用户名: 密码: 验证码:
质子交换膜燃料电池催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1839年,格罗夫教授首次提出了燃料电池的概念。二十世纪六十年代,通用电气公司为美国航天局设计开发了质子交换膜燃料电池(PEMFC),当时主要是作为宇宙飞船的能源之用。二十世纪八十年代,加拿大巴拉德公司开始大力开发PEMFC,该领域随即蓬勃发展起来。近年来,由于能源和环境问题逐渐被社会所重视,质子交换膜燃料电池这种清洁而高效的新能源技术也得到了重视和发展。
     迄今为止,PEMFC在民用方面仍然没能得到大规模的应用。这关键是由于构成燃料电池的几种关键材料在性能和价格上的缺陷一直难以攻克,导致其应用受限。其中催化剂就是制约燃料电池发展的关键材料之一。
     如何制备高活性、长寿命、价格低廉的电催化剂一直是PEMFC催化剂研究的焦点。在催化剂的制备过程中,反应条件会影响所得催化剂的性能。本文通过调变不同的反应条件,系统研究了制备过程中温度、溶液组成、起始pH值、后处理方法等对催化剂形貌,负载情况,稳定性及担载量等性质的影响。
     催化剂的载体虽不直接参与电化学反应,但它能够决定活性金属组分的分布状态,而且参与电极中电子的传递和水的传输。载体的物化性质(如比表面积、孔隙分布、导电性、表面官能基团、亲水疏水特性等)会直接影响催化剂的性能。本文选取了具有不同物化性质的碳材料作为催化剂的载体。通过观察所制得催化剂的催化行为,评价了载体的各方面物化性质对催化性能的影响。为催化剂载体材料的选取提供了理论基础。主要研究工作如下:
     1.制备了铂纳米颗粒的胶体溶液,并研究了反应条件对铂胶体的影响。同时考察了铂胶体溶液的稳定性。将所得到的铂胶体颗粒在一定的条件下负载到碳载体上,制得了铂担载量为20 wt%的Pt/C催化剂。
     2.以乙二醇和甲醛作为还原剂,通过液相还原法制备了Pt/C催化剂,其中Pt颗粒的粒径约为3 nm,分散性良好。此外,还考察了反应时间、反应温度、体系pH值,溶剂组成等条件对催化剂的影响。并发明了一种步骤简单、条件温和的制备燃料电池催化剂的方法,该方法可控性良好。
     3.研究了反应后处理方法(洗涤溶剂、干燥条件)对催化剂形貌和性能的影响。发现乙醇淋洗会导致碳载体上的铂颗粒脱落并聚集;加热烘干会导致催化剂碳载体上的铂颗粒脱落、聚集并长大。
     4.选取了明胶基碳球、高比表面积活性炭、碳纳米管和Vulcan XC-72等具有不同比表面积、孔隙分布、石墨化程度等物化性能的碳材料作为载体制成Pt/C催化剂,并考察了材料的物化性能对催化剂形貌和催化活性的影响。发现碳纳米管是最理想的催化剂载体材料。
     5.选取了具有不同管径的多壁碳纳米管作为载体制备了铂担载量为40 wt%的Pt/C催化剂。并将催化剂制成单电池测试其极化曲线。考察了在不同的工作条件下(温度、氧化剂),载体碳纳米管的管径对催化剂催化活性的影响。发现在低温或者纯氧条件下,管径较大的碳纳米管载铂催化剂具有较好的催化性能,而在高温、空气作氧化剂的条件下,管径为10 ~ 20 nm的碳纳米管载铂催化剂相比于其它催化剂具有最佳催化性能。
     6.制备了Pt-Fe/C、Pt-Co/C和Pt-Ni/C几种铂基合金催化剂。并研究了合金催化剂中,铂之外的另一种合金金属对催化剂活性的影响。此外,制备了非铂型Pd/C催化剂,并通过调变反应条件,将Pd颗粒的粒径从几十纳米降至5 ~ 9 nm。
In 1839, Professor Grove first proposed the concept of a fuel cell. Proton exchange membrane fuel cell (PEMFC) was designed by General Electric Company for NASA in the 1960s. At that time, it was only used as the power sources of space craft. PEMFC was blooming since 1980s, when Canadian Ballard began to develop its technology. During the past decade, with environment-protection and energy problems being taken into account, PEMFC as a clean and high effective energy has been paid attention to and developed.
     So far, PEMFC in civil applications is still very limit. This is because several key materials of PEMFC too expensive to civil applications. And catalyst is one of the key materials.
     The problem how to prepare an electro-catalyst with high activity and long lifetime is one of the key technologies for the PEMFC. The reaction activity of the catalyst can be adjusted by changing the preparing condition. In this paper, the preparation of the catalysts was studied in details on the reacting temperature, the composition of the solution, the pH value of the solution, and the post-processing, which significantly influenced the form and appearance, the loads of Pt, stability and activities of the catalysts.
     In addition, the catalyst carrier is not directly involved in electrochemical reaction, but it can determine the distribution of platinum and is involved in electron transfer and water transmission. Physicochemical properties of catalyst carrier (e.g. specific surface area, pore distribution, electrical conductivity, surface functional groups and hydrophilic property) directly affect the activities of the catalyst. In this paper, we chose several carbon materials with different physicochemical properties as the catalyst carriers, and investigated the effects of physicochemical properties of carbon carrier on the activities of the catalyst for proton exchange membrane fuel cell. The main research performance in present dissertation can be summarized and demonstrated as follows:
     1. Colloid solution of platinum nanoparticles was prepared. The effect of reacting conditions in the relevance to the properties of platinum colloids was investigated. And the storage stability of platinum colloids was investigated. 20 wt% Pt/C catalyst was prepared by loading platinum nanoparticles on the carbon carrier under certain condition.
     2. The Pt/C catalysts were prepared via liquid phase reduction method, using ethylene glycol or formaldehyde as the reducing agent. The diameter of Pt particles was about 3nm. The preparation of the catalysts was studied in details on the reacting time, temperature, the pH value of the solution and the composition of the solution which significantly influenced the activities of the catalysts.
     3. The effect of post-processing on the morphology and activities of the catalyst was investigated. The platinum nanoparticles will come off the carrier and aggregate when eluting by ethanol or heating.
     4. Low-surface-area gelatin-based porous carbon bead, high-surface-area active carbon, multiwall carbon nanotube and Vulcan carbon XC-72 were chosen to prepare Pt/C catalysts. The effect of physicochemical properties of carbon materials on the morphology and activities of the catalyst was investigated. Carbon nanotube is a promising carrier for PEMFC catalyst.
    
     5. Platinum supported on carbon nanotubes with different tube diameter were prepared. Catalysts were studied by polarization curves. The effect of the tube diameter of carbon nanotubes on the activities of the catalysts was studied under different operating conditions (e.g. operating temperature, oxidant). It was find that at high temperature and air condition, carbon nanotube with its tube diameter of 10 ~ 20 nm support platinum has the best activities.
     6. Low platinum catalysts such as Pt-Fe/C, Pt-Co/C and Pt-Ni/C were prepared. The effect of another metal in alloy on the activities of the catalysts was studied. Non-platinum catalysts such as Pd/C were prepared. The diameter of Pd particles was 5 ~ 9 nm.
引文
1. Smith, W., The role of fuel cells in energy storage. Journal of Power Sources, 2000. 86(1-2): p. 74-83.
    2. Sammes, N.M. and R. Boersma, Small-scale fuel cells for residential applications. Journal of Power Sources, 2000. 86(1-2): p. 98-110.
    3.赵群,张翔, and李辉,基于燃料电池技术的新能源发展论述.机械, 2007. 7: p. 1-5.
    4.朱新坚,中国燃料电池技术现状与展望.电池, 2004. 34(3): p. 202-203.
    5. Bacon, F.T., Fuel Cells, Past, Present and Future. Electrochimica Acta, 1969. 14(7): p. 569.
    6.毛宗强等,燃料电池. 2005,北京:化学工业出版社.
    7.王林山、李瑛,燃料电池. 2005,北京:冶金工业出版社.
    8.任学佑,质子交换膜燃料电池的研究进展.中国工程科学, 2005. 7(1): p. 86-94.
    9. Cheng, X.L., B.L. Yi, M. Han, J.X. Zhang, Y.G. Qiao, and J.R. Yu, Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells. Journal of Power Sources, 1999. 79(1): p. 75-81.
    10. Wang, X., I.M. Hsing, and P.L. Yue, Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells. Journal of Power Sources, 2001. 96(2): p. 282-287.
    11.杜宇平,陈红雨,冯书丽,杨茂聪, and蒋雄,质子交换膜燃料电池发展现状.电池工业, 2002. 7(5): p. 266-271.
    12. Mizuhata, H., S. Nakao, and T. Yamaguchi, Morphological control of PEMFC electrode by graft polymerization of polymer electrolyte onto platinum-supported carbon black. Journal of Power Sources, 2004. 138(1-2): p. 25-30.
    13. Antolini, E., J.R.C. Salgado, A.M. dos Santos, and E.R. Gonzalez, Carbon-supported Pt-Ni alloys prepared by the borohydride method as electrocatalysts for DMFCs. Electrochemical and Solid State Letters, 2005. 8(4): p. A226-A230.
    14. Antolini, E., J.R.C. Salgado, and E.R. Gonzalez, Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2005. 580(1): p. 145-154.
    15. Salgado, J.R.C., E. Antolini, and E.R. Gonzalez, Carbon supported Pt-Co alloys electrocatalysts for as methanol-resistant oxygen-reduction direct methanol fuel cells. Applied Catalysis B-Environmental, 2005. 57(4): p. 283-290.
    16. Salgado, J.R.C., E. Antolini, and E.R. Gonzalez, Carbon supported Pt70Co30electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells. Journal of Power Sources, 2005. 141(1): p. 13-18.
    17. Seo, A., J. Lee, K. Han, and H. Kim, Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochimica Acta, 2006. 52(4): p. 1603-1611.
    18. Gangeri, M., S. Perathoner, and G. Centi, Synthesis and performances of carbon-supported noble metal nanoclusters as electrodes for polymer electrolyte membrane fuel cells. Inorganica Chimica Acta, 2006. 359(15): p. 4828-4832.
    19. Colmati, F., E. Antolini, and E.R. Gonzalez, Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochimica Acta, 2005. 50(28): p. 5496-5503.
    20. Salgado, J.R.C., E. Antolini, and E.R. Gonzalez, Pt-Co/C electrocatalysts for oxygen reduction in H-2/O-2 PEMFCs synthesized by borohydride method. Journal of the Electrochemical Society, 2004. 151(12): p. A2143-A2149.
    21. Xiong, L., A.M. Kannan, and A. Manthiram, Pt-M (M = Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002. 4(11): p. 898-903.
    22. Santiago, E.I., L.C. Varanda, and H.M. Villullas, Carbon-supported Pt-Co catalysts prepared by a modifled polyol process as cathodes for PEM fuel cells. Journal of Physical Chemistry C, 2007. 111(7): p. 3146-3151.
    23. Xiong, L. and A. Manthiram, Nanostructured Pt-M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochimica Acta, 2005. 50(11): p. 2323-2329.
    24. Cho, Y.H., B. Choi, Y.H. Cho, H.S. Park, and Y.E. Sung, Pd-based PdPt(19 : 1)/C electrocatalyst as an electrode in PEM fuel cell. Electrochemistry Communications, 2007. 9(3): p. 378-381.
    25. Boxall, D.L., G.A. Deluga, E.A. Kenik, W.D. King, and C.M. Lukehart, Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance. Chemistry of Materials, 2001. 13(3): p. 891-900.
    26. Moreno, B., E. Chinarro, J.L.G. Fierro, and J.R. Jurado, Synthesis of the ceramic-metal catalysts (PtRuNi-TiO2) by the combustion method. Journal of Power Sources, 2007. 169(1): p. 98-102.
    27. King, W.D., J.D. Corn, O.J. Murphy, D.L. Boxall, E.A. Kenik, K.C. Kwiatkowski, S.R. Stock, and C.M. Lukehart, Pt-Ru and Pt-Ru-P/carbon nanocomposites: Synthesis, characterization, and unexpected performance as direct methanol fuel cell (DMFC)anode catalysts. Journal of Physical Chemistry B, 2003. 107(23): p. 5467-5474.
    28. Antolini, E., J.R.C. Salgado, and E.R. Gonzalez, The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst. Journal of Power Sources, 2006. 160(2): p. 957-968.
    29. Tsiakaras, P.E., PtM/C (M = Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: Structural characteristics and cell performance. Journal of Power Sources, 2007. 171(1): p. 107-112.
    30. Guo, Y.L., Y.Z. Zheng, and M.H. Huang, Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells. Electrochimica Acta, 2008. 53(7): p. 3102-3108.
    31. Chen, J.M., L.S. Sarma, C.H. Chen, M.Y. Cheng, S.C. Shih, G.R. Wang, D.G. Liu, J.F. Lee, M.T. Tang, and B.J. Hwang, Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials. Journal of Power Sources, 2006. 159(1): p. 29-33.
    32. Bensebaa, F., A.A. Farah, D.S. Wang, C. Bock, X.M. Du, J. Kung, and Y. Le Page, Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell. Journal of Physical Chemistry B, 2005. 109(32): p. 15339-15344.
    33. Huang, S.Y., S.M. Chang, and C.T. Yeh, Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon. Journal of Physical Chemistry B, 2006. 110(1): p. 234-239.
    34. Whitacre, J.F., T.I. Valdez, and S.R. Narayanan, A high-throughput study of PtNiZr catalysts for application in PEM fuel cells. Electrochimica Acta, 2008. 53(10): p. 3680-3689.
    35. Zignani, S.C., E. Antolini, and E.R. Gonzalez, Evaluation of the stability and durability of Pt and Pt-Co/C catalysts for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 182(1): p. 83-90.
    36. Chen, M., Z.B. Wang, Y. Ding, and G.P. Yin, Investigation of the Pt-Ni-Pb/C ternary alloy catalysts for methanol electrooxidation. Electrochemistry Communications, 2008. 10(3): p. 443-446.
    37. Li, X.W., Q.H. Huang, Z.Q. Zou, B.J. Xia, and H. Yang, Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochimica Acta, 2008. 53(22): p. 6662-6667.
    38. Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction.Journal of Power Sources, 2005. 152(1): p. 1-15.
    39. Fernandez, J.L., V. Raghuveer, A. Manthiram, and A.J. Bard, Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. Journal of the American Chemical Society, 2005. 127(38): p. 13100-13101.
    40. Maruyama, J. and I. Abe, Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase. Chemistry of Materials, 2005. 17(18): p. 4660-4667.
    41. Wang, R.F., S.J. Liao, and S. Ji, High performance Pd-based catalysts for oxidation of formic acid. Journal of Power Sources, 2008. 180(1): p. 205-208.
    42. Zhang, L., J.J. Zhang, D.P. Wilkinson, and H.J. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources, 2006. 156(2): p. 171-182.
    43.张云河,李新海,邓凌峰,王志兴, and胡启阳,质子交换膜燃料电池Pt/C阴极催化剂性能的强化研究评述.材料导报, 2004. 18(5): p. 16-18.
    44.尚斌,顾军,于涛, and邹志刚,质子交换膜燃料电池催化剂研究进展.武汉理工大学学报, 2006. 28: p. 532-538.
    45. Stevens, D.A., S. Zhang, Z. Chen, and J.R. Dahn, On the determination of platinum particle size in carbon-supported platinum electrocatalysts for fuel cell applications. Carbon, 2003. 41(14): p. 2769-2777.
    46. Siroma, Z., K. Ishii, K. Yasuda, Y. Miyazaki, M. Inaba, and A. Tasaka, Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles. Electrochemistry Communications, 2005. 7(11): p. 1153-1156.
    47. Shao, Y.Y., G.P. Yin, Y.Z. Gao, and P.F. Shi, Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 2006. 153(6): p. A1093-A1097.
    48. Shao, Y.Y., G.P. Yin, J.J. Wang, and Y.Z. Gao, Electrochemical durability of Pt/carbon nanotube electrode. Chinese Journal of Catalysis, 2006. 27(3): p. 281-284.
    49. Shao, Y.Y., G.P. Yin, and Y.Z. Gao, Study of the electrochemical stability of Pt/C and Pt/CNTs electrodes. Acta Chimica Sinica, 2006. 64(16): p. 1752-1756.
    50. Shao, Y.Y., G.P. Yin, J. Zhang, Y.Z. Gao, and P.F. Shi, In situ deposition of Pt nanoparticles on carbon nanotube electrode. Chinese Journal of Catalysis, 2006. 27(7): p. 606-610.
    51. Shao, Y.Y., G.P. Yin, J.J. Wang, Y.Z. Gao, and P.F. Shi, In situ deposition of highlydispersed Pt nanoparticles on carbon black electrode for oxygen reduction. Journal of the Electrochemical Society, 2006. 153(7): p. A1261-A1265.
    52.邵玉艳,尹鸽平,高云智, and史鹏飞,不同直径碳纳米管的抗电化学氧化性.电化学, 2006. 12(3): p. 288-291.
    53. Paulus, U.A., T.J. Schmidt, H.A. Gasteiger, and R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001. 495(2): p. 134-145.
    54. Arico, A.S., A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua, and V. Antonucci, Performance and degradation of high temperature polymer electrolyte fuel cell catalysts. Journal of Power Sources, 2008. 178(2): p. 525-536.
    55. Maiyalagan, T., B. Viswanathan, and U. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt - Alternate anodes for fuel cell applications. Electrochemistry Communications, 2005. 7(9): p. 905-912.
    56. Liu, W.J., B.L. Wu, and C.S. Cha, Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes. Journal of Electroanalytical Chemistry, 1999. 476(2): p. 101-108.
    57. Fan, D.Y. and R.E. White, A Mathematical-Model of a Sealed Nickel-Cadmium Battery. Journal of the Electrochemical Society, 1991. 138(1): p. 17-25.
    58. Akita, T., A. Taniguchi, J. Maekawa, Z. Sirorna, K. Tanaka, M. Kohyama, and K. Yasuda, Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly. Journal of Power Sources, 2006. 159(1): p. 461-467.
    59. Colon-Mercado, H.R. and B.N. Popov, Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 2006. 155(2): p. 253-263.
    60. Wang, Z.L., J.M. Petroski, T.C. Green, and M.A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. Journal of Physical Chemistry B, 1998. 102(32): p. 6145-6151.
    61. Pozio, A., M. De Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19.
    62. Oh, H.S., J.G. Oh, Y.G. Hong, and H.S. Kim, Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications. Electrochimica Acta, 2007. 52(25): p. 7278-7285.
    63. Seo, K.D., S.D. Oh, S.H. Choi, S.H. Kim, H.G. Park, and Y.P. Zhang, Radiolytic loading of the Pt-Ru nanoparticles onto the porous carbons. Colloids and Surfacesa-Physicochemical and Engineering Aspects, 2008. 313: p. 393-397
    64. Lee, C.L., Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, and J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications, 2005. 7(4): p. 453-+.
    65. Ismagilov, Z.R., M.A. Kerzhentsev, N.V. Shikina, A.S. Lisitsyn, L.B. Okhlopkova, C.N. Barnakov, M. Sakashita, T. Iijima, and K. Tadokoro, Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials. Catalysis Today, 2005. 102: p. 58-66.
    66. Bessel, C.A., K. Laubernds, N.M. Rodriguez, and R.T.K. Baker, Graphite nanofibers as an electrode for fuel cell applications. Journal of Physical Chemistry B, 2001. 105(6): p. 1115-1118.
    67. Liu, Z.L., L.M. Gan, L. Hong, W.X. Chen, and J.Y. Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. Journal of Power Sources, 2005. 139(1-2): p. 73-78.
    68. Li, W.Z., C.H. Liang, W.J. Zhou, J.S. Qiu, Z.H. Zhou, G.Q. Sun, and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. Journal of Physical Chemistry B, 2003. 107(26): p. 6292-6299.
    69.尹鸽平,彭工厂,高云智,史鹏飞, and荒又明子,用于PEMFC的Pt/C阳极催化剂制备与性能研究.哈尔滨工业大学学报, 2003. 35(10): p. 1224-1227.
    70. Lizcano-Valbuena, W.H., V.A. Paganin, and E.R. Gonzalez, Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts. Electrochimica Acta, 2002. 47(22-23): p. 3715-3722.
    71. Li, X., W.X. Chen, J. Zhao, W. Xing, and Z.D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon, 2005. 43(10): p. 2168-2174.
    72. Selvaraj, V., M. Vinoba, and M. Alagar, Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Journal of Colloid and Interface Science, 2008. 322(2): p. 537-544.
    73.周振华,周卫江,姜鲁华,王素力,汪国雄,孙公权, and辛勤,高分散直接甲醇燃料电池Pt/C阴极电催化剂的制备过程机理与表征.催化学报, 2004. 25(1): p. 65-69.
    74. Glavee, G.N., K.J. Klabunde, C.M. Sorensen, and G.C. Hadjipanayis, Sodium-Borohydride Reduction of Cobalt Ions in Nonaqueous Media - Formation ofUltrafine Particles (Nanoscale) of Cobalt Metal. Inorganic Chemistry, 1993. 32(4): p. 474-477.
    75. Glavee, G.N., K.J. Klabunde, C.M. Sorensen, and G.C. Hadjipanayis, Borohydride Reduction of Cobalt Ions in Water - Chemistry Leading to Nanoscale Metal, Boride, or Borate Particles. Langmuir, 1993. 9(1): p. 162-169.
    76. Hyun, M.S., S.K. Kim, B. Lee, D. Peck, Y. Shul, and D. Jung, Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method. Catalysis Today, 2008. 132(1-4): p. 138-145.
    77. Liu, C.P., X.Z. Xue, T.H. Lu, and W. Xing, The preparation of high activity DMFC Pt/C electrocatalysts using a pre-precipitation method. Journal of Power Sources, 2006. 161(1): p. 68-73.
    78.张焰峰,李忠,杨书廷, and曹朝霞,还原温度对Pt/C催化剂性能的影响.电池, 2004. 34(5): p. 328-330.
    79.文纲要,张颖,杨正龙, and李长志,甲醇阳极电氧化催化剂的研究.电化学, 1998. 4(1): p. 73-78.
    80. Wang, Y., J.W. Ren, K. Deng, L.L. Gui, and Y.Q. Tang, Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chemistry of Materials, 2000. 12(6): p. 1622-1627.
    81. Chen, M. and Y.C. Xing, Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black. Langmuir, 2005. 21(20): p. 9334-9338.
    82. Shiraishi, Y., M. Nakayama, E. Takagi, T. Tominaga, and N. Toshima, Effect of quantity of polymer on catalysis and superstructure size of polymer-protected Pt nanoclusters. Inorganica Chimica Acta, 2000. 300: p. 964-969.
    83. Hui, C.L., X.G. Li, and I.M. Hsing, Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: Dispersion control and surfactant removal. Electrochimica Acta, 2005. 51(4): p. 711-719.
    84. Miyazaki, A. and Y. Nakano, Morphology of platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir, 2000. 16(18): p. 7109-7111.
    85. Chen, C.W. and M. Akashi, Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir, 1997. 13(24): p. 6465-6472.
    86. Prabhuram, J., Wang, X., Hui, C. L. and I.M. Hsing, Synthesis and characterization of surfactant-stabilized PVC nanocatalysts for fuel cell applications. Journal of Physical Chemistry B, 2003. 107(40): p. 11057-11064.
    87. Chen, C.W., T. Takezako, K. Yamamoto, T. Serizawa, and M. Akashi, PoIy(N-vinylisobutyramide)-stabilized platinum nanoparticles: synthesis and temperature-responsive behavior in aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000. 169(1-3): p. 107-116.
    88. Liang, W.J., C.H. Lien, and P.L. Kuo, Preparation of platinum nanoparticles in salt-induced micelles of dumbbell-shaped ABA copolymer. Journal of Colloid and Interface Science, 2006. 294(2): p. 371-375.
    89. Kinoshit.K, Lundquis.J, and Stonehar.P, Hydrogen Adsorption on High Surface-Area Platinum Crystallites. Journal of Catalysis, 1973. 31(3): p. 325-334.
    90. Lin, S.D., T.C. Hsiao, J.R. Chang, and A.S. Lin, Morphology of carbon supported Pt-Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells. Journal of Physical Chemistry B, 1999. 103(1): p. 97-103.
    91. Jusys, Z., J. Kaiser, and R.J. Behm, Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation - A DEMS study. Electrochimica Acta, 2002. 47(22-23): p. 3693-3706.
    92. Tian, Z.Q., S.P. Jiang, Y.M. Liang, and P.K. Shen, Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. Journal of Physical Chemistry B, 2006. 110(11): p. 5343-5350.
    93. Watanabe, M., M. Uchida, and S. Motoo, Preparation of Highly Dispersed Pt+Ru Alloy Clusters and the Activity for the Electrooxidation of Methanol. Journal of Electroanalytical Chemistry, 1987. 229(1-2): p. 395-406.
    94. Radmilovic, V., H.A. Gasteiger, and P.N. Ross, Structure and Chemical-Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. Journal of Catalysis, 1995. 154(1): p. 98-106.
    95. Igarashi, H., H. Uchida, M. Suzuki, Y. Sasaki, and M. Watanabe, Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Applied Catalysis a-General, 1997. 159(1-2): p. 159-169.
    96. Nashner, M.S., A.I. Frenkel, D.L. Adler, J.R. Shapley, and R.G. Nuzzo, Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)(16). Journal of the American Chemical Society, 1997. 119(33): p. 7760-7771.
    97. Boxall, D.L. and C.M. Lukehart, Rapid synthesis of Pt or Pd/carbon nanocomposites using microwave irradiation. Chemistry of Materials, 2001. 13(3): p. 806-810.
    98. Schmidt, T.J., M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, and H. Bonnemann, Electrocatalytic activity of PtRu alloy colloids for CO and CO/H-2 electrooxidation: Stripping voltammetry and rotating disk measurements. Langmuir, 1997. 13(10): p. 2591-2595.
    99. Dubau, L., F. Hahn, C. Coutanceau, J.M. Leger, and C. Lamy, On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation. Journal of Electroanalytical Chemistry, 2003. 554: p. 407-415.
    100. Amine, K., K. Yasuda, and H. Takenaka, New process for loading highly active platinum on carbon black surface for application in polymer electrolyte fuel cell. Annales De Chimie-Science Des Materiaux, 1998. 23(1-2): p. 331-335.
    101. Chang, C.L., T.C. Chang, W.Y. Ho, J.J. Hwang, and D.Y. Wang, Electrochemical performance of PEM fuel cell with Pt–Ru electro-catalyst layers deposited by sputtering. Surface & Coatings Technology, 2006. 201: p. 4442-4446.
    102. Toda, T., H. Igarashi, and M. Watanabe, Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. Journal of the Electrochemical Society, 1998. 145(12): p. 4185-4188.
    103. Anderson, M.L., R.M. Stroud, and D.R. Rolison, Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: Catalyst-modified carbon-silica composite aerogels. Nano Letters, 2002. 2(3): p. 235-240.
    104. Lin, T.H., T.P. Huang, Y.L. Liu, C.C. Yeh, Y.H. Lai, and W.H. Hung, Adsorption and reaction of methanethiol on Pt(111). Surface Science, 2005. 578(1-3): p. 27-34.
    105. Ford, D.C., Y. Xu, and M. Mavrikakis, Atomic and molecular adsorption on Pt(111). Surface Science, 2005. 587(3): p. 159-174.
    106. Albers, P.W., M. Lopez, G. Sextl, G. Jeske, and S.E. Parker, Inelastic neutron scattering investigation on the site occupation of atomic hydrogen on platinum particles of different size. Journal of Catalysis, 2004. 223(1): p. 44-53.
    107. Schmidt, T.J., U.A. Paulus, H.A. Gasteiger, and R.J. Behm, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. Journal of Electroanalytical Chemistry, 2001. 508(1-2): p. 41-47.
    108. Giordano, N., E. Passalacqua, L. Pino, A.S. Arico, V. Antonucci, M. Vivaldi, and K. Kinoshita, Analysis of Platinum Particle-Size and Oxygen Reduction in Phosphoric-Acid. Electrochimica Acta, 1991. 36(13): p. 1979-1984.
    109. Rice, C., Y.Y. Tong, E. Oldfield, and A. Wieckowski, Cyclic voltammetry and Pt-195 nuclear magnetic resonance characterization of graphite-supported commercial fuel cellgrade platinum electrocatalysts. Electrochimica Acta, 1998. 43(19-20): p. 2825-2830.
    110. Han, K.S. and O.H. Han, Influence of metal cleaning on the particle size and surface morphology of platinum black studied by NMR, TEM and CV techniques. Electrochimica Acta, 2001. 47(3): p. 519-523.
    111. Ahmadi, T.S., Z.L. Wang, T.C. Green, A. Henglein, and M.A. ElSayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996. 272(5270): p. 1924-1926.
    112. Petroski, J.M., Z.L. Wang, T.C. Green, and M.A. El-Sayed, Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. Journal of Physical Chemistry B, 1998. 102(18): p. 3316-3320.
    113. Petroski, J.M., T.C. Green, and M.A. El-Sayed, Self-assembly of platinum nanoparticles of various size and shape. Journal of Physical Chemistry A, 2001. 105(23): p. 5542-5547.
    114. Stamenkovic, V., T.J. Schmidt, P.N. Ross, and N.M. Markovic, Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. Journal of Physical Chemistry B, 2002. 106(46): p. 11970-11979.
    115. Weaver, J.F., J.J. Chen, and A.L. Gerrard, Oxidation of Pt(111) by gas-phase oxygen atoms. Surface Science, 2005. 592(1-3): p. 83-103.
    116. Ahmadi, T.S., Z.L. Wang, A. Henglein, and M.A. ElSayed, ''Cubic'' colloidal platinum nanoparticles. Chemistry of Materials, 1996. 8(6): p. 1161-&.
    117. Mu, Y.Y., H.P. Liang, J.S. Hu, L. Jiang, and L.J. Wan, Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. Journal of Physical Chemistry B, 2005. 109(47): p. 22212-22216.
    118. Wang, X., W.Z. Li, Z.W. Chen, M. Waje, and Y.S. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 2006. 158(1): p. 154-159.
    119. Steigerwalt, E.S., G.A. Deluga, D.E. Cliffel, and C.M. Lukehart, A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. Journal of Physical Chemistry B, 2001. 105(34): p. 8097-8101.
    120. Steigerwalt, E.S., G.A. Deluga, and C.M. Lukehart, Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. Journal of Physical Chemistry B, 2002. 106(4): p. 760-766.
    121. Zoval, J.V., J. Lee, S. Gorer, and R.M. Penner, Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. Journal of Physical Chemistry B, 1998. 102(7): p. 1166-1175.
    122. Endo, M., Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, and M.S. Dresselhaus, Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Letters, 2003. 3(6): p. 723-726.
    123. Kim, M.S., N.M. Rodriguez, and R.T.K. Baker, Carbon nanofibers as a novel catalyst support. Synthesis and Properties of Advanced Catalytic Materials, 1995. 368: p. 99-104
    124. Rodriguez, N.M., M.S. Kim, and R.T.K. Baker, Carbon Nanofibers - a Unique Catalyst Support Medium. Journal of Physical Chemistry, 1994. 98(50): p. 13108-13111.
    125. Joo, J.B., P. Kim, W. Kim, and J. Yi, Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catalysis Today, 2008. 131(1-4): p. 219-225.
    126. Park, K.W., Y.E. Sung, S. Han, Y. Yun, and T. Hyeon, Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. Journal of Physical Chemistry B, 2004. 108(3): p. 939-944.
    127. Yoshitake, T., Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, and S. Iijima, Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B-Condensed Matter, 2002. 323(1-4): p. 124-126.
    128. Kokai, F., A. Koshio, D. Kasuya, K. Hirahara, K. Takahashi, A. Nakayama, M. Ishihara, Y. Koga, and S. Iijima, Three nanostructured graphitic particles and their growth mechanisms from high-temperature carbon vapor confined by Ar gas. Carbon, 2004. 42(12-13): p. 2515-2520.
    129. Choi, W.C., S.I. Woo, M.K. Jeon, J.M. Sohn, M.R. Kim, and H.J. Jeon, Platinum nanoclusters studded in the microporous nanowalls of ordered mesoporous carbon. Advanced Materials, 2005. 17(4): p. 446-+.
    130. Chai, G.S., S.B. Yoon, J.S. Yu, J.H. Choi, and Y.E. Sung, Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Journal of Physical Chemistry B, 2004. 108(22): p. 7074-7079.
    131. Kim, P., H.S. Kim, J.B. Joo, W.Y. Kim, I.K. Song, and J.H. Yi, Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell. Journal of Power Sources, 2005. 145(2): p. 139-146.
    132. Xu, B.S., X.W. Yang, X.M. Wang, J.J. Guo, and X.G. Liu, A novel catalyst support for DMFC: Onion-like fullerenes. Journal of Power Sources, 2006. 162(1): p. 160-164.
    133. von Kraemer, S., J. Wikander, G. Lindbergh, A. Lundblad, and A.E.C. Palmqvist, Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the protonexchange membrane fuel cell. Journal of Power Sources, 2008. 180(1): p. 185-190.
    134. Meng, H. and P.K. Shen, Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. Journal of Physical Chemistry B, 2005. 109(48): p. 22705-22709.
    135. Uchida, M., Y. Fukuoka, Y. Sugawara, H. Ohara, and A. Ohta, Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1998. 145(11): p. 3708-3713.
    136. Chen, Y., Y.W. Tang, L.Y. Kong, C.P. Liu, W. Xing, and T.H. Lu, Effect of surface modification extent of carbon nanotubes on electrocatalytic performance of carbon nanotubes supported Pt catalyst. Acta Physico-Chimica Sinica, 2006. 22(1): p. 119-123.
    137. Guo, D.J. and H.L. Li, High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. Journal of Electroanalytical Chemistry, 2004. 573(1): p. 197-202.
    138. Rajesh, B., K.R. Thampi, J.M. Bonard, and B. Viswanathan, Preparation of Pt-Ru bimetallic catalyst supported on carbon nanotubes. Bulletin of Materials Science, 2000. 23(5): p. 341-344.
    139. Rajesh, B., K.R. Thampi, J.M. Bonard, and B. Viswanathan, Preparation of a Pt-Ru bimetallic system supported on carbon nanotubes. Journal of Materials Chemistry, 2000. 10(8): p. 1757-1759.
    140. Wee, J.H. and K.Y. Lee, Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. Journal of Power Sources, 2006. 157(1): p. 128-135.
    141. Garcia, A.C., V.A. Paganin, and E.A. Ticianelli, CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC. Electrochimica Acta, 2008. 53(12): p. 4309-4315.
    142. Cho, Y.H., H.S. Park, Y.H. Cho, I.S. Park, and Y.E. Sung, The improved methanol tolerance using Pt/C in cathode of direct methanol fuel cell. Electrochimica Acta, 2008. 53(20): p. 5909-5912.
    143. Park, G.S., C. Pak, Y.S. Chung, J.R. Kim, W.S. Jeon, Y.H. Lee, K. Kim, H. Chang, and D. Seung, Decomposition of Pt-Ru anode catalysts in direct methanol fuel cells. Journal of Power Sources, 2008. 176(2): p. 484-489.
    144. Bergamaski, K., E.R. Gonzalez, and F.C. Nart, Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochimica Acta, 2008. 53(13): p. 4396-4406.
    145. Gavril, D., V. Loukopoulos, A. Georgaka, A. Gabriel, and G. Karaiskakis, Inverse gas chromatographic investigation of the effect of hydrogen in carbon monoxide adsorption over silica supported Rh and Pt-Rh alloy catalysts, under hydrogen-rich conditions. Journal of Chromatography A, 2005. 1087(1-2): p. 158-168.
    146. Rojas, S., F.J. Garcia-Garcia, S. Jaras, M.V. Martinez-Huerta, J.L.G. Fierro, and M. Boutonnet, Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion - Electrocatalysts for fuel cell applications. Applied Catalysis a-General, 2005. 285(1-2): p. 24-35.
    147. Chen, W.M., G.Q. Sun, Z.X. Liang, Q. Mao, H.Q. Li, G.X. Wang, Q. Xin, H. Chang, C.H. Pak, and D.Y. Seung, The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. Journal of Power Sources, 2006. 160(2): p. 933-939.
    148. Kwiatkowski, K.C., S.B. Milne, S. Mukerjee, and C.M. Lukehart, Synthesis of Pt-Mo/Carbon nanocomposites from single-source molecular precursors: A (1 : 1) PtMo/C PEMFC anode catalyst exhibiting CO tolerance. Journal of Cluster Science, 2005. 16(2): p. 251-272.
    149. Wei, Z.D., M.B. Ji, Y. Hong, C.X. Sun, S.H. Chan, and P.K. Shen, MnO2-Pt/C composite electrodes for preventing voltage reversal effects with polymer electrolyte membrane fuel cells. Journal of Power Sources, 2006. 160(1): p. 246-251.
    150. Rice, C., R.I. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, Direct formic acid fuel cells. Journal of Power Sources, 2002. 111(1): p. 83-89.
    151. Larsen, R., S. Ha, J. Zakzeski, and R.I. Masel, Unusually active palladium-based catalysts for the electrooxidation of formic acid. Journal of Power Sources, 2006. 157(1): p. 78-84.
    152. Rhee, Y.W., S.Y. Ha, and R.I. Masel, Crossover of formic acid through Nafion((R)) membranes. Journal of Power Sources, 2003. 117(1-2): p. 35-38.
    153.林维明,燃料电池系统. 1996,北京:化学工业出版社.
    1. Ye, S.Y., A.K. Vijh, and L.H. Dao, A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam - The nature of platinum-support interactions. Journal of the Electrochemical Society, 1997. 144(1): p. 90-95.
    2. Ye, S.Y., A.K. Vijh, and L.H. Dao, A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. Journal of the Electrochemical Society, 1996. 143(1): p. L7-L9.
    3. Liu, Z.L., L.M. Gan, L. Hong, W.X. Chen, and J.Y. Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. Journal of Power Sources, 2005. 139(1-2): p. 73-78.
    4. Wang, Y., J.W. Ren, K. Deng, L.L. Gui, and Y.Q. Tang, Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chemistry of Materials, 2000. 12(6): p. 1622-1627.
    1. Lee, C.L., Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, and J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications, 2005. 7(4): p. 453-+.
    2. Liu, Z.L., L.M. Gan, L. Hong, W.X. Chen, and J.Y. Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. Journal of Power Sources, 2005. 139(1-2): p. 73-78.
    3. Maiyalagan, T., B. Viswanathan, and U. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt - Alternate anodes for fuel cell applications. Electrochemistry Communications, 2005. 7(9): p. 905-912.
    4. Siroma, Z., K. Ishii, K. Yasuda, Y. Miyazaki, M. Inaba, and A. Tasaka, Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles. Electrochemistry Communications, 2005. 7(11): p. 1153-1156.
    5. Colon-Mercado, H.R. and B.N. Popov, Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 2006. 155(2): p. 253-263.
    6.邵玉艳,尹鸽平,高云智, and史鹏飞,不同直径碳纳米管的抗电化学氧化性.电化学, 2006. 12(3): p. 288-291.
    1. Mukerjee, S., S. Srinivasan, M.P. Soriaga, J. Mcbreen, Role of Structural and Electronic-Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction - an in-Situ Xanes and Exafs Investigation. Journal of the Electrochemical Society, 1995. 142(5): p. 1409-1422.
    2. Wei, Z.D., F. Yin, L.L. Li, X.W. Wei, and X.A. Liu, Study of Pt/C and Pt-Fe/C catalysts for oxygen reduction in the light of quantum chemistry. Journal of Electroanalytical Chemistry, 2003. 541: p. 185-191.
    3. Toda, T., H. Igarashi, H. Uchida, and M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. Journal of the Electrochemical Society, 1999. 146(10): p. 3750-3756.
    4. Rice, C., R.I. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells. Journal of Power Sources, 2002. 111(1): p. 83-89.
    5. Larsen, R., S. Ha, J. Zakzeski, R.I. Masel, Unusually active palladium-based catalysts for the electrooxidation of formic acid. Journal of Power Sources, 2006. 157(1): p. 78-84.
    6. Rhee, Y.W., S.Y. Ha, R.I. Masel, Crossover of formic acid through Nafion((R)) membranes. Journal of Power Sources, 2003. 117(1-2): p. 35-38.
    7. Jayashree, R.S., J.S. Spendelow, J. Yeom, C. Rastogi, M.A. Shannon, P.J.A. Kenis, Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochimica Acta, 2005. 50(24): p. 4674-4682.
    8. Bath, B.D., H.S. White, E.R. Scott, Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane. Analytical Chemistry, 2000. 72(3): p. 433-442.
    9. Wang, Z.B., P.J. Zuo, Y.Y. Chu, Y.Y. Shao, G.P. Yin, Durability studies on performance degradation of Pt/C catalysts of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009. 34: p. 4387-4394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700