al. Aqueous tape casting of yttria stabilised zirconia using natural product binder [J]. Journal of the European Ceramic Society, 2004,24:1107-1110
    54. Albano M P, Garrido L B.. Drying of yttria stabilized zirconia cast-tapes:Effect of aging time and surfactant addition on cracking behavior [J]. Materials Science and Engineering,2007,A 452-453:121-129
    55. Chen K F, Lu Z, Ai N, et.al. Fabrication and performance of anode-supported YSZ films by slurry spin coating [J], Solid State Ionics,2007,177:3455-3460
    56. Zhang Y L, Gao J F, Peng D K, et al. Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications [J], Ceramics International,2004,30:1049-1053
    57. Xin X S, Lii Z, Huang X Q, et al. Anode-supported solid oxide fuel cell based on dense electrolyte membrane fabricated by filter-coating[J], Journal of Power Sources,2006, 159:1158-1161
    58. Xu Z G, Rajaram G, Sankar J, et al. Electrophoretic deposition of YSZ electrolyte coatings for solid oxide fuel cells[J], Surface & Coatings Technology,2006, 201:4484-4488
    59. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD) [J], Progress in Materials Science,2007,52:19
    60. Hosomi T, Matsuda M, Miyake M. Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC [J], Journal of the European Ceramic Society,2007, 27:173-178
    61. Han M F, Tang X L, Yin H Y, et al. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs [J], J. Power Sources.,2007,165:757-763
    62.韩敏芳,杨翠柏,李伯涛等.轧膜成型YSZ电解质薄片性能[J],电池,2004,34(3):207-208
    63. Ma Q L, Ma J J, Zhou S, et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte [J]. Journal of Power Sources,2007,164:86-89
    64. Xin X S, Lii Z, Huang X Q, et al. Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process [J]. Journal of Power Sources,2006,160:1221-1224
    65. Goto T, Thermal barrier coatings deposited by laser CVD, Surface & Coatings Technology[J],2005,198:367-371
    66. Kikuchi K, Matsuo K, Mineshige A, Ogumi Z. Fabrication of hollow thin films of yttria-stabilized zirconia by chemical vapor infiltration using NiO as oxygen source[J], Solid State Ionics,2006,177:2903-2909
    67. Brahim C, Ringuede A, Cassir M, et al. Advanced electronic and optoelectronic materials by Atomic Layer Deposition [J]. Appl. Surf. Sci., doi:10.1016/j.apsusc.2006.08.043
    68. Kim H. Atomic layer deposition of metal and nitride thin films:Current research efforts and applications for semiconductor device processing[J], J. Vac. Sci. Technol. B,2003,21(6):2231-2261
    69. Lee Y H, Kuo C W, Shih C J, et al. Characterization on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process [J]. Materials Science and Engineering A[J],2007,445-446:347-354
    70. Rose L, Kesler O, Tang Z L, et al. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying [J]. Journal of Power Sources,2007,167:340-348
    71. Li Q, Xia T, Liu X D, et al. Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics [J]. Materials Science and Engineering B,2007, 138:78-83
    72. Todorovska R, Petrova N, Todorovsky D. Spray pyrolysis deposition of YSZ and YSZ-Pt composite films[J], Applied Surface Science,2005,252:1266-1275
    73. Perednis D, Gauckler L J. Solid oxide fuel cells with electrolytes prepared via spray pyrolysis[J]. Solid State Ionics,2004,166:229-239
    74. Perednis D, Wilhelm O, Pratsinis S E, et al. Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis [J], Thin Solid Films,2005, 474:84-95
    75. Jeong S H, Bae I S, Shin Y S, et al. Physical and electrical properties of ZrO2 and YSZ high-k gate dielectric thin films grown by RF magnetron sputtering[J]. Thin Solid Films,2005,475:354-358
    76. Nagata A, Okayama H. Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering [J]. Vacuum,2002, 66:523-529
    77. Fedtke P, Wienecke M, Bunescu MC, Barfels T, Deistung K, Pietrzak M. J Solid State Electrochem,2004;8:626-32.
    78. Hobein B, Tietz F, Stover D, et al. Pulsed laser deposition of yttria stabilized zirconia for solid oxide fuel cell applications [J]. J. Power Source,2002,105:239-242.
    79. Joo J H, Choi G M. Electrical conductivity of YSZ film grown by pulsed laser deposition [J]. Solid State Ionics,2006,177:1053-1057
    80. Caricato A P, Barucca G, Cristoforo A D, et al. Excimer pulsed laser deposition and annealing of YSZ nanometric films on Si substrates [J]. Applied Surface Science,2005, 248:270-275
    81. Pryds N, Toftmann B, Bilde-Sorensen J B, et al. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition [J]. Applied Surface Science,2006,252:4882-4885
    82. Chen C H, Heberlein J, Henner R, et al. Integrated fabrication process for solid oxide fuel cell in a triple torch plasma reactor [J]. Thermal Spray Technol,2000,9 (3): 348-353
    83. Stoermer A O., Jennifer L M, Ludwig J. Gauckler. Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC [J]. Solid State Ionics,2006, 177:2075-2079
    84. Li J F, Liao H L, Ding C X, et al. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments [J]. Journal of Materials Processing Technology,2005,160:34-42
    85.李成新,宁先进,李长久.等离子喷涂结合致密化工艺制备SODC电解质层[J],2004,28(9):565-568
    86. Li C H, Li C X, Ning X J. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet-supported tubular SOFC[J]. Vacuum,2004, 73:699-703
    87. Brinkiene K, Kezelis R. Effect of alumina addition on the microstructure of plasma sprayed YSZ[J]. Journal of the European Ceramic Society,2005,25:2181-2184
    88. Herring J, O'Brien J, Lessing P, et al. Nuclear Energy and the Hydrogen Economy, MIT, September 23,2003
    89. Kim S D, Moon H, Hyun S H. Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics,2006, 177:931-938
    90. Setoguchi T, Okamoto K, Eguchi K, et al. Effects of anode material and fuel on anodic reaction of solid oxide fuel cells[J], J. Electrochem. Soc.1992,139 (10):2875-2880.
    91. Swadesh K, Pratiharl, Sharma A D, et al. Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells[J], Journal of Power Sources, 2004,129:138-142
    92. Li Y, Xie Y S, Gong J H, Preparation of Ni/YSZ materials for SOFC anodes by buffer-solution method, Materials Science and Engineering,2001, B86:119-122
    93. Fukui T, Ohara S, Makio Naito, et al, Synthesis of NiO-YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis[J], Powder Technology,2003, 132:52-56
    94. Wang F H, Guo R S, Wei Q. T, et al, Preparation and properties of Ni/YSZ anode by coating precipitation method[J], Materials Letters,2004,58:3079-3083
    95. Hauch A, Jensen S H, Ramousse S, et al, Performance and Durability of Solid Oxide Electrolysis Cells.Journal of The Electrochemical Society[J],2006,153, A1741-A1747.
    96. Hauch A, Jensen S H, Bilde-S(?)rensen J B, et al. Silica Segregation in the Ni/YSZ Electrode[J], Journal of The Electrochemical Society,2007,154, A619-A626.
    97. Hauch A, Ebbesen S D, Jensen S H, et al, Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode[J], Journal of The Electrochemical Society,2008,155, B1184-B1193.
    98. Song H S, Kim W H, Hyun S H, et al. Effect of starting particulate materials on microstructure and cathodic performance of nanoporous LSM-YSZ composite cathodes[J], J. Power Sources,2007,167:258-264.
    99. Nakamura T, Petzow G, and Gauckler LJ. Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results[J]. Mater. Res. Bull.1979:14;649-659.
    100.Ianculescu A, Braileanu A, Pasuk I, and Zaharescu M. Phase formation study of alkaline earth-doped lanthanum chromites[J]. J. Therm. Anal. Calorimetry, 2001:66;501-507.
    lOl.Minh N Q, Takahashi T, Science and Technology of Ceramic Fuel Cells, New York: Elsevier,1995
    102.Mori M, Hiei Y,et al,Electrochem J Soc,1999,146(11):4041-4047
    103.Hammouche A.Schouler E J L,Henault M, Electrical and thermal properties of Sr-doped lanthanum manganites, Solid State Ionics,1998,28-30:1205
    104.Kamata H.Hosaka A,Mizusaki J,et al, Solid State Ionic,1998,102:237-245
    105.Skinner S J. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes[J]. International Journal of Inorganic Materials,2001,3:113-121.
    106.Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431:170-173.
    107.Zhu W Z, Deevi S C. Development of Interconnect Materials for Solid Oxide Fuel Cells[J]. Mater. Sci. Eng.2003, A348:227-243
    108.Yang Z, Stevenson J, Singh P. Solid Oxide Fuel Cells[J], Adv. Mater. Process.2003, 161(6):34-37
    109.Yang Z, Weil KS, Paxton DM, and Stevenson JW. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications[J]. J. Electrochem. Soc. 2003:150;A1188-A1201.
    110.Fergus J W. Metallic interconnects for solid oxide fuel cells[J]. Mater. Sci. Eng. A 2005:A397;271-283.
    111.朱庆山,彭练,黄文来,等.固体氧化物燃料电池密封材料的研究现状与发展趋势.无机材料学报[J],2006,21:284-290.
    112.Spacil H S, Tedmon C S. Electrochemical Dissociation of Water Vapor in Solid oxide Electrolyte Cells I. Thermodynamics and Cell Characteristics [J], J. Electrochem.Soc., 1969116:1618-1626
    113.Doenitz W, Schmidberger R, Concepts and design for scaling up high-temperature water vapor electrolysis[J], Int. J. Hydrogen Energy,1982,7:321-330
    114.Doenitz, W., Eedle.E., High-temperature electrolysis of water vapor status of development and perspective for application[J], Int. J. Hydrogen Energy,1985, 10:291-295.
    115.Doenitz, W., Dietrich, G., Erdle, E., Streicher, R., Electrochemical high temperature technology for hydrogen production or direct electricity generation [J], Int. J. Hydrogen Energy,1988a,13:283-287
    116.Konishi S, Ohno S, Yoshida H, et al, Solid oxide electrolysis cell for decomposition of tritiated water[J], Int. J. Hydrogen Energy,1986,11:507-512.
    117.Maskalick, N.J., High temperature electrolysis cell performance characterization[J], Int. J. Hydrogen Energy,1986.11:563-570
    118.Hino R., Katsuhiro Haga, Hideki Aita et al, R&D on hydrogen production by high-temperature electrolysis of steam[J], Nuclear Engineering and Design, 2004,233:363-375
    119.Herring J S, O'Brien J E, Stoots C M, et al.Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology [J], International Journal of Hydrogen Energy,2007,32:440-450.
    120.Idaho National Laboratory. Syngas Generation from Co-Electrolysis (Syntrolysis) 2007-03-22,[2007-07-29],http://www.inl.gov/featurestories/2007-03-22.shtml.
    121.Henderson D, Nuclear Hydrogen Initiative Overview, May 24,2004, US.
    122.Highly efficient, High temperature, Hydrogen production by Water Electrolysis,2004, [2007-06-58],http://www.hi2h2.com/
    123.Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources[J], International Journal of Hydrogen Energy,2007, 32:3253-3257
    124.Hauch A, Jensen S H, Ramousse S, et al. Performance and durability of solid oxide electrolysis cells[J], Journal of The Electrochemical Society,2006,9:A1741-A1747.
    125.Brisse A, Schefold J, Zahid M. High temperature water electrolysis in solid oxide cells[J], International Journal of Hydrogen Energy,2008,33:5375-5382
    126.Fan C G, Iida T, Murakami K, et al. Investigation on the Power Generation and Electrolysis Behavior of Ni-YSZ/YSZ/LSM Cell in Reformate Fuel[J], Journal of Fuel Cell Science and Technology,2008,5:031202-1-031202-15
    127.Hino R, Haga K, Aitab H, et al. R&D on hydrogen production by high-temperature electrolysis of steam[J], Nuclear Engineering and Design,2004,233:363-375
    128.Hong H S, Chae U S, Choo S T, Microstructure and electrical conductivity of Ni/YSZ and NiO/YSZ composites for high-temperature electrolysis prepared by mechanical alloying[J], Journal of Power Sources,2005,149:84-89
    129.Liang M D, Yu B, Wen M F, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J], Journal of Power Sources,2009,190:341-345
    130.Liu M Y, Yu B, Xu J M, Chen J. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production [J]. Journal of Power Sources,2008,177:493-499.
    131.Yu B, Zhang W Q, Xu J M, Chen J. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3 and its application for anode of SOEC [J]. International Journal of Hydrogen Energy,2008,33,6873-6877.
    132.张文强,于波,陈靖,徐景明.高温固体氧化物电解制氢技术[J].化学进展,2008,20(5):778-787.
    133.0'Brien J E, Stoots C M, Herring J S, et al. Performance Measurements of Solid-Oxide Electrolysis Cells for Hydrogen Production[J]. Journal of Fuel Cell Science and Technology,2005,2:156-163.
    134.张耀辉.固体氧化物燃料电池两种电解质膜制备方法的研究及应用[D],哈尔滨:哈尔滨工业大学,2006
    135.曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2002
    136.史美伦.交流阻抗谱原理及应用[M],北京:国防科技出版社,2001,27
    137.Cinghal C S, Kendal K, High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Apdirations[M], Elsevier Ltd,2002
    138.梁明德,于波,文明芬等,YSZ电解质薄膜的制备方法[J],化学进展,2008,20(0708):1222-1232
    139.郭广生,郑东华,王志华等.均匀沉淀法制备纳米氧化镍[J],北京化工大学学报,2004,31(3):74-81
    140.Zheng F, Pederson L R. JElectrochem Soc 1999:146:2810-2816.
    141.Jiang S P, Love J G, Zhang J P, et et al. Solid State Ionics 1999,121:1-10.
    142.Jiang S P, Wang W, Sintering and grain growth of (La,Sr)MnO3 electrodes of solid oxide fuel cells under polarization, Solid State Ionics,2005,176:1185-1191
    143.W. Wang, S.P. Jiang, A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells [J], Solid State Ionics,177 (2006) 1361-1369.
    144.Lee H Y, Cho W S, Oh S M, et al, Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1MnO3 YSZ Electrodes [J], J. Electrochem. Soc.,142 (1995) 2659-2664.
    145.S.P. Jianga, J.G. Love, Origin of the initial polarization behavior of Sr-doped LaMnO3 for 02 reduction in solid oxide fuel cells [J], Solid State Ionics,138 (2001) 183-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700