用户名: 密码: 验证码:
掺杂含氟β-PbO_2电极的制备及电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学氧化方法作为一种环境友好型技术,在处理有毒难生物降解有机污水时呈现了其他水处理技术难以比拟的优越性,应用前景极佳。电化学氧化降解技术的核心问题是高性能阳极的制备。在常见的几种阳极材料中,二氧化铅电极由于其高性价比而得到人们的青睐,但离实际应用还有一定的差距。已有文献研究表明,在镀制β-PbO_2过程中,掺入少量添加剂可以改善电极的表面微观结构,从而改变电极的催化性能。基于上述研究现状,考虑到稀土元素所具有的特殊性质,本工作制备不同稀土氧化物掺杂的PbO_2电极,并对其在无机水溶液和有机水溶液中的电化学性能进行了详细的研究。
     本工作制备了稀土氧化物CeO_2和La_2O_3掺杂的含氟β-PbO_2电极,考察了不同电沉积条件下电极强化电解的失重情况,在此基础上优化了这两类掺杂电极的电沉积工艺。利用相关表面测试技术和电化学测试方法考察了改性前后电极物化性质及电化学性能的差异。研究并探讨了稀土掺杂改性电极镀层结构、电极寿命、无机水溶液中的析氧活性、有机水溶液中的电氧化效率等因素之间的相关性规律。上述结果为进一步开发性能优异的二氧化铅电极提供理论依据,从而有效地推广电化学技术在实际废水处理中的应用。
     研究表明,镀液中添加一定量的稀土氧化物,搅速为1300r/min,温度为80℃,在160mA/cm~2下电沉积1h,所制得的电极表面镀层均匀致密,失重较慢。掺杂后二氧化铅电极表面晶相仍以β-PbO_2为主,活性表面积及铅氧非计量比均有所增大。稀土氧化物颗粒均匀地分布并嵌入电极镀层。相关测试结果表明,F-PbO_2、CeO_2-F-PbO_2、La_2O_3-F-PbO_2三电极活性表面积分别为:3.0、4.88、5.12cm~2(基体的表观面积1cm~2)。比较这些电极在硫酸溶液中的析氧行为发现,掺杂后电极的Tafle斜率减小,两电极的交换电流密度减小,析氧反应表观活化能提高。说明稀土氧化物降低电极的析氧活性,干扰了析氧过程中活性中间物的转化过程,在电氧化降解过程中抑制了析氧副反应。
     以对氯苯酚为目标有机物,考察了稀土掺杂前后电极的电催化氧化特性、吸附特性和失活行为。结果表明,稀土掺杂弱化了掺杂电极直接电催化氧化4-CP反应的响应电流,这可能与电极表面反应活性点的变化有关。CeO_2-F-PbO_2电极对有机物吸附量几乎是掺杂前的两倍。电极的稳定性测试表明,在酸性或中性溶液中,峰电流缓慢减小,但在碱性溶液中,峰电流快速减小。无论溶液的酸碱度如何变化,多次扫描后CeO_2-F-PbO_2电极的剩余电流都较大,具有较高的抗失活性。与F-PbO_2电极相比,La_2O_3-F-PbO_2电极吸附量变化不明显,而且也易失活。
     电极对目标有机物电氧化降解特性的研究结果表明,稀土掺杂能有效地提高二氧化铅的电氧化特性。掺杂后电极反应表观动力学参数增大,说明掺杂稀土有利于改善含氟PbO_2电极的降解性能,降低能耗。在相同条件下电解8个小时后,三种电极COD的去除率分别为34.2%、53.87%、71.61%。电极的瞬时电流效率在电解开始的2小时内下降较快,但总体上还是要高出未掺杂电极,CeO_2-F-PbO_2电极提高一倍多,La_2O_3-F-PbO_2电极高出3倍多。从现有的结果看,稀土氧化物可能影响了中间活性物种(如·OH等)的寿命,但这个推论有待于相关实验结果的进一步证实。
Being compared with the existing technologies on treating toxic bio-refactory organic in wastewater,electrochemical oxidation method has showed superiority with its environmental friendliness and application prospect.At present,the popular issue of this method is to prepare a high-performance anode.Among common applied materials lead dioxide electrode has been attached a close attention because of its cost-effective. However,there is still a gap between exprimental test and practical application.It has been reported that doping a bit of additives can change the microstructure ofβ-PbO_2 and improve its elctro-catalytic properties.On the basis of special nature of rare earth elements,some modified PbO_2 anodes were prepared and their electrochemical properties in the inorganic and organic aqueous solution were also investigated in detail.
     CeO_2 and La_2O_3 particles were selected as dopants to modify F-β-PbO_2 electrodes in this study.Weight loss of the anode under accelerating electrolysis was carried out to optimize the plating conditions.The physicalchemical property and electro-catalytic characteristic of the modified anode were investigated using different surface analysis technologies and electrochemical tests.The intrinsic relations between electrode surface structure,service life,electro-catalytic activity of oxygen evolution(OE) in inorganic aqueous solution and the efficiency of electro-oxidation in organic aqueous solution were investigated and discussed.The results of this work could supply a theoretical basis for the further preparation PbO_2 electrode with an excellent performance,and then could effectively promote the electrochemical technology in practical application of wastewater treatment.
     The experiemtnal results indicated that dense and even electrode surface coating could be obtained and its weight loss slowed down under the following plating conditions:a suitable concentration of rare earth oxide,the plating solution agitated by magnetic bar with an 1300r/min, temperature at 80℃,current density under 160mA/cm~2,electrodepostion for 1h.The main crystal of modified electrode was stillβ-PbO_2.Oxide adulteration could increase active surface and oxygen vacancy defect of PbO_2,and oxide particle evenly distributed and embedded in the electrode coating.The active surface area of F-PbO_2,CeO_2-F-PbO_2,La_2O_3-F-PbO_2 electrode were 3.0,4.88,5.12cm~2(the apparent area of the matrix 1cm~2), respectively.In comparision of behaviors of their OE reaction in H_2SO_4 aqueous solution,exchange current density and tafle slope of modified electrodes obviously decreased while apparent activation energy of OE reaction increased.The above results indicated that addition of rare earth oxide may disturb kinetic process of OE reaction and weaken formation of O_2 as competitive reaction during electro-oxidative degradation of organics.
     The electro-catalytic properties,adsorption and deactivation behavior of modified electrodes in the 4-chlorophenol(4-CP) aqueous solution were investigated.The experimental results showed that rare earth oxide dopant could probably affect the existence of active intermediates on the electrode surface.The organic absorption capacity of CeO_2-F-PbO_2 electrode was almost twice than the undoped.The oxidative peak current(i_p) of 4-CP on CeO_2-F-PbO_2 electrode remained high regardless of pH of solution after scanning for many times,showing high anti-deactivation.The adsorption capacity of La_2O_3-F-PbO_2 electrode changed little in comparison with F-PbO_2 electrode,and the i_p of 4-CP decreased rapidly for four times,indicating its easy deactivation.
     4-CP degradation properties of different anodes were studied.The experimental results showed that doping of rare earth oxides could effectively improve the electro-oxidation characteristics of PbO_2.The appearent kinetic parameter of 4-CP by different anodes increased because of an addition of rare oxide,thus leading to reduce energy consumption. For example,the COD removal rates of three electrodes under the same conditions were 34.2%,53.87%,71.61%after 8h electrolysis,respectively. The instantaneous current efficiency(ICE) declined rapidly during the first 2h of electrolysis.In general,CeO_2-F-PbO_2 and La_2O_3-β-PbO_2 anode had one and three times ICE higher thanβ-PbO_2 electrode had,respectively. From the present results,rare earth oxide may affect the existing life of the active intermediate species(·OH,etc.),which should be further confirmed by interrelated experimental evidences.
引文
[1]陶映初,陶举洲编著,环境电化学.化学出版社,北京,2003年.
    [2]Hostachy J C,Lenon G,Pisicchio J L.Reduction of Pulpand PaperMill Pountion by Ozone Treatment.Wat Sci Toch Joumal of IAWQ.1997,35:261.
    [3]Yawalkar A.,Bhatkhande D S,Pangrkar V G.Solar-assisted photochemical and photocalytic degration of phenol.J Chem Technol Biotechnol.2001,76:363.
    [4]刘勇弟,徐寿昌.紫外-Fenton试剂的作用机理及在废水处理中的应用.环境化学.1994,13:302.
    [5]冯玉杰,李晓岩,尤宏,丁凡编著,电化学在环境工程中的应用.化学工业出版社,2002年.
    [6]Sendelbach L E.A review of the toxicity and carcinogenicity of an thraquinon derivatives.Toxicol.1989,44:561.
    [7]Barnier H,Maurel A,Pichon M.Separation and concentration of lignosulfonates by ultrafiltration mineral membranes.Paper Jap Puu.1987,69:581.
    [8]黄江丽,徐农,施汉昌等.膜分离技术应用于草浆造纸清洁生产.化工学报.2006,57:336.
    [9]Fajerwery K.Wet Oxidation of Phenol by Hydrogen Peroxide:The KeyRole of pH on the cacalytical Behaviour of Fe-2SM-5.Wat.Sci.Tech.1997,35:103.
    [10]Joglekar H S,Sammant S D,Joshi J B.Konetics of wet air oxidation of phenol and substituted phenols.Wat Res.1991,25:125.
    [11]张秋波.煤加压气化废水的催化湿式氧化处理.环境科学学报.1988,8:98.
    [12]侯纪蓉.湿式氧化法处理乐果废水.化工环保.1999,19:6.
    [13]Lei L.Catalytic wet oxidation of dyeing and printing wastewater.Wat.Sci.Tech.1997,35:311.
    [14]张秋波,李忠,胡克源.酸性及煤气化废水的湿式氧化处理.环境科学学报.1987,7:305.
    [15]韩玉英,赵彬侠,张小里等.催化湿式氧化吡虫啉农药废水的研究.工业催化.2005,13:43.
    [16]Fortuny A,Bengoa C,Font J,.Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.J.Hazardous Materials B.1999,64:181.
    [17]Modell M.Processing methods for the oxidation of orgics in super critical water.U.S.Patent.4543190,1985,9,24.
    [18]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应动力学的研究.高校化学工程学报.2001,15:66.
    [19]Watanabe M,Osada M,Lnomata H.Acidity and baicsicity of metaloxide catalysts for formaldehyde reaction in super critical water at 673 K.Applied Catalysis A:General.2003,1:8490.
    [20]Zhong Y D,Frisch A.M.Catalytic oxidation in supercritical water.Ind.Eng.Chem.Res.1996,35:3257.
    [21]William H G.Ozone.Sci and Eng.1987,9:335.
    [22]Manilal V B.Photocatalytic treatment of toxic organics in wastewater:toxicity of photo degradation products.Wat.Res.1992,26:1035.
    [23]史月萍,杨祝红,冯新.掺铂TiO_2纤维光催化降解氯仿的研究.催化学报.2003,24:663.
    [24]Lin J G.Decomposition of 2-Chlorophenol with Ultrasound/H_2O_2 Process.Wat Res,1996,33:75.
    [25]Comninellis C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment.Electrochimica Acta.1994,39:1857.
    [26]Do J S,Yeh W C,In situ degradation of formaldehyde with electrogenerated hypochlorite ion.J.Appl.Electrochem.1994,24:483.
    [27]Lefrang U,Ebert K,Flory K.Organic waste destruction by indirect electrooaidation.Separation Science and Technology.1995,30:1883.
    [28]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水.北京化工大学学报.2002,5:34.
    [29]宋曰海,魏刚,熊蓉春.,废水处理用催化电极的研究及应用.水处理技术.2006,12:4.
    [30]Barrera-Diaz C,Urena-Nunez F,.A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater.Radiation Physics and Chemistry.2003,67:657.
    [31]Vlyssides A G,Loizidou M,.Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode.Journal of Hazardous Materials.1999,B70:41.
    [32]Vlyssides A G,Papaioannou D,Testing an electrochemical method fort reatment of textile dye waste water.Waste Management.2000,B95:569.
    [33]时文中,李灵芝,余国忠.电化学氧化含酚废水及其动力学的研究.水处理技术,2003,29:341.
    [34]吕锡武,王九芹,宋海亮.石墨极板电氧化法处理靛蓝染料废水初步研究.江苏环境科技.2004,17:1.
    [35]方建慧,温铁,施利毅,曹为民.碳纳米管电极电氧化降解染料溶液的研究.无机材料学报.2006,21:1351.
    [36]Beck F,Kaiser W.Krohn H.,Boron doped diamond(BDD)-layers on titanium substrates as electrodes in applied electrochemistry.Electrochim.Acta.2000,45:4691.
    [37]崔玉红,冯玉杰,刘峻峰.含中间层钦基二氧化锡电催化电极的性能.材料研究学报.2005,19:47.
    [38]Comninellis C.Preparation of SnO_2-Sb_2O_5 films by the spray surpluses technique.Journal of Applied Electrochemistry.1996,26:83.
    [39]王凤武,魏亦军,褚道葆.纳米Pt/TiO_2修饰电极的制备\性能及应用.化工学报.2004,5:757.
    [40]张莉,邹积岩,宋金岩.二氧化钌薄膜电极的制备及其性能研究.仪器仪表学报.2006 6:931.
    [41]Li X Y,Cui Y H,Feng Y J,Xie Z M,Gu J D.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.Water Res.2005,39:1972.
    [42]Duverneuil P,Maury F,Pebere N,Senocq F,Vergnes H.Surf.Coat.Technol.2002,9:151.
    [43]李晓刚,黄可龙,桑商斌,谭宁,刘素琴,陈立泉.电化学氧化改性石墨毡电极对VO~(2+)/VO~(3+)电对的催化活性功能材料.2006,7:1084.
    [44]王雅琼,童宏扬,许文林.SnO_2+Sb_2O_3中间层的制备条件对Ti/SnO_2+Sb_2O_3/PbO_2阳极性能的影响.应用化学,2004,5:437.
    [45]姚红军,郑志坚,何阿弟.Ti/SnO_2/Sb_2O_5电极催化电解含硝基苯酚废水的研究.复旦学报(自然科学版)2005,44:614.
    [46]周明华,吴祖成.难生化降解芳香化合物废水的电催化处理.环境科学.2003,24:121.
    [47]Tanaka S,Nakata Y,Kimura T.Electrochemical decomposition of bisphenol A using Ti/Pt and Ti/SnO_2 anodes.J.Appl.Electrochem.2002,32:197.
    [48]Tzang C H,Li C W,Zhao J L,Yang M S.Electrocatalytic phenol oxidation on mixed Pt-RuO_2nanoparticle modified electrode.Analytical Letters.2005,11:1735.
    [49]郭孝孝.废水资源化用催化电极材料研究.北京化工大学,2005年.
    [50]孙洋洲,姚沛.钛基二氧化铅阳极电化合成高氯酸钠的研究.无机盐工业.2001,33:12.
    [51]王福生,韩晓丽,谢藏娥,等.使用钛涂钌和钛基二氧化铅作为阳极电解法制备次磷酸的研究.南开大学学报(自然科学版).2004,37:7.
    [52]乔庆东,李琪,于大勇等.钛基二氧化铅电极的制备及其应用.应用化学.2000,17:555.
    [53]Iniesta J,Gonzia J,Exp(?)sito E.Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 anodes.Wat.Res.2001,35:3291.
    [54]Panizza M,Cerisola G.Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1.Cyclic voltammetry and potential step experiments.Electrochemical Acta. 2003,48:3491.
    [55] AI S Y, Peng H Q, Li J Q, Li L P, Yang Y, Jin LT. Study on electro-catalytic oxidation characteristics of Nano-PbO_2 modified electrode. Joural of Molecular Catalysis. 2004,18: 366.
    [56] AI SY, Gao M N, Zhang W, Wang Q J, Xie Y F, Jin LT. Preparation of Ce-PbO_2 modifiedelectrode and its application in detection of anilines. Talanta. 2004,62:445.
    [57] 冯玉杰,李晓岩,尤宏,丁凡编著.电化学在环境工程中的应用,化学工业出版社,2002年.
    [58] Korovin N V, Kasatkin E V.Electrocatalysts for electrochemical devices. Electrokhimiya. 1993,29:565.
    [59] Yeo I H, Lee Y S, Johnson D C.Growth of lead dioxide on a gold electrode in the presence of foreign ions. Electrochim. Acta. 1992,37:1811.
    [60] Chang H, Johnson D C.Eelectrocatalysis of anodic oxygen oxyen-transfer reactions ultrathin films of lead -oxide on solid electrodes J.Electrochem.Soc.l990,137:507.
    [61] Velichenko A.B,Girenko D V,Amadelli R,Danilov F I.Effect of fluoride ions on electrodeposition of lead dioxide at the gold electrode J.Electrochem. 1998,34:325.
    [62] Amadelli R, Armelao L, Velichenko A B, Nikolenko N V, Girenko D V, Kovalyov S V, Danilov F I.Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochim.Acta. 1999,45:713.
    [63] Velichenko A B, Girenko D V, Kovalyov S V, Gnatenko A N, Amadelli R, Danilov F I. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions J. Electroanal.Chem.l998,454:205.
    [64] Teschke O, Galembeck F. Large nickel particle powder formed by electrodeposition on a metal surface partially covered with a polytetrafluoroethylene layer.J. Electrochem. Soc. 1984,131:1851.
    [65] Ho C N, Hwang B J. Effect of hydriphobicity on the hydrophobic-modified poly trafluorethy -lene PbO_2 electrode towards oxygen evolution, J.Electroanal.Chem. 1994,377:177.
    [66] Wen T C, Wei M G, Lin K L, Electrocrystallization of PbO_2 deposits in the presence of additions. J. Electrochem. Soc. 1990,137:2700.
    [67] Larew, Larry A. Application of an electrochemical quartz crystal microbalance to a study of pure and bismuth doped beta-lead dioxide film electrodes. Electrochem Soc. 1990,137:3071.
    [68] Hyeong Y.Electrocatalysis of anodic oxygen transfer reaction. Electrochem Soc. 1989, 136:1935.
    [69] Velichenko A B, Amadelli R, Baranova E A., Girenko D V.Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J Electroanalytical Chemistry.2002,527:56.
    [70] Leonardo S. Andrade, Luis Augusto M Ruotolo, Romeu C Rocha-Filho, Nerilso Bocchi, Sonia R.Biaggio,Jes(?)s Iniesta,Vicente Garc(?)a-Garcia,Vicente Montiel.On the performance of Fe and Fe,F doped Ti-Pt/PbO_2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater.Chemosphere.2007,66:2035.
    [71]Devilliers D.Electrodeposition of fluorine-doped lead dioxide.Journal of Fluorine Chemistry.2007,128:269.
    [72]Musuanim,Furlantto F,Gueriero P.Electrochemical deposition and properties of PbO_2+Co_3O_4composites.Journal of Electroanalytical Chemistry.1997,440:131.
    [73]蔡天晓,鞠鹤.β-PbO_2电极中加入纳米级TiO_2的性能研究.稀有金属材料与工程.2003,32:558.
    [74]Bertoncello R,Cattarin S,Frateur I,Musiani M.Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti.Journal of Electroanalytical Chemistry.2000,492:145.
    [75]Ho C N,Hwang B J.Effect of hydrophobicity on the hydrophobic-modified polytetra fluoroethylene/PbO_2 electrode towards oxygen evolution.Journal of Electroanalytical Chemistry.1994,377:17.
    [76]Zhang X F,Su G Y,Li Z H,Gao D S,Wan X Y.Preparation of Ti/PbO_2 hydrophobic electrodes.Natural of Journal of Xiangtan University.1999,21:46.
    [77]Hwanc B J,Lee K L.Electrocatalytic oxidation of 2-chlorophenol on a composite PbO_2/polypyrrole electrode in aqueous solution.J.Appl.Electrochem,1996,26:153.
    [78]Ai S Y,Gao M G,Wen Z,Wang Q J,Xie Y F,Jin L T.Preparation of Ce-PbO_2 modified electrode and its application in detection of anilines,Talanta.2004,62:445.
    [79]冯玉杰,崔玉虹,王建军.Dy改性SnO_2/Sb电催化电极的制备及表征.无机化学学报.2005,21:836.
    [80]王静,冯玉杰,刘正乾.稀土Gd掺杂对SnO_2电催化电极性能影响的研究.功能材料.2005,6:887.
    [81]唐宏科,赵文轸,杨燕.稀土在Ni-Co-PTFE复合电镀中的作用机制研究.稀有金属.2006.30:804.
    [1]张招贤.铁基二氧亿铅电极的改进和应用.氯碱工业.1996,8:17.
    [2]Munichandraiah N.Physicochemical properties of electrodeposited β-PbO_2 effect of deposition current density.J.Appl.Electrochem.1992,22:825.
    [3]Ai S Y,Gao M G,Wen Z,Wang Q J,Xie Y F,Jin L T.Preparation of Ce-PbO_2 modified electrode and its application in detection of anilines.Talanta.2004,62:445.
    [4]Renzo Bertoncello,Sandro Cattarin,Isabelle Frateur,Marco Musiani.Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti.Journal of Electroanalytical Chemistry.2000,492:145.
    [5]Amadelli R,Armelao L,Velichenko A.B,Nikolenko N V,Girenko D V,Kovalyov S V,Danilov F I.Oxygen and ozone evolution at fluoride modified lead dioxide electrodes.Electrochim Acta.1999,45:713.
    [6]Velichenko A B,Girenko D V,Kovalyov S V,Gnatenko A N,Amadelli R,Danilov F I,Lead dioxide electrodeposition and its application:influence of fluoride and iron ions J.Electroanal.Chem.1998,454:205.
    [7]Cao J L,Zhao H Y,Cao F H,Zhang J Q.The influence of F-doping on the activity of PbO_2film electrodes in oxygen evolution reaction.Electrochimica Acta.2007,52:7870.
    [8]刘永辉.《电化学测试技术》.北京航空学院出版社,1987年.
    [9]Chen X,Chen G,Yue P L,Stable Ti/IrOx-Sb_2O_5-SnO_2 anode for O_2 evolution with low Ir content.J.Phys.Chem.B.2001,105:4623.
    [10]Panizza M,Cerisola G.Influence of anode material on the electrochemical oxidation 2-naphthoi,Part Ⅰ.Cyclic voltammetry and potential step experiments,Electrochimica Atca.2003,48:3491.
    [11]中国环境保护工作手册.中国环境科学出版社,1988年,382.
    [12]国家环境保护局《水和废水监测分析方法》编委会.水和废水监测分析方法.第3版.北京:中国环境科学出版社,1998年,354.
    [13]Comninellies C,Pulgarin C.A nodic-oxidation of phenol for waste water treatment.J.Appl.Electrochem.1991.21:703.
    [1]许学敏,张秋香,丁平.析氧体系阳极制备及性能.化学世界.1998,1:26.
    [2]陈国栋.电沉积PbO_2电极的析氧行为.电池.1998,28:160.
    [3]乔庆东.钛基二氧化铅电极的制备及其应用.应用化学.2000,17:555.
    [4]张三元,韩玉麟,王援朝,李万春.电镀与精饰.1989,3:18.
    [5]Kong J T,Shi S Y,Kong LC,Zhu X P NiJ R.Preparation and characterizationof PbO_2electrodes doped with different rare earth oxides.Electrochimica Acta.2007,53:2048.
    [6]朱诚意,郭忠诚.稀土对电沉积Ni-W\B-SiC复合镀层组织结构及性能的影响.化工冶金.1999,20:225.
    [7]郭鹤桐,张三元.《复合电镀技术》.化学工业出版社,2006年.
    [8]黄拿灿,胡社军.《稀土表面改性及其应用》.国防工业出版社,2007年.
    [1]Devilliers D,DinhThi M T,Mahe'E,Dauriac V,Lequeux N.Electroanalytical investigations on electrodeposited lead dioxide.Journal of Electroanalytical Chemistry.2004,573:227.
    [2]Ai S Y,Gao M N,Zhang W,Sun Z D,Jin L T.Preparation of fluorine-doped lead dioxide modified electrodes for electroanalytical applications.Electroanalysis.2003,15:1403.
    [3]Velichenko A B,Amadelli R,Zucchini G.L,Girenko D V,Danilov F I.Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts.Electrochimica Acta.2000,45:4341.
    [4]Mahalingam T,Velumani S,Raja M,Thanikaikarasan S,Chu J P,Wang S F,Yong D K.Electrosynthesis and characterization of lead oxide thin films.Materials Characterization.2007,58:817.
    [5]Munichandraiah N.Physicochemical properties of electrodeposited beta-lead dioxde effect of deposition current density.J.Appl.Electrochim.1992,22:825.
    [6]Abaci S,Pekmez K,Yildiz A.The influence of nonstoichiometry on the electrocatalytic activity of PbO_2 for oxygen evolution in acidic media.Electrochemistry Communications.2005,7:328.
    [7]Cao J L,Zhao H Y,Cao F H,Zhang J Q.The influence of F- doping on the activity of PbO_2film electrodes in oxygen evolution reaction Electrochimica Acta.2007,52:7870.
    [8]Kong J T,Shi S Y,Kong L C,Zhu X P,Ni J R.Preparation and characterization of PbO_2electrodes doped with different rare earth oxides Electrochimica Acta.2007,53:2048.
    [9]Martelli G N,Ornelas R,Faita G.Deactivation mechanisms of oxygen -evoling anodes at high-current densities.Electrochim.Acta.1994,39:1551.
    [10]曹江林,吴祖成,李红霞,张鉴清.PbO_2阳极在硫酸溶液中的析氧失活行为.物理化学学报.2007,23:1515.
    [11]Ueda M,Watanabe A,Kameyama T,Matsumoto Y,Sekimoto M,Shimamune T.Performance -characteristics of a new-type of lead dioxide-coated titanium anode.J.Appl.Electrochem.1995,25:817.
    [12]Casellato U,Cattarin S,Musiani M.Preparation of porous PbO_2 electrodes by electrochemical deposition of composites.Electrochim.Acta.2003,48:3991.
    [13]Ho J C K,Tremiliosi Filho G,Simpraga R,Conway B E.Structure influence on electrocatalysis and adsorption of intermediates in the anodic O_2 evolution at dimorphic alpha-PbO_2 and beta-PbO_2.J.Electroanal.Chem.1994,366:147.
    [14]韦国林,王家荣.硫酸溶液中PbO_2的电化学行为.电池.1994,24:280.
    [15]高小霞著.《稀土农用与电分析化学》.北京大学出版社.1997.5.
    [16]Ellis S R,Hampson N A,Ball M C,Wilkinson F.The lead dioxide electrode.J.Appl.Electrochem.1986,16:159.
    [17]Otsuka K,Wang Y,Nakamura M.Direct conversion of methane to synthesis gas through gas-solid reaction using CeO_2-ZrO_2 solid solution at moderate temperature.Appl.Catal.A.1999,183:317.
    [18]Kang Z C,Yring L.Lattice oxygen transfer in fluorite-type oxides containing Ce,Pr,and/or Tb.J.Solid State Chem.2000,155:129.
    [1]Hyde M E,Jacobs R M,Compton R G.An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology.J.Phys.Chem.B 2004,108:6381.
    [2]Pavlov D,Balkanov I,Halachew T,Rachew P.Hydration and amorphization of active mass PbO_2 particles and their influence on the electrical-properties of the lead-acid -battery positive plate.J.Electrochem.Soc.1989,136:3189.
    [3]Pavlov D,Monahov B.Mechanism of the elementary electrochemical processes taking place during oxygen evolution on the lead dioxide electrode J.Electrochem.Soc.1996,143:3616.
    [4]《稀土材料学》刘光华主编.北京,化学工业出版社,2007.
    [5]Amadelli R,Armelao L,Velichenko A B,Nikolenko N V,Girenko D V,Kovalyov S V,Danilov F I.Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochim. Acta. 1999,45:713.
    [6] Pavlov D, The lead-acid-battery lead dioxide active mass-a gel crystal system with proton and electron conductivity. J. Electrochem. Soc. 1992,139:3075.
    [7] Payne D J, Egdell R G. Hao W, Foord J S, Walsh A., Watson G W. Why is lead dioxide metallic? Chem. Phys. Lett. 2005,411:181.
    [8] Amadelli R, Armelao L, Velichenko A B, Nikolenko N V, Girenko D V, Kovalyov S V, Danilov F I.Oxygen and ozone evolution at fluoride modified lead dioxide electrodes.Electrochim. Acta 1999,45:713.
    [9] Amadelli R, Armelao L, Tondello E, Daolio S, Fabrizio M, Pagura C, Velichenko A.. A SIMS and XPS study about ions influence on electrodeposited PbO_2 films.Appl. Surf. Sci. 1999,142:200.
    [10] Foller P C, Tobias C W. Deposition and dissolution on sinusoidal electrodes.J. Electrochem. Soc. 1982,129:506.
    [11] Foller P C, Tobias C W. The effect of electrolyte anion adsorption on current efficiencies for the evolution of ozone.J. Phys. Chem. 1981,85:3238.
    [12] Zhou M H, Dai Q H, Lei L H, Wu Z C, Ma C N, Wang D H.Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment: Electrochemical Characteristics and Degradation Mechanism. Environ. Sci. Technol. 2005,39:363.
    [1]Comninellis C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste-water treatmen.Electrochimica Acta.1994,39:1875.
    [2]Zhou M H.Ph.D.Dissertation.Hangzhou:Zhejiang University,2003年.
    [3]Li X Y,Ding F,Lo P S Y,Sin S H P.Electrochemical disinfection of saline wastewater effluent.J.Environ.Eng ASCE.2002,128:697.
    [4]Simod O,Schaller V,Comninellis C,Theoretical model for the anodic oxidation of organics on metal oxide electrodes.Electrochim Acta.1997,42:2009.
    [5]James D R,Wojciech J,Nigel J B.Metal removal from contaminated soil and sediments by the biosurfactant surfactin.Environ.Sci.Technol.1999,33:1453.
    [6]Zhou M H,Dai Q Z,Lei L C,Wu Z C,Ma C A.Long life modified lead dioxide anode for organic wastewater treatment:Electrochemical characteristics and degradation mechanism Environ.Sci.Technol.2005,39:363.
    [7]Iniesta J,Michaud P A,Panizza M,Cerisola G,Aldaz A,Cornninellis C.Electrochemical oxidation of phenol at boron-doped diamond electrode.Electrochim.Acta.2001,46:3573.
    [8]童少平,马淳安,费会.两类不同阳极电氧化过程中的失活现象及氧化机制,物理化学学报.2007.23:424.
    [9]Zhi J F,Wang H B,Nakashima T,RaoT N,Fujishima A.Electrochemical incineration of organic pollutants on boron-doped diamond electrode.Evidence for direct electrochemical oxidation pathway.J.Phys.Chem.B,2003,107:13389.
    [10]巴德,福拉纳著.《电化学方法原理和应用》..化学工业出版社.北京,2005年.
    [11]柳厚田《电化学中的仪器方法》.复旦大学出版社.上海,1992.
    [12]宋宽秀,李晓云,颜秀茹,王建萍,张松平.水合氧化铈的表征及其对氟离子的吸附作用.天津大学学报.1999,32:739.
    [13]赵雷洪,郑小明.La_2O_3催化丙烷脱氢反应的研究.浙江师大学报自然科学版.1998,21:44.
    [14]Panizza M,Cerisola G.Influence of anode material on the electrochemical oxidation 2-naphthol.Part Ⅰ.Cyclic voltammetry and potential step experiments.Electrochimica Atca.2003,48:3491.
    [15]James D R,Wojciech J,Nigel J B.Electrochemical oxidation of chlorinated phenols.Environ.Sci.Technol.1993,33:1453.
    [16] Gattrell M, Kirk D W. Study of electrode passivity during aqueous phenol electrolysis. J. Electrochem.Soc. 1993,140:903.
    [17] Polcaro A M, Palmas S, Renoldi F, Mascia M. On the performance of Ti/SnO_2 and Ti/PbO_2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem. 1999,29:147.
    [18] Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 1995,29:671.
    [19] Kirk D W, Sharifian H, Foulkes F R. Anodicoxidation of aniline for waste-water treatment. J. Appl. Electrochem. 1985,15:285.
    [20] Li X Y,Cui Y H,Feng Y J,Xie Z M,Gu J D.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res.2005, 39:1972.
    [21] Pulgarin C,Adler N,Peringer P,Comninellis C. Electrochemical detoxification of a 1,4-benzo quinone solution in wastewater treatment,Water.Res. 1994,28:887.
    [22] Tahar N B, Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation on aTa/PbO_2 anode. J.Electrochem. Soc. 1998,145:3427.
    [23] Ko¨tzR,Stucki S,Carcer B.Electrochemical wastewater treatment using high overvoltage anodes I: physical and electrochemical properties of SnO_2. J. Appl. Electrochem. 1991,21:14.
    [24] Stucki S, Ko¨tz R, Carcer B, Suter W.Electrochemical waste-water treatment using high overvoltage anodes II: anode performance and application. J. Appl. Electrochem. 1991,21:99.
    [25] Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials.2004, B113:123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700