用户名: 密码: 验证码:
基于质子传输强化的微生物燃料电池传输特性及性能强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,能源问题和环境问题是21世纪人类面临的两大难题,它们严重制约着人类的生存和社会的可持续发展。传统的化石能源日益趋近于枯竭,而且环境问题尤其是水体污染日益突出。此外传统污水处理行业一直是“高投入、零产出”。因此,寻求清洁的新能源和新的污水处理工艺是当务之急。在此背景下,微生物燃料电池(Microbial Fuel Cell,MFC),一种可以将废水中有机物所蕴含的能量进行回收利用的新型可再生能源装置,以其处理污水的同时回收电能这一独特的优势应运而生,这为环境保护、提高能源利用率和发展可持续能源都具有重大意义。
     近些年来MFC技术发展很快,其功率密度从0.1mW m-2被提升到6800mWm-2,但这还不足以面向实际应用。因此,为了进一步提升MFC性能,研究者们对MFC性能影响因素进行了大量实验研究。影响MFC性能的因素很多,其中最重要的因素之一就是MFC中物质传输尤其是质子的传输。研究者表明阳极生物膜内质子的传输是MFC性能的限制性因素,而且极pH对空气极的性能影响很大。随着MFC的运行,较差的质子传输效果导致MFC、阳极之间的质子梯度不断增大,极大地限制了MFC的性能。同时,面临未来实际应用,需要对MFC进行放大化研究从而提高MFC的功率,而且从经济和环保角度而言,质子交换膜和磷酸缓冲液不再适用于未来放大化的MFC。
     针对以上问题,本文从工程热物理学科角度出发,立足于强化物质传输和提升MFC性能,设计了多种结构的MFC反应器,针对不同传质类型的MFC传输特性及性能特性进行了研究。研究内容主要分为三个部分:(1)采用电极阵列电极对矩形MFC进行放大化研究,并研究了不同阵列排列形式(叉排或顺排)对升级MFC启动、性能、电流分布和污水处理效果的影响,同时还揭示了放大化MFC阳极存在的电流分布不均现象;构建了三合一膜电极式MFC,并研究了阳极不同传质形式对其启动和性能的影响;(2)构建基于对流扩散传质的平板式MFC,研究了不同外接电阻启动条件下MFC启动特性、阳极生物膜成膜及物质传输特性和产电特性;构建了平板式MFC串联电堆并研究了电堆的性能及限制性因素,针对串联电堆存在的子电池反极现象提出了改善措施;(3)构建了通流式MFC,研究了其质子传输特性和性能特性,并对其阳极生物膜传输特性进行数值模拟;构建空气极通流式MFC,研究了电解液流量、底物浓度、电解液离子强度和极圆孔柱结构对空气极通流式MFC性能的影响;构造了漂浮式空气极环流MFC,研究了无缓冲液下环流MFC运行的可行性及循环流速对MFC质子传输、性能及污水处理效果的影响。主要研究成果如下:
     1)研究了阵列电极排列方式对升级MFC启动及性能的影响。研究结果表明:与采用顺排电极阵列的MFC相比而言,采用叉排电极阵列的MFC不但启动速度较快,启动完成后最高功率密度(23.8W m-3)要高24.6%;叉排和顺排电极阵列方式的MFC均出现明显的阳极电流分布不均现象,但是电极阵列采用叉排的MFC阳极电流分布不均匀程度稍小;序批方式下,两种排列方式的MFC COD去除率相近似,均可高达81%以上,但是电极采用叉排方式排列的MFC库伦效率较高。
     2)揭示了放大化后MFC阳极电流密度分布不均现象。实验结果表明,升级电极阵列MFC中,阳极电流沿着、阳极两电极距离的方向出现不均匀分布现象:距离极电极越远的阳极电极对电池的总电流贡献越小,而且其不均匀分布程度随着电池的电流增加而加剧。分析研究表明,这主要是由于阳极各部分电极与极电极不同的距离导致其欧姆内阻分布均匀,在启动阶段致使阳极各部分电极上形成的阳极生物膜不均匀。在产电过程中,欧姆内阻和阳极生物膜分布不均最终导致了阳极电流分布不均。针对电流分布不均,可采用增加阳极电解液的COD浓度或者离子强度来减小MFC阳极电流分布不均的程度。
     3)研究了阳极传质形式对三合一矩形MFC性能的影响。研究表明,由于PEM膜面积增加和、阳极电极间间距小导致其最高功率密度(2149.0mW m-2)高于实验室前期H型MFC(310mW m-2)和矩形MFC(745mW m-2)。与采用大腔室(扩散传质)的MFC相比,阳极采用蛇形流道(对流扩散传质)的三合一矩形MFC不但启动速度较快,而且最大功率密度要高24.5%。
     4)研究了不同外接电阻启动条件下MFC启动特性、阳极生物膜成膜特性和性能特性。研究结果表明,采用较小的电阻启动,启动过程中电流较大,但启动速度较慢;启动过程中的能量获得不同会导致MFC阳极生物膜中活性生物量和EPS成分含量的不同,从而导致生物膜的结构有所不同。采用较小外阻启动的MFC阳极生物膜具有较大的生物量和较大的EPS含量,呈现出较厚生物膜厚度,最终导致生物膜电化学活性较高,MFC最大功率密度也较大;然而,当启动外阻降低到过小值时,MFC阳极生物膜中EPS含量剧增,然而活性生物量反而减少。同时,生物膜的多孔隙结构有利于物质的传输,但也导致了生物膜导电性的降低。这最终导致了采用过小外阻启动的MFC虽然具有较大的电流密度,但是其最大功率密度较低。
     5)研究了物质传输对平板式MFC阳极生物膜成膜及性能的影响。研究结果表明,流场板结构使底物分布在槽道处,这导致阳极生物膜主要分布在与槽道相对应的碳布表面。同时,较厚的生物膜阻碍了物质向碳布内侧的传输,导致生物膜仅分布在碳布电极表面;采用蛇形流道MFC的最大功率密度随着阳极底物流速的增加先急剧增加后基本维持不变,随着阳极底物浓度的增加先急剧增加后逐步减小,阳极采用交指流场后由于较佳的物质传输致使MFC性能提高14.8%;由于交指流道较佳的传质和平板式电池结构较小的内阻,致使极采用交指流道的MFC的最大功率密度相对于H型MFC大大提高,其电池性能随极电子受体浓度的增加而增加,而几乎不受极水力停留时间的影响。
     6)研究了平板式MFC串联电堆的性能。平板式MFC串联堆在电压高达2.11V时到达最高功率密度(2226mW m-2)。然而,在较大电流时发生的子电池电压反极现象限制了串联堆功率密度的进一步增加;适度增加反极电池阳极电解液流量可促使电堆性能大幅度提高;采用混联方式运行可提高电堆的可运行的最大电流,一定程度上避免了子电池电压反极现象,从而提升了其性能;移除电压反极的子电池并不能有效地避免反极现象的发生;反接反极电池反而会进一步加剧反极电池的反极,致使电堆性能更低。
     7)构建新型质子传输方式的通流式MFC并研究了其质子传输及性能特性。研究结果表明,由于纺织物的可渗透性,在流动的情况下,强化了通流式MFC中质子从阳极到极的传输,从而大幅提升了MFC性能;而且,一定流量范围内,增加电解液流量会强化质子传输,导致MFC性能的提高。
     8)通流式MFC阳极生物膜传输特性进行数值模拟。将模拟结果与实验数据进行了比较,在小电流范围内二者基本吻合,然而在大电流然而在大电流下模拟值要高于实验值,这主要是模拟中没有考虑pH对生物膜反应动力学的影响等因素造成的。模拟结果表明,MFC阳极生物膜内电势和电流呈现一维分布,电势和电流均随着距离阳极电极板距离的增大而减小。阳极生物膜内乙酸钠浓度和pH随着阳极电极板垂直距离的增加而增加,且沿着流动方向逐步降低。随着阳极电势的增加,MFC阳极电流增加,生物膜内乙酸钠浓度和pH降低而且其分布不均匀程度增加。
     9)研究了空气极通流式MFC的性能特性。研究结果表明,在电流约为2.5mA时到达最大功率密度(约为622mW m-2),空气极较大的活化损失是其性能的限制性因素;在一定流量范围内,其性能随着电解液流量的增加先增加,当增加到一定程度后性能不再增加;在一定范围内,其性能随着阳极电解液COD和缓冲液浓度的增加而增加;空气极圆柱采用圆孔阵列结构时比采用沿着流动方向的直槽结构时MFC获得的性能要高28.6%。
     10)构造了漂浮式空气极环流式MFC,研究了采用阳极电解液循环运行方式替代磷酸缓冲液的可行性。研究结果表明,与有磷酸缓冲液条件运行下相比,无缓冲液条件下MFC(50外阻下)输出功率要低27%,最大性能要低9.7%,但是其库伦效率却要高64.2%,这表明此种运行方式在无磷酸缓冲液下时可行的,而且具有较大的应用前景;当增加电解液流量,氢离子传输明显增强,导致MFC性能和库伦效率提高;然而,当进一步增大电解液流量,由于过多的氧气传输到阳极室,这导致性能和库伦效率的降低。当电解液流量为0.35ml min-1时无磷酸缓冲液条件下MFC获得最高的最大性能为1.32mW),最大库伦效率为16.6%。
It is well known that, energy shortage and environment pollution as two majorproblems, severely limit existence and sustainable development of human society in the21st century. The traditional fossil energy is drying up and brings a large amount ofcarbon dioxide emission which may lead to the Greenhouse Effect. In addition, theproblem of environment pollution, especially water pollution, becomes more and moreserious and the existing wastewater treatment process has been a “high input and zerooutput”. Therefore, how to seek a new and clean energy and a new process for treatingwastewater around global environment has been the pressing matter of the moment.
     Fortunately, Microbial Fuel Cells (MFCs) technology as promising alternativepower sources with the unique capability of simultaneous wastewater treatment andelectricity generation provides a practicable way for solving the above problems.
     Although experiencing a significant development in recent years, the powergeneration is still insufficient for the practical applications. In order to make a furtherimprovement in MFC performance, efforts have been made to investigate the affectingfactors of MFC performance. Among these factors, one of the key factors is masstransfer especially proton transfer in MFC. The previous studies reported that protontransfer inner biofilm was one of important limited factors for MFC and pH had asignificant effect on cathode performance. With a long-term run, the increasing pHgradient between anode and cathode chambers resulted from the poor proton transfer ofProton Exchange Membrane (PEM) would largely decrease MFC performance.Meanwhile, scale-up of MFC is an important consideration for future practicalapplication while the expensive PEM and un-eco-friendly phosphate buffer is notsuitable to use any longer.
     In this study, in order to enhance mass transfer and then improve MFCperformance, MFC reactors with different mass transfer pattern were constructed andthe performance and transport characteristics were invested. Firstly, based on “H” typeMFC with small PEM, rectangular MFC with a large PEM was constructed to enhanceproton transfer from anode to cathode. For scale-up, graphite rods arrays with inline andstaggered arrangement were used as the electrodes to constructed two liter-scale MFCs.The effects of electrode array pattern on MFC performance were investigated and theanodic nonuniform current distribution was found as well. Moreover, membrane electrode assembly typed MFC was constructed by decreasing the electrode distances toimprove power output and the effects of anodic mass transfer pattern on its performancewere also investigated. By using a convection mass transfer way, Flat Plate MicrobialFuel Cells (FPMFCs) with serpentine flow fields were constructed to enhance protontransfer inner biofilm. The effects of external resistance on the startup process, biofilmformation and electricity generation were investigated. Based on FPMFC with highpower density, a stacking microbial fuel cell with serpentine flow field in series wasconstructed and several possible measures of improving its performance were tested.Besides, to investigate the effects of proton transfer on power generation, twocontinuous-flow tubular MFCs using PEM (MFC-PEM) and textile separator (MFC-S)were operated under different anolytes (with and without buffer) and differentcatholytes (K3[Fe(CN)6] and KMnO4). The factors for the performance improvement ofMFC-S were discussed and the effects of flow rates on proton transfer and MFC powergeneration was investigated as well. For future practical application, a tubularair-cathode was used in the continuous-flow tubular MFC and the effects of anolyteflow rate, COD concentration, ionic strength and the structure of cathode hole on itsperformance were investigated. In order to make a feasible study on operating MFCunder buffer-less condition, an anolyte recirculation design strategy as an alternative tophosphate buffer in single-chamber air-cathode MFCs was proposed to enhance protontransfer while avoiding phosphate release into the environment. Two MFCs with afloating air-cathode were operated under either buffer (MFC-B) or buffer-less (MFC-BL)condition in a recirculation mode. The feasibility of this eco-friendly way and theeffects of flow rates on proton transfer, power generation and wastewater treatmentwere investigated. The main results are summarized below:
     1) Effect of electrode array pattern on liter-scale MFC with electrode arrays wasinvestigated. MFC with staggered electrode array (MFC-S) had a faster startup withhigher voltage output compared with MFC with inline electrode array (MFC-I).Moreover, the maximum power density (23.8W m-3) of MFC-S was approximately onequarter higher than that of MFC-I (19.1W m-3) due to the structure-induced better masstransfer of staggered array. No noticeable difference in anodic current maldistributionbetween the two MFCs was observed at a similar cell current. For a batch feeding mode,compared with MFC-I, MFC-S had a slightly higher COD removal efficiency (84.3%)but much higher coulombic efficiency (82.3%) with a nonuniform segment CEdistribution.
     2) Anodic ununiform current distribution was observed in a liter-scale MFC. It isdemonstrated that the electrode spacing between the anode segment and cathodesignificantly influenced the ohmic resistance and the biomass content of each segment,further affected the anodic current distribution. A significant current maldistribution wasfound in MFC-EA, especially at high currents. The further the anode segment was awayfrom the cathode, the smaller the segment current generation contributed to the totalcurrent. Consequently, a suitable MFC structure with short and equidistant electrodespacing will be a necessary consideration for large-scale MFC design. Moreover, for thetested MFC-EA, improvement on the current maldistribution was achieved by feedingthe anolyte with a COD concentration of1000mg COD L-1or with0.2M KCl.
     3) Effect of anodic mass transfer pattern on the performance of membraneelectrode assembly typed MFC was studied. MFC with serpentine flow field in anode(MFC-2) had a faster startup process and a higher voltage output due to the better masstransfer of anolyte during the startup period compared with MFC with bulk chamber inanode (MFC-1). After startup, the cyclic voltammetry tests were showed that MFC-2biofilm had a higher electrochemical active behavior as the better mass transfer ofserpentine flow filed. The above results lead to a24.5%increase in maximal powerdensity of MFC-2(2676.2mW m-2) compared with MFC-1(2149.0mW m-2).
     4) Effect of external resistance on biofilm formation and electricity generationwas investigated. It is demonstrated that a suitable biofilm structure plays a crucial rolein the maximum power density and stable current generation of the MFCs. It is alsofound that the maximum power density of the microbial fuel cells (MFC) increasedfrom0.93W m-2to2.43W m-2when the external resistance decreases from1000to50
     , which may due to the increasing active biomass and thickness of biofilm. However,on further decreasing the external resistance to10, the maximum power densitydecrease to1.24W m-2because of a less active biomass and higher EPS content in thebiofilm. Additionally, the10MFC shows a highest maximum stable current of6.55Am-2. This result can be attributed to the existence of void spaces beneficial for protonand buffer transport within the anode biofilm, which maintains a suitablemicroenvironment for electrochemically active microorganisms.
     5) Effect of mass transfer on the biofilm formation and performance of FPMFCwas investigated. The results showed that, main anodic biofilm developed on the part ofcarbon cloth surface near the channel of flow field. Minor biofilm was observed both atthe carbon cloth surface near the rib of flow field and inner carbon cloth due to lacking of substrate for bacterial growth. FPMFC voltage dropped sharply under high currentdensity and the reason was attributed to mass transfer limitation in anode. Themaximum power density of the FPMFC increased with increasing flow rate andconcentration of the influent substrate. The performance of MFC using an interdigitatedflow field in anode was higher than that of FPMFC under the same operationalconditions due to better mass transfer process induced by the interdigitated flow field.Using triiodide anion complex(I3-)as cathodic electron acceptor, microbial fuel cellusing an interdigitated flow field in cathode (IMFC) had a higher steady cell voltageafter incubation and a larger maximal power density compared with “H” type MFC.This could be attributed to the lower internal electrical resistance and the better masstransfer property of IMFC. In addition, it was found that the maximal power density ofthe IMFC increased with the I3-concentrations and showed no relationship withhydraulic retention time.
     6) The performance of stacking MFC in series with serpentine flow fields wasstudied. The experimental results showed that a maximal power density of2226m Wm-2was observed at a high voltage of2.11V. A cell with low performance (MFC-R) inMFC stack would present a reversed voltage at a certain current density and then resultin a low stack cell, which was the main limitation of further improving MFC stackperformance. Although not improving the voltage reverse, an increase in the flow rate ofthe anolyte and catholyte in MFC-R result in a significantly improved power output ofMFC stack. By using a hybrid connection, the voltage reverse would be avoided,resulting in a largely increased stack performance. However, the voltage reverse cannotbe improved by removing the MFC-R and even got worse after switching it into reversein the series circuit.
     7) Comparative studies on proton transfer and electricity generation in twocontinuous-flow tubular MFCs using PEM (MFC-PEM) and textile separator (MFC-S)were performed experimentally. The results showed that, using K3[Fe(CN)6] catholyte,similar startup processes and minor difference on performance were observed in the twoMFCs due to minor effect of pH on cathode. However, after using KMnO4cathode,MFC-S had a significant performance improvement while a decrease in MFC-PEMperformance was observed under both buffer and buffer-less conditions resulting fromthe significant effects of catholyte pH. The main contributors for MFC-S highperformance were the enhanced proton transfer and the increased catholyte conductivityby the sequential anode-cathode flow. It was found that proton transfer can be significantly enhanced by increasing the electrolyte flow rate, largely improving MFC-Sperformance.
     8) A numerical simulation of mass transport in anodic biofilm based on thetubular MFC with a sequential anode-cathode flow was developed to predict MFCperformance and substance distribution in the biofilm. The simulation results basicallyagree with the experimental data at a low MFC current while the modeling values werehigher than the experimental ones at high MFC current due to lacking of the significantpH effects in Monod-Nernst equation. The numerical results indicate that the localpotential and current in biofilm decreased with increasing distance from the electrodesurface. Substrate concentration and pH increased with the increasing vertical distancefrom the electrode surface and decreased along the flow direction. Increasing anodeelectrode potential would lead to an increase in current output and drop in substrateconcentration and pH. Meanwhile, increasing nonuniform distribution in substrateconcentration and pH in the biofilm was observed after increasing the anode electrodepotential.
     9) Performance of air-cathode MFC with a sequential anode-cathode flow wasstudied. The results showed that MFC had a maximum power (622mW m-2) at thecurrent of2.5mA and the poor air-cathode performance limited performanceimprovement. Increasing anolyte flow rate would firstly promote power generation andthen maintain the similar level. Increasing anolyte COD concentration and bufferconcentration within a range would improve MFC power generation. MFC usingcircular hole arrays in cathode support had a higher performance than MFC usingstraight channel along the flow direction in cathode support.
     10) An anolyte recirculation design strategy as an alternative to phosphate bufferwas investigated in single-chamber air-cathode MFCs. It was demonstrated thatMFC-BL operated with a50external resistance in recirculation mode (1.0ml min-1)had a27%lower power (9.7%lower maximal power) but a64%higher coulombicefficiency (CE) compared with MFC-B, suggesting a feasible approach for future MFCapplication. With increased recirculation rates, MFC-B showed a decreased voltageoutput, batch time, and CE resulting from increased oxygen transfer into the anode. InMFC-BL, increasing the flow rate within a low range significantly enhanced protontransfer, resulting in a higher voltage output, a longer batch time, and a higher CE.Above this range, increased flow rates also decreased the batch time and CE ofMFC-BL due to excess oxygen transfer into the anode. MFC-BL showed a maximal power of1.32mW and CE of16.6%at a flow rate of0.35ml min-1.
引文
[1]王庆一,中国的能源与环境:问题及对策[J],能源与环境,2005(3)。
    [2]王翠兰,吴华根,建立中国特色的能源战略解决中国发展的能源需求[J],中共乐山市委党校学报,2008,10(5)。
    [3]韩旭,中国环境污染与经济增长的实证研究[J],中国人口资源与环境,2010,20(4)。
    [4]曾志强,刘定平,从能源现状看中国能源的战略储备[J],广东电力,2006,19(5):1-5
    [5]陈和平,中国“十五”节能规划及对策[J],能源研究与应用[J],2001(1):7-11
    [6]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
    [7]衣宝廉.燃料电池——原理技术应用[M].北京:化学工业出版社,2003.
    [8]黄镇江.燃料电池及其应用[M].北京:电子工业出版社,2005.
    [9]熊一权.燃料电池的开发及展望[J].节能与环保,2003,3:37-38.
    [10]韩旭,中国环境污染与经济增长的实证研究[J],中国人口资源与环境,2010,20(4)。
    [11]胡定金,浅谈我国水污染的主要成因及防治对策[J],湖北农业科学,2010,49(9)。
    [12]马淑红,浅谈污水现状及其处理方式[J],科技信息,2009,23:1019-1033
    [13] Potter M C. Electrical effects accompanying the decomposition of organic compounds[J].Proceedings of the Royal Society of London. Series B, Containing Papers of a BiologicalCharacter,1911,84(571):260-276.
    [14] D. R. Bond, D. E. Holmes, L. M. Tender, D. R. Lovley. Electrode-reducing microorganismsthat harvest energy frommarine sediments [J]. Science,2002,295(5554):483-485.
    [15] Min, B. and B.E. Logan. Continuous Electricity Generation from Domestic Wastewater andOrganic Substrates in a Flat Plate Microbial Fuel Cell [J]. Environ. Sci. Technol.2004.38(21),5809-5814
    [16] H. Liu, R. Ramnarayanan, B. E. Logan. Production of electricity during wastewater treatmentusing a single chamber microbial fuel cell [J]. Environ. Sci. Technol.,2004,38:2281-2285.
    [17] Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells [J]. Nature ReviewsMicrobiology.2009,7(5):375-381.
    [18] B. H. Kim, I. S. Chang, G. M. Gadd. Challenges in microbial fuel cell development andoperation[J]. Applied Microbiology and Biotechnology,2007,76:485–494.
    [19] Z. W. Du, H. R. Li, T. Y. Gu. A state of the art review on microbial fuel cells: A promisingtechnology for wastewater treatment and bioenergy [J]. Biotechnology Advances,2007,25:464–482.
    [20] R. Emde, B. Schink. Enhanced propionate formation by propionibacterium freudenreichiisubsp. Freudenreichii in a Three-electrode Amperometric Culture System [J]. Appl. Environ.Microbiol.,1990,56:2771-2776.
    [21] D. H. Park, J. G. Zeibus. Electricity generation in microbial fuel cells using neutral red as anelectronophore [J]. Applied and Environmental Microbiology,2000,66:1292-1297.
    [22] C. F. Thurston, H. P. Bennetto, G. M. Delaney, et al. Glucose Metabolism in a Microbial FuelCell:Stoichiometry of Product Formation in a Thionine-mediated Proteus vulgaris Fuel Celland Its Relation to Coulombic Yield [J]. Journal of General Microbiology,1985,131:1393-1398.
    [23] Reguera G, Nevin P K, Nicoll S J, Covalla F S, Woodard L T, Lovley R D. Biofilm andnanowire production leads to increased current in geobacter sulfurreducens fuel cells [J]. ApplEnviron Microbiol.2006,72(11):7345–7348.
    [24] Gorby Y A, Yanina S, McLean S J et.al., Electrically conductive bacterial nanowires producedby Shewanella oneidensis strain MR-1and other microorganisms. PNAS [J],2006,103(30):11358-11363
    [25] Y. Liu, F. Harnisch, K. Fricke, R. Sietmann, U. Schroder. Improvement of the anodicbioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemicalselection procedure [J]. Biosens. Bioelectron.,2008,24(4):1012-1017.
    [26]杨冰,高海军,张自强.微生物燃料电池研究进展[J].生命科学仪器,2007,5:1-12.
    [27] Li W W, Yu Q H, He Zhen. Towards sustainable wastewater treatment by using microbial fuelcells-centered technologies [J]. Energy Environ. Sci.2014, Advance Article. DOI:10.1039/C3EE43106A
    [28] F. Zhang, Z. Ge, J. Grimaud, J. Hurst and Z. He, Long-Term Performance of Liter-ScaleMicrobial Fuel Cells Treating Primary Effluent Installed in a Municipal WastewaterTreatment Facility [J]. Environ. Sci.Technol.,2013,47,4941–4948
    [29] Z. Ge, J. Li, L. Xiao, Y. Tong and Z. He, Recovery of Electrical Energy in Microbial FuelCells [J]. Environmental Science&Technology Letters,2013, DOI:10.1021/ez4000324.
    [30] Z. He, Microbial Fuel Cells: Now Let us Talk about Energy [J]. Environ. Sci. Technol.,2012,47,332–333.
    [31] R. A. Rozendal, H. V. M. Hamelers, K. Rabaey, J. Keller and C. J. N. Buisman, Towardspractical implementation of bioelectrochemical wastewater treatment [J]. Trends Biotechnol.,2008,26,450–459.
    [32] P. L. McCarty, J. Bae and J. Kim, Domestic Wastewater Treatment as a Net EnergyProducer–Can This be Achieved [J]? Environ. Sci. Technol.,2011,45,7100–7106.
    [33] A. P. Borole, G. Reguera, B. Ringeisen, Z. W. Wang, Y. J. Feng and B. H. Kim, Electroactivebiofilms: Current status and future research needs [J]. Energy Environ. Sci.,2011,4,4813–4834.
    [34] F. Aulenta, L. Tocca, R. Verdini, P. Reale and M. Majone, Dechlorination of Trichloroethenein a Continuous-Flow Bioelectrochemical Reactor: Effect of Cathode Potential on Rate,Selectivity, and Electron Transfer Mechanisms [J]. Environ. Sci. Technol.,2011,45,8444–8451.
    [35] X. Li, N. Zhu, Y. Wang, P. Li, P. Wu and J. Wu, Animal carcass wastewater treatment andbioelectricity generation in up-flow tubular microbial fuel cells: Effects of HRT andnon-precious metallic catalyst [J]. Bioresour. Technol.,2013,128,454–460.
    [36] D. Jiang, M. Curtis, E. Troop, K. Scheible, J. McGrath, B. Hu, S. Suib, D. Raymond and B. Li,A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) toenhance the power production in wastewater treatmentInt [J]. J. Hydrogen Energy,2011,36,876–884.
    [37] L. Zhuang, Y. Yuan, Y. Wang and S. Zhou, Long-term evaluation of a10-liter serpentine-typemicrobial fuel cell stack treating brewery wastewater [J]. Bioresour. Technol.,2012,123,406–412.
    [38] Y. Zhang and I. Angelidaki, Innovative self-powered submersible microbial electrolysis cell(SMEC) for biohydrogen production from anaerobic reactors [J]. Water Res.,2012,46,2727–2736
    [39] F. Zhang, Z. Ge, J. Grimaud, J. Hurst and Z. He, In situ investigation of tubular microbial fuelcells deployed in an aeration tank at a municipal wastewater treatment plant [J]. Bioresour.Technol.,2013,136,316–321.
    [40] S. T. Lohner, D. Becker, K. M. Mangold and A. Tiehm, Sequential reductive and oxidativebiodegradation of chloroethenes stimulated in a coupled bioelectro-process [J]. Environ. Sci.Technol.,2011,45,6491–6497.
    [41] F. Fischer, C. Bastian, M. Happe, E. Mabillard and N. Schmidt, Microbial fuel cell enablesphosphate recovery from digested sewage sludge as struvite [J]. Bioresour. Technol.,2011,102,5824–5830.
    [42] S. J. You, J. Y. Wang, N. Q. Ren, X. H. Wang and J. N. Zhang, Sustainable Conversion ofGlucose into Hydrogen Peroxide in a Solid Polymer Electrolyte Microbial Fuel Cell [J].ChemSusChem,2010,3,334–338.
    [43] J. Yu, J. Seon, Y. Park, S. Cho and T. Lee, Electricity generation and microbial community ina submerged-exchangeable microbial fuel cell system for low-strength domestic wastewatertreatment [J]. Bioresour. Technol.,2012,117,172–179
    [44] J. M. Foley, R. A. Rozendal, C. K. Hertle, P. A. Lant and K. Rabaey, Life Cycle Assessment ofHigh-Rate Anaerobic Treatment, Microbial Fuel Cells, and Microbial Electrolysis Cells [J].Environ. Sci. Technol.,2010,44,3629–3637.
    [45] W. W. Li, G. P. Sheng, X. W. Liu and H. Q. Yu, Recent advances in the separators formicrobial fuel cells [J]. Bioresour. Technol.,2011,102,244–252.
    [46] Y. Fan, S. K. Han and H. Liu, Improved performance of CEA microbial fuel cells withincreased reactor size [J]. Energy Environ. Sci.,2012,5,8273–8280.
    [47] Sun, M., G. P. Sheng, et al. Manipulating the hydrogen production from acetate in a microbialelectrolysis cell-microbial fuel cell-coupled system [J]. Journal of PowerSources.2009,191(2):338-343.
    [48] You, S.J.; Zhao, Q.L.; Jiang, J.Q. Biological wastewater treatment and simultaneousgenerating electricity from organic wastewater by microbial fuel cell [J]. Huan Jing Ke Xue2006,27,1786–1790.
    [49] Lu, N.; Zhou, S.G.; Zhuang, L.; Zhang, J.T.; Ni, J.R. Electricity generation from starchprocessing wastewater using microbial fuel cell technology [J]. Biochem. Eng. J.2009,43,246–251.
    [50] Ren, Z.; Steinberg, L.M.; Regan, J.M. Electricity production and microbial biofilmcharacterization in cellulose-fed microbial fuel cells [J]. Water Sci. Technol.2008,58,617–622.
    [51] Zhang, Y.; Min, B.; Huang, L.; Angelidaki, I. Generation of electricity and analysis ofmicrobial communities in wheat straw biomass-powered microbial fuel cells [J]. Appl.Environ. Microbiol.2009,75,3389–3395.
    [52] Freguia, S.; Teh, E.H.; Boon, N.; Leung, K.M.; Keller, J.; Rabaey, K. Microbial fuel cellsoperating on mixed fatty acids [J]. Bioresour. Technol.2009,101,1233–1238.
    [53] Min, B., Kim, J.R., Oh, S., Regan, J.M., Logan, B.E.,2005. Electricity generation from swinewastewater using microbial fuel cells [J]. Water Res.39,4961–4968.
    [54] Feng, Y.; Wang, X.; Logan, B.; Lee, H. Brewery wastewater treatment using air-cathodemicrobial fuel cells [J]. App. Microbiol. Biotechnol.2008,78,873–880.
    [55] Patil, S.A.; Surakasi, V.P.; Koul, S.; Ijmulwar, S.; Vivek, A.; Shouche, Y.S.; Kapadnis, B.P.Electricity generation using chocolate industry wastewater and its treatment in activatedsludge based microbial fuel cell and analysis of developed microbial community in the anodechamber [J]. Bioresour. Technol.2009,100,5132–5139.
    [56] Oh, S., Logan, B.E.,2005. Hydrogen and electricity production from a food processingwastewater using fermentation and microbial fuel cell technologies [J]. Water Res.39,4673–4682.
    [57] Zhang, C.; Li, M.; Liu, G.; Luo, H.; Zhang, R. Pyridine degradation in the microbial fuel cells[J]. J. Hazard. Mat.2009,172,465–471.
    [58] Luo, H.; Liu, G.; Zhang, R.; Jin, S. Phenol degradation in microbial fuel cells [J]. Chem. Eng.J.2009,147,259–264.
    [59] Zhu, X.; Ni, J. Simultaneous processes of electricity generation and p-nitrophenol degradationin a microbial fuel cell [J]. Electrochem. Comm.2009,11,274–277.
    [60] Li J, Fu Q, Zhu X, Ye DD, Tian X. Persulfate: A self-activated cathodic electron acceptor formicrobial fuel cells [J]. Journal of Power Sources,2009,194(1):269–274
    [61] Li J, Li M, Zhang J, Ye DD, Zhu X, Liao Q. A microbial fuel cell capable of convertinggaseous toluene to electricity [J]. Biochemical Engineering Journal,2013(75):39–46.
    [62] Logan B E, Hamelers B, Rozendal R, Schr der U, Keller J, Freguia S, Aelterman P, VerstraeteW, Rabaey K. Microbial fuel cells: methodology and technology[J]. Environ. Sci. Technol.2006,40(17):5181-5192
    [63] Tender M L, Gray A S, Grovemanb E, Lowy A D, Kauffman P, Melhado J, Tyce C R,Flynn D, Petrecca R, Dobarro J. The first demonstration of a microbial fuel cell as a viablepower supply: Powering a meteorological buoy [J]. Journal of Power Sources.2008.179(2):571–575
    [64] Leropoulos A L, Ledezma P, Stinchcombe A. Papaharalabos G, Melhuisha C, Greenman J.Waste to real energy: the first MFC powered mobile phone [J]. Phys. Chem. Chem. Phys.,2013,15,15312-15316
    [65] Kerzenmacher, S.; Ducrèe, J.; Zengerle, R.; von Stetten, F. Energy harvesting by implantableabiotically catalyzed glucose fuel cells [J]. J. Power Sourc.2008,182,1–17.
    [66] Kim, H.H.; Mano, N.; Zhang, Y.; Heller, A. A miniature membrane-less biofuel cell operatingunder physiological conditions at0.5V [J]. J. Electrochem. Soc.2003,150, A209–A213.
    [67] Minteer, S.D.; Liaw, B.Y.; Cooney, M.J. Enzyme-based biofuel cells [J]. Curr. Opin.Biotechnol.2007,18,228–234.
    [68] Calabrese Barton, S.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for implantable andmicroscale devices [J]. Chem. Rev.2004,104,4867–4886.
    [69] Mingui, S.; Justin, G.A.; Roche, P.A.; Jun, Z.; Wessel, B.L.; Yinghe, Z.; Sclabassi, R.J.Passing data and supplying power to neural implants [J]. IEEE Eng. Med. Biol. Mag.2006,25,39–46.
    [70]康峰,伍艳辉.生物燃料电池研究进展[J].电源技术.2004,28(11):723-727.
    [71] Karube I, Matsunga T, Mitsuda S, et al. Microbial electrode BOD sensors [J]. BiotechnolBioeng,1977,19:153521547.
    [72] Moon S H, Hyunsoo, Chang I S, et al. Online monitoring of low biochemical oxygendemand through continuous operation of amediator less microbial fuel cell [J]. MicrobialBiotechnol,2005,15(1):1922196.
    [73]吴锋,刘志,周顺桂等.低成本单室微生物燃料电池型BOD传感器的研制[J].环境科学,2009,30(10):3099-3103.
    [74] Liu, H., S. Grot, et al. Electrochemically assisted microbial production of hydrogen fromacetate[J]. Environmental science&technology.2005,39(11):4317-4320.
    [75] Rozendal, R. A., H. V. M. Hamelers, et al. Principle and perspectives of hydrogen productionthrough biocatalyzed electrolysis[J]. International journal of hydrogen energy.2006,31(12):1632-1640.
    [76] Sun, M., G. P. Sheng, et al. An MEC-MFC-coupled system for biohydrogen production fromacetate[J]. Environmental science&technology.2008,42(21):8095-8100.
    [77] Sun, M., G. P. Sheng, et al. Manipulating the hydrogen production from acetate in a microbialelectrolysis cell-microbial fuel cell-coupled system[J]. Journal of Power Sources.2009,191(2):338-343.
    [78] Aijie Wang, Dan Sun, Guangli Cao, Haoyu Wang, Nanqi Ren, Wei-Min Wu, Bruce E. Logan.Integrated hydrogen production process from cellulose by combining dark fermentation,microbial fuel cells, and a microbial electrolysis cell [J]. Bioresource Technology102(2011)4137–4143
    [79] Cath, T. Y., V. D. Adams, et al. Experimental study of desalination using direct contactmembrane distillation: a new approach to flux enhancement [J]. Journal of MembraneScience.2004,228(1):5-16.
    [80] Kalogirou, S. A. Seawater desalination using renewable energy sources [J]. Progress inEnergy and Combustion Science.2005,31(3):242-281.
    [81] Cao, X., X. Huang, et al. A new method for water desalination using microbial desalinationcells [J]. Environmental science&technology.2009,43(18):7148-7152.
    [82] Bo Zhang, Zhen He. Improving water desalination by hydraulically coupling an osmoticmicrobial fuel cell with a microbial desalination cell [J]. Journal of Membrane Science,441(2013)18–24
    [83] R. O’Hayre. S. W. Cha. W. Colella. F. B. Prinz. Fuel cell fundamentals [M]. John Wiley&Sons, New York,2005.
    [84] B. E. Logan. Microbial Fuel Cells[M]. Hoboken, New Jersey, John Wiley&Sons,2008.
    [85]李荻.电化学原理[M].北京航空航天大学出版社,2008.
    [86] J. Wei, P. Liang, X. Cao, X. Huang, A new insight into potential regulation on growth andpower generation of geobacter sulfurreducens in microbial fuel cells based on energyviewpoint [J], Eviron. Sci. Technol.44(2010)3187-3191.
    [87] Peyton, B.M.,1996. Effects of shear stress and substrate loading rate on Pseudomonasaeruginosa biofilm thickness and density [J]. Water. Res.30,29-36.
    [88] S. You, Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du and S. Zhao, A graphite-granulemembrane-less tubular air-cathode microbial fuel cell for power generation undercontinuously operational conditions [J], J. Power. Sources.173(2007)172-177.
    [89] G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel cell subjected to variation inpH, temperature, external load and substrate concentration [J]. Bioresour. Technol.100(2009)717-723.
    [90] T. Catal, P. Kavanagh, V. O’Flaherty and D. Leech, Generation of electricity in microbial fuelcells at sub-ambient temperatures [J], J. Power. Sources.196(2011)2676-2681
    [91] K. Rabaey, G. Lissens, S. D. Siciliano, W. Verstraete. A microbial fuel cell capable ofconverting glucose to electricity at high rate and efficiency [J]. Biotechnology Letter,2003,25:1531-1535.
    [92] R.C. Wagner, D.F. Call, B.E. Logan, Optimal set anode potentials vary in bioelectrochemicalsystems [J]. Environ. Sci. Technol.44(2010)6036-6041.
    [93] D.A. Finkelstein, L.M. Tender, J.G. Zeikus, Effect of electrode potential on electrode-reducingmicrobiota [J]. Environ. Sci. Technol.40(2006)6990-6995.
    [94] P. Aelterman, S. Freguia, J. Keller, W. Verstraete, K. Rabaey, The anode potential regulatesbacterial activity in microbial fuel cells [J]. Appl. Microbiol. Biotechnol.78(2008)409-418.
    [95] X. Wang, Y. Feng, N. Ren, H. Wang, H. Lee, N. Li, Q. Zhao, Accelerated start-up oftwo-chambered microbial fuel cells: Effect of anodic positive poised potential [J].Electrochim. Acta.54(2009)1109-1114.
    [96] H. Liu, S. Cheng, B.E. Logan, Production of electricity from acetate or butyrate using asingle-chamber microbial fuel cell [J]. Environ. Sci. Technol.39(2005)658-662.
    [97] P. Aelterman, M.Versichele, M. Marzorati, N. Boon, W. Verstraete, Loading rate and externalresistance control the electricity generation of microbial fuel cells with differentgraphite-dimensional anodes [J]. Bioresour. Technol.99(2008)8895-8902.
    [98] D.Y. Lyon, F. Buret, T.M. Vogel, J.M. Monier, Is resistance futile? Changing externalresistance does not improve microbial fuel cell performance [J]. Bioelectrochemistry.78(2010)2-7.
    [99] H.R. Rismani-Yazdi, A.D. Christy, S.M. Carver, Z. Yu, B.A. Dehority, O.H. Tuovinen,Effect of external existence on bacterial diversity and metabolism in microbial fuel cells [J].Bioresour. Technol.2011,102(1):278-283
    [100] J.S. Mclean, G. Wanger, Y.A. Gorby, M. Wainstein, J. Mcquaid, S.I. Ishii, O. Bretschger, H.Beyenal, K.H. Nealson, Quantification of electron transfer rates to a solid phase electronacceptor through the stages of biofilm formation from single cells to multicellularcommunities [J]. Environ. Sci. Technol.44(2010)2721-2727.
    [101] Katuri P K, Scott K, Head M I, Picioreanu C, Curtis P T. Microbial fuel cells meet withexternal resistance [J]. Bioresour. Technol.2011,102:2758-2766
    [102] G.C. Premier, J.R. Kim, I. Michie, R.M. Dinsdale, A.J. Guwy. Automatic control of loadincreases power and efficiency in a microbial fuel cell [J]. J. Power. Sources.196(2011)2013-2019.
    [103] Aelterman P, Rabaey K, Pham H T, Boon N, Verstraete W, Continuous electricity generationat high voltages and currents using stacked microbial fuel cells[J], Environ. Sci. Technol.2006,40:3388–3394
    [104] Booki Min, Shaoan Cheng, Bruce E. Logan. Electricity generation using membrane and saltbridge microbial fuel cells [J]. Water Research39(2005)1675–1686.
    [105] Sevda S, Sreekrishnan TR. Effect of salt concentration and mediators in salt bridge microbialfuel cell for electricity generation from synthetic wastewater [J]. J Environ Sci Health A ToxHazard Subst Environ Eng.2012;47(6):878-86
    [106] Hong Liu, Bruce E. Logan, Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchange membrane [J]. Environ.Sci. Technol.,2004,38(14), pp4040–4046
    [107] René A. Rozendal, Hubertus V. M. Hamelers, Cees J. N. Buisman. Effects of membranecation transport on ph and microbial fuel cell performance [J]. Environ. Sci. Technol.,2006,40(17), pp5206–5211
    [108] Jae Kyung Jang, The Hai Pham, In Seop Chang, Kui Hyun Kang, Hyunsoo Moon, Kyung SukCho, Byung Hong Kim. Construction and operation of a novel mediator-and membrane-lessmicrobial fuel cell [J]. Process Biochemistry. Volume39, Issue8,30April2004, Pages1007–1012.
    [109] M.M. Ghangrekar. V.B. Shinde. Performance of membrane-less microbial fuel cell treatingwastewater and effect of electrode distance and area on electricity production [J]. BioresourceTechnology.2007,98(15):2879–2885
    [110] H Liu, S Cheng, B E Logan. Power generation in fed-batch microbial fuel cells as a functionof ionic strength, temperature, and reactor configuration [J]. Environ. Sci. Technol.,2005,39(14), pp5488–5493.
    [111] S. Veer Raghavulu, S. Venkata Mohan, R. Kannaiah Goud, P.N. Sarma. Effect of anodic pHmicroenvironment on microbial fuel cell (MFC) performance in concurrence with aerated andferricyanide catholytes. Electrochemistry Communications [J],2009,11(2):371-375
    [112] Shijie You, Qingliang Zhao Jinna Zhang, Junqiu Jiana, Shiqi Zhao. A microbial fuel cell usingpermanganate as the cathodic electron acceptor. Journal of Power Sources [J].2006,162(2):1409–1415
    [113] Jun Li, Qian Fu, Xun Zhu, Qiang Liao, Liang Zhang, Hong Wang. A solar regenerablecathodic electron acceptor for microbial fuel cells [J]. Electrochimica Acta,2010,55(7):2332-2337
    [114] Heng Dong, Hongbing Yu, Xin Wang, Qixing Zhou, Junli Feng. A novel structure of scalableair-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer inmicrobial fuel cells [J]. Water research,46(2012):5777-5787
    [115] Xiaoyuan Zhang, Juan Shi, Peng Liang, Jincheng Wei, Xia Huang, Chuanyi Zhang, Bruce E.Logan. Power generation by packed-bed air-cathode microbial fuel cells [J]. BioresourceTechnology,2013,142:109-114
    [116] Liping Huang, Xiaolei Chai, Xie Quan, Bruce E. Logan, Guohua Chen. Reductivedechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells [J].Bioresource Technology,2012,111:167-174.
    [117] Li Zhuang, Yong Yuan, Guiqin Yang, Shungui Zhou. In situ formation of graphene/biofilmcomposites for enhanced oxygen reduction in biocathode microbial fuel cells [J].Electrochemistry Communications, Volume21, July2012, Pages69-72
    [118] Liping Huang, John M. Regan, Xie Quan. Electron transfer mechanisms, new applications,and performance of biocathode microbial fuel cells [J]. Bioresource Technology,2011,102(1):316-323
    [119] Guo-Wei Chen, Soo-Jung Choi, Tae-Ho Lee, Gil-Young Lee, Jae-Hwan Cha, Chang-WonKim. Application of biocathode in microbial fuel cells: cell performance and microbialcommunity [J]. Appl Microbiol Biotechnol (2008)79:379–388
    [120] Minghua Zhou, HongyuWang, Daniel J. Hassett and Tingyue Gu. Recent advances inmicrobial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment,bioenergy and bioproducts [J]. J Chem Technol Biotechnol2013;88:508–518
    [121] Bruce Logan, Shaoan Cheng, Valerie Watson, Garett Estadt. Graphite fiber brush anodes forincreased power production in air-cathode microbial fuel cells [J]. Environ. Sci. Technol.2007,41,3341-3346
    [122] Yujie Feng, Qiao Yang, Xin Wang, Bruce E. Logan. Treatment of carbon fiber brush anodesfor improving power generation in air–cathode microbial fuel cells. Journal of Power Sources[J].2010,195(7):1841–1844
    [123] V. Fedorovich, S. D. Varfolomeev, A. Sizov and I. Goryanin. Multi-electrode microbial fuelcell with horizontal liquid flow [J]. Water Science&Technology.2009,60(2):347-355
    [124] Daqian Jiang, Xiang Li, Dustin Raymond, James Mooradain, Baikun Li. Power recovery withmulti-anode/cathode microbial fuel cells suitable for future large-scale applications [J].International Journal of Hydrogen Energy.2010,35(16):8683–8689
    [125] Fang Qian, Mary Baum, Qian Gu and Daniel E. Morse. A1.5μL microbial fuel cellfor on-chip bioelectricity generation [J]. Lab Chip,2009,9,3076-3081
    [126] Bradley R. Ringeisen, Emily Henderson, Peter K. Wu,Jeremy Pietron, Ricky Ray, BrendaLittle, Justin C. Biffinger, Joanne M. Jones-Meehan. High Power Density from a MiniatureMicrobial Fuel Cell Using Shewanella oneidensis DSP10[J]. Environ. Sci. Technol.2006,40,2629-2634.
    [127] Shaoan Cheng, Bruce E. Logan. Increasing power generation for scaling up single-chamberair cathode microbial fuel cells [J]. Bioresource Technology102(2011)4468–4473.
    [128] Bruce E. Logan. Scaling up microbial fuel cells and other bioelectrochemical Systems [J].Appl Microbiol Biotechnol (2010)85:1665–1671
    [129] Ioannis Ieropoulos1, John Greenman2, Chris Melhuish1. Microbial fuel cells based on carbonveil electrodes: Stack configuration and scalability [J]. International Journal of EnergyResearch,2008,32(13):1228–1240
    [130] Oh S E, Logan B E. Voltage reversal during microbial fuel cell stack operation [J], J. PowerSources.2007,167:11–17
    [131] Dekker A, Heijne A T, Saakes M, Hamelers H V M, Buisman C J N. Analysis andImprovement of a scaled-up and stacked microbial fuel cell[J], Environ. Sci. Technol.2009,43:9038–9042
    [132] Zhuang Li, Zheng Yu, Zhou Shungui, Yuan Yong, Yuan Haoran, Chen Yong. Scalablemicrobial fuel cell (MFC) stack for continuous real wastewater treatment[J], BioresourceTechnology,2012,106:82-88
    [133] G. T. R. Palmore, H. H. Kim. Electro-enzymatic reduction of dioxygen to water in the cathodecompartment of a biofuel cell [J]. Journal of Electroanalytical Chemistry,1999,464,110-117.
    [134] F. Zhao, F. Harnisch, U. Schr der, F. Scholz, P. Bogdanoff, I. Herrmann. Challenges andconstraints of using oxygen cathodes in microbial fuel cells [J]. Environmental Science andTechnology,2006,40:5193-5199.
    [135] Olivier Lefebvre, Yujia Shen, Zi Tan, Arnaud Uzabiaga, In Seop Chang, How Yong Ng.Full-loop operation and cathodic acidification of a microbial fuel cell operated on domesticwastewater [J]. Bioresource Technology102(2011)5841–5848
    [136] Peter Clauwaert, Schalla Mulenga, Peter Aelterman, Willy Verstraete. Litre-scale microbialfuel cells operated in a complete loop [J]. Appl Microbiol Biotechnol (2009)83:241–247
    [137] Li Z, Zhang X, Zeng Y and Lei L, Electricity production by an overflow-type wetted-wallmicrobial fuel cell [J]. Bioresource Technol,100:2551–2555(2009)
    [138] Feng Zhu, Wancheng Wang, Xiaoyan Zhang, Guanhong Tao. Electricity generation in amembrane-less microbial fuel cell with down-flowfeeding onto the cathode [J]. BioresourceTechnology102(2011)7324–7328
    [139] Kengo Inoue, Toshihiro Ito, Yoshihiro Kawano, Atsushi Iguchi, Morio Miyahara, YoshihiroSuzuki, and Kazuya Watanabe. Electricity generation from cattle manure slurry bycassette-electrode microbialfuel cells [J]. Journal of Bioscience and Bioengineering,2013,116(5):610-615
    [140] Yaqian Zhao, Sean Collum, Mark Phelan, Tristan Goodbody, Liam Doherty, Yuansheng Hua.Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch andcontinuous flow trials [J]. Chemical Engineering Journal229(2013)364–370
    [141] Franks A E, Nevin K P, Jia H F, et al. Novel strategy for three-dimensional real-time imagingof microbial fuel cell communities: monitoring the inhibitory effects of proton accumulationwithin the anode biofilm [J]. Energy Environ Sci,2009,2(1):113-119
    [142] Fu Q, Li J, Zhu X, et al. An MFC capable of regenerating the cathodic electron acceptor undersunlight [J], Science China Technological Sciences,2010,53(9):2489-2494
    [143] Cheng S, Liu H, And Logan B E. Increased Power Generation in a Continuous Flow MFCwith Advective Flow through the Porous Anode and Reduced Electrode Spacing [J]. EnvironSci Technol,2006,40(7):2426–2432
    [144] Cheng S, Liu H, And Logan B E. Increased performance of single-chamber microbial fuelcells using an improved cathode structure [J]. Electrochemistry Communications,2006,8(3):489–494
    [145] Torres C I, Marcus A K, Rittamnn B E, Proton Transport inside the biofilm limits electricalcurrent generation by anode-respiring bacteria [J], Biotechnology Bioengineering,2008,100(5):872-881.
    [146] Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ. Operational parametersaffecting the performance of a mediator-less microbial fuel cell [J]. Biosens Bioelectron,2003;18:327–34
    [147] Rozendal R A, Hamelers H VM, Buisman C J N. Effect of membrane cation transport on pHand microbial fuel cell performance [J]. Environ. Sci. Technol.,2006,40(17):5206–5211
    [148] Mi-Jin Choi, Kyu-Jung Chae, Folusho F. Ajayi, Kyoung-Yeol Kim, Hye-Weon Yu,Chang-won Kim, In S. Kim. Effects of biofouling on ion transport through cation exchangemembranes and microbial fuel cell performance [J]. Bioresour. Technol.102(2011)298-303
    [149] Freguia S, Rabaey K, Yuan Z, Keller J. Sequential anode-cathode configuration improvescathodic oxygen reduction and effluent quality of microbial fuel cells [J]. Water Res.2008,42(6-7):1387-96
    [150] Franks A E, Nevin K P. Microbial fuel cell, A current review [J], Energies,2010(3):899-919
    [151] Nevin, K.P.; Kim, B.C.; Glaven, R.H.; Johnson, J.P.; Woodard, T.L.; Methe, B.A.; DiDonato,R.J.; Covalla, S.F.; Franks, A.E.; Liu, A.; Lovley, D.R. Anode biofilm transcriptomics revealsouter surface components essential for high density current production in Geobactersulfurreducens fuel cells [J]. PLoS ONE2009,4, e5628
    [152] Torres, C.I.; Lee, H.S.; Rittmann, B.E. Carbonate species as OH-carriers for decreasing thepH gradient between cathode and anode in biological fuel cells [J]. Environ. Sci. Technol.2008,42,8773–8777
    [153] T.H. Pham, P. Aelterman, W. Verstraete, Bioanode performance in bioelectrochemical systems:recent improvements and prospects [J]. Trends Biotechnol.27(2009)168–178
    [154]李顶杰,何辉,卢翠香,李浩然,杜竹玮.串/并联微生物燃料电池的性能[J],过程工程学报,2009,9(2):338-341
    [155]陈禧,朱能武,李小虎.串联微生物燃料电池的电压反转行为[J],环境科学与技术,2011,34(8):139-142
    [156]孔令才,周顺桂,赵华章,张宝刚,倪晋仁.厌氧折流板式微生物燃料电池堆影响因素研究[J],环境工程学报,2010,4(1):21-26
    [157] H. Liu, S. Cheng, L. Huang, B.E. Logan, Scale-up of membrane-free single-chambermicrobial fuel cells[J], J. Power Sources.179(2008)274-279
    [158] F. Zhang, K.S. Jacobson, P. Torres, Z. He, Effect of anolyte recirculationrates and catholyteson electricity generation in a litre-scale upflow microbial fuel cell[J], Energy Environ. Sci.3(2010)1347-1352
    [159] K.P. Nevin, H. Richter, S.F. Covalla, J.P. Johnson, T.L. Woodard, A.L. Orloff, H. Jia, M.Zhang, D.R. Lovley. Power output and coulombic efficiencies from biofilms of Geobactersulfurreducens comparable to mixed community microbial fuel cells [J], Environ.Microbiol.10(2008)2505–2514
    [160] Y.Z. Fan, S.K. Han, H Liu, Improvement performance of CEA microbial fuel cells withincreased reactor size [J], Energy Enviton. Sci.5(2012)8273-8280
    [161] A. Dewan, H. Beyenal, Z. Lewandowski, Scaling up microbial fuel cells [J]. Environ. Sci.Technol.42(2008)7643–7648
    [162] M. Di Lorenzo, K. Scott, T.P. Curtis, I.M. Head, Effect of increasing anode surface area on theperformance of a single chamber microbial fuel cell [J], Chem. Eng. J.156(2010)40-48
    [163] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells [J],Bioresour. Technol.102(2011)9335–9344
    [164] M. Behera, M.M. Ghangrekar, Performance of microbial fuel cell in response to change insludge loading rate at different anodic feed pH [J], Bioresour. Technol.100(2009)5114–5121.
    [165] Y. Yuan, B. Zhao, S. Zhou, S. Zhong, L. Zhuang, Electrocatalytic activity of anodic biofilmresponses to pH changes in microbial fuel cells [J], Bioresour. Technol.102(2011)6887–6891.
    [166] S.A. Patil, F. Harnisch, C. Koch, T. Hübschmann, I. Fetzer, A.A. Carmona-Martínez, S.Müller, U. Schr der, Electroactive mixed culture derived biofilms in microbialbioelectrochemical systems: the role of pH on biofilm formation, performance andcomposition [J], Bioresour. Technol.102(2011)6887–6891.
    [167] L. Zhang, C. Li, L. Ding, K. Xu, H. Ren, Influences of initial pH on performance and anodicmicrobes of fed-batch microbial fuel cells [J], J. Chem. Technol. Biotechnol.86(2011)1226–1232.
    [168] V.R. Nimje, C.Y. Chen, C.C. Chen, J.Y. Tsai, H.R. Chen, Y.M. Huang, J.S. Jean, Y.F. Chang,R.C. Shih, Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironmenton current, power density, internal resistance and electrochemical losses [J], Int. J. HydrogenEnergy36(2011)11093–11101.
    [169] B. Erable, L. Etcheverry, A. Bergel, Increased power from a two-chamber microbial fuel cellwith a low-pH air-cathode compartment [J], Electrochem. Commun.11(2009)619–622.
    [170] L. Zhuang, S. Zhou, Y. Li, Y. Yuan, Enhanced performance of air-cathode two-chambermicrobial fuel cells with high-pH anode and low-pH cathode [J], Bioresour. Technol.101(2010)3514–3519
    [171] Min, B., Roman, O.B., Angelidaki, I., Importance of temperature and anodic mediumcomposition on microbial fuel cell (MFC) performance [J],2008. Biotechnol. Lett.30(7),1213–1218
    [172] Y. Fan, H.Q. Hu, H. Liu, Sustainable power generation in microbial fuel cells usingbicarbonate buffer and proton transfer mechanisms [J], Environ. Sci. Technol.41(2007)8154–8158.
    [173] L. Qiang, L.J. Yuan, Q. Ding, Influence of buffer solutions on the performance of microbialfuel cell electricity generation [J], Huanjing Kexue/Environ. Sci.32(2011)1524–1528.
    [174] J.Y. Nam, H.W. Kim, K.H. Lim, H.S. Shin, B.E. Logan, Variation of power generation atdifferent buffer types and conductivities in single chamber microbial fuel cells [J], Biosens.Bioelectron.25(2010)1155–1159.
    [175] M. Behera, S.S.R. Murthy, M.M. Ghangrekar, Effect of operating temperature on performanceof microbial fuel cell [J], Water Sci. Technol.64(2011)917–922.
    [176] X.L. Wang, C. Wu, J.Q. Zhang, Q.L. Chi, S.S. Tian, Acclimation stage on the performance ofmicrobial fuel cells subjected to variation in COD, temperature, and electron acceptor [J], Adv.Mater. Res.183–185(2011)2346–2350
    [177] S.A. Patil, F. Harnisch, B. Kapadnis, U. Schr der, Electroactive mixed culture biofilms inmicrobial bioelectrochemical systems: the role of temperature for biofilm formation andperformance [J], Biosens. Bioelectron.26(2010)803–808.
    [178] I.S. Michie, J.R. Kim, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Operational temperatureregulates anodic biofilm growth and the development of electrogenic activity [J], Appl.Microbiol. Biotechnol.92(2011)419–430.
    [179] I.S. Michie, J.R. Kim, R.M. Dinsdale, A.J. Guwy, G.C. Premier, The influence ofpsychrophilic and mesophilic start-up temperature on microbial fuel cell system performance[J], Environ. Sci. Technol.4(2011)1011–1019
    [180] Y. Liu, V. Climent, A. Berná, J.M. Feliu, Effect of temperature on the catalytic ability ofelectrochemically active biofilm as anode catalyst in microbial fuel cells [J], Electroanalysis23(2011)387–394.
    [181] A.L. Guerrero, K. Scott, I.M. Head, F. Mateo, A. Ginesta, C. Godinez, Effect of temperatureon the performance of microbial fuel cells [J], Fuel89(2010)3985–3994.
    [182] E. Martin, O. Savadogo, S.R. Guiot, B. Tartakovsky, The influence of operational conditionson the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge [J],Biochem. Eng. J.51(2010)132–139.
    [183] G. Velvizhi, S.V. Mohan, Electrogenic activity and electron losses under increasing organicload of recalcitrant pharmaceutical wastewater [J], Int. J. Hydrogen Energy37(2012)5969-5978
    [184] S.V. Mohan, S.V. Raghavulu, D. Peri, P.N. Sarma, Integrated function of microbial fuel cell(MFC) as bioelectrochemical treatment system associated with bioelectricity generation underhigher substrate load [J], Biosens. Bioelectron.24(2009)2021–2027.
    [185] J.R. Kim, G.C. Premier, F.R. Hawkes, J. Rodríguez, R.M. Dinsdale, A.J. Guwy, Modulartubular microbial fuel cells for energy recovery during sucrose wastewater treatment at loworganic loading rate [J], Bioresour. Technol.101(2010)1190–1198
    [186] M.V. Reddy, S. Srikanth, S.V. Mohan, P.N. Sarma, Phosphatase and dehydrogenase activitiesin anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loadingconditions [J], Bioelectrochemistry77(2010)125–132.
    [187] Jun Li, Wentian Zou, Zhong Xu, Dingding Ye, Xun Zhu, Qiang Liao, Improved hydrogenproduction of the downstream bioreactor by coupling single chamber microbial fuel cellsbetween series-connected photosynthetic biohydrogen reactors [J], Int. J. Hydrogen Energy38(2013)15613-15619
    [188] Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobelo K, FertigSJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor [J]. NatBiotechnol20:821–825
    [189] Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrodereducing microorganismsthat harvest energy from marine sediments [J]. Science295:483–485
    [190] S.E. Oh, B.E. Logan, Proton exchange membrane and electrode surface areas as factors thataffect power generation in microbial fuel cells [J], Appl. Microbiol. Biotechnol.70(2006)162-169
    [191] Miller LG, Oremland RS (2008) Electricity generation by anaerobic bacteria and anoxicsediments from hypersaline soda lakes [J]. Extremophiles12:837–848
    [192] Ximena C. Abrevaya Natalia Sacco, Pablo J. D. Mauas, Eduardo Corton, Archaea-basedmicrobial fuel cell operating at high ionic strength conditions [J], Extremophiles (2011)15:633–642
    [193] D.H. Guillou, B. Tribollet, D. Festy, Influence of the hydrodynamics on the biofilm formationby mass transport analysis [J], Bioelectrochemistry53(2000)119–125.
    [194] A.H. Rickard, A.J. McBain, A.T. Stead, P. Gilbert, Shear rate moderates community diversityin freshwater biofilms [J], Appl. Environ. Microbiol.70(2004)7426–7435
    [195] H. Moon, I.S. Chang, J.K. Jang, B.H. Kim, Residence time distribution in microbial fuel celland its influence on COD removal with electricity generation [J], Biochem. Eng. J.27(2005)59–65.
    [196] H.T. Pham, N. Boon, P. Aelterman, P. Clauwaert, L.D. Schamphelaire, P. Oostveldt, K.Verbeken, K. Rabaey, W. Verstraete, High shear enrichment improves the performance of theanodophilic microbial consortium in a microbial fuel cell [J], Microb. Biotechnol.6(2008)487–496.
    [197] A. Alice Rochex, J.-J. Godon, N. Bernet, R. Escudie, Role of shear stress on composition,diversity and dynamics of biofilm bacterial communities [J], Water Res.42(2008)4915–4922.
    [198] D. Aaron, C. Tsouris, C.Y. Hamilton, A.P. Borole, Assessment of the effects of flow rate andionic strength on the performance of an air-cathode microbial fuel cell using electrochemicalimpedance spectroscopy [J], Energies3(2010)592–606.
    [199] D.F. Juang, P.C. Yang, T.H. Kuo, Effects of flow rate and chemical oxygen demand removalcharacteristics on power generation performance of microbial fuel cells [J], Int. J. Environ.Sci. Technol.9(2012)267–280.
    [200] D.F. Juang, P.C. Yang, H.Y. Chou, L.J. Chiu, Effects of microbial species, organic loading andsubstrate degradation rate on the power generation capability of microbial fuel cells [J],Biotechnol. Lett.33(2011)2147–2160
    [201] I. Ieropoulos, J. Winfield, J. Greenman, Effects of flow-rate, inoculum and time on theinternal resistance of microbial fuel cells [J], Bioresour. Technol.101(2010)3520–3525.
    [202] Picioreanu C, Katuri K P, Head I M, et al. Mathematical model for microbial fuel cells withanodic biofilms and anaerobic digestion[J]. Water science and technology,2008,57(7):965-972.
    [203] Zhang X C, Halme A. Modelling of a microbial fuel cell process [J]. Biotechnology Letters,1995,17(8):809-814
    [204] Picioreanu C, van Loosdrecht M C M, Heijnen J J. A theoretical study on the effect of surfaceroughness on mass transport and transformation in biofilms[J]. Biotechnology andBioengineering,2000,68(4):355-369.
    [205] Picioreanu C, Van Loosdrecht M C M, Heijnen J J. Effect of diffusive and convectivesubstrate transport on biofilm structure formation: a two-dimensional modeling study[J].Biotechnology and bioengineering,2000,69(5):504-515
    [206] Picioreanu C, Head I M, Katuri K P, et al. A computational model for biofilm-based microbialfuel cells[J]. Water research,2007,41(13):2921-2940.
    [207] Marcus A K, Torres C I, Rittmann B E. Conduction‐based modeling of the biofilm anode ofa microbial fuel cell[J]. Biotechnology and bioengineering,2007,98(6):1171-1182
    [208] Pinto R P, Srinivasan B, Manuel M F, et al. A two-population bio-electrochemical model of amicrobial fuel cell[J]. Bioresource technology,2010,101(14):5256-5265.
    [209] Picioreanu C, van Loosdrecht M, Curtis T P, et al. Model based evaluation of the effect of pHand electrode geometry on microbial fuel cell performance[J]. Bioelectrochemistry,2010,78(1):8-24.
    [210] Marcus A K, Torres C I, Rittmann B E. Analysis of a microbial electrochemical cell using theproton condition in biofilm (PCBIOFILM) model[J]. Bioresource technology,2011,102(1):253-262.
    [211] Hamelers H V M, Ter Heijne A, Stein N, et al. Butler–Volmer–Monod model for describingbio-anode polarization curves[J]. Bioresource technology,2011,102(1):381-387
    [212] Zeng Y, Choo Y F, Kim B H, et al. Modelling and simulation of two-chamber microbial fuelcell [J]. Journal of Power Sources,2010,195(1):79-89.
    [213] RH Findlay, GM King, L Watling., Efficacy of phospholipid analysis in determining microbialbiomass in sediments.[J], Applied and Environmental Microbiology,1989-Am SocMicrobiol
    [214] Nasib Qureshi, Bassam A Annous, Thaddeus C Ezeji, Patrick Karcher and Ian S Maddox,Biofilm reactors for industrial bioconversion processes: employing potential of enhancedreaction rates [J], Microbial Cell Factories,2005,4:24
    [215]徐斌,董英,林琳,等.改良苯酚一硫酸法测定苦瓜多糖含量[J].食品科技,2005,7:81-84.
    [216]王爱军,王凤山,王友联,等.低浓度蛋白质含量测定方法的研究[J].中国生化药物杂志,2003,24(2):78-80.
    [217]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:2162219.
    [218]付乾,李俊,廖强,朱恂,丁玉栋.过硫酸钾为电子受体的微生物燃料电池性能特性[J].工程热物理学报,2009,30(8):1396-1398
    [219] Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ. Operational parametersaffecting the performannce of a mediator-less microbial fuel cell [J]. Biosens Bioelectron.2003,18(4):327-34
    [220] B.H. Kim, D.H. Park, P.K. Shin, L.S. Chang, H.J. Kim, Mediator-less biofuel cell [P]. USPatent (1999)5976719
    [221] Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resstance distribution ofmicrobial fuel cells [J], Environ. Sci. Technol.42(2008)8101-8107
    [222] Ahn Y, Logan BE. A multi-electrode continuous flow microbial fuel cell with separatorelectrode assembly design [J]. Appl Microbiol Biotechnol2012;93:2241-8
    [223] Logan BE, Dettmer JW. Increase mass transfer to microorganisms with fluid motion [J].Biotechnol Bioeng1990;35:1135-44
    [224] S.H. Shin, Y.J. Choi, S.H. Na, S.H. Jung, S.H. Kim, Development of bipolar plate stack typemicrobial fuel cells [J], Bull. Korean Chem. Soc.27(2006)281-285
    [225] L. Zhuang, S.G. Zhou, Substrate cross-conduction effect on the performance of seriallyconnected microbial fuel cell stack [J], Electrochem. Commun.11(2009)937-940
    [226] T. H. Annemiek, L. Fei, S.V.R. Lucas, S. Michel, V.M.H. Hubertus, J.N.B. Cees, Performanceof a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction [J], J. PowerSources.196(2011)7572-7577
    [227] C.I. Torres, R. Krajmalnik-brown, P. Parameswaran, A. Kato Marcus, G. Wanger, Y.A. Gorrby,B.E. Rittmann, Selecting anode-respiring bacteria based on anode potential: phylogentic,electrochemical, and microscopic characterization [J]. Environ. Sci. Technol.43(2009)9519-9524
    [228] Higgins SR, Foerster D, Cheung A, Lau C, Orianna Bretschger O, Minteer SD, Nealson K,Atanassov P, Cooney MJ. Fabrication of macroporous chitosan scaffolds doped with carbonnanotubes and their characterization in microbial fuel cell operation [J]. Enzyme andMicrobial Technology,2011,48:458-465
    [229] J. Wei, P. Liang, X. Cao, X. Huang, A new insight into potential regulation on growth andpower generation of geobacter sulfurreducens in microbial fule cells based on energyviewpoint [J]. Eviron. Sci. Technol.44(2010)3187-3191.
    [230] S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Electron and carbon balances in microbial fuel cellsreveal temporary bacterial storage behavior during electricity generation [J]. Eviron. Sci.Technol.41(2007)2915–2921.
    [231] U. Schr der, Anodic electron transfer mechanisms in microbial fuel cells and their energyefficiency [J]. Phys. Chem. Chem. Phys.9(2007)2619-2629.
    [232] A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez, I.M. Head, T. Curtis, Open circuitversus closed circuit enrichment of anodic biofilms in MFC: effect on performance andanodic communities [J]. Appl. Microbiol. Biotechnol.87(2010)1669-1713.
    [233] D.P.B.T.B. Strik, H. Terlouw, H.V.M. Hamelers, C.J.N. Buisman, Renewable sustainablebiocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)[J].Appl. Microbiol. Biotechnol.81(2008)659-668.
    [234] A. Heijne, H.V.M. Hamelers, M. Saakes, C.J.N. Buisman, Performance of non-porousgraphite and titanium-base anodes in microbial fuel cells [J]. Electrochim. Acta.53(2008)5697-5703.
    [235] Watson V J, Logan B E, Analysis of polarization methods for elimination of power overshootin microbial fuel cells[J]. Electrochem. Commun.,2011,13(1):54-56
    [236] Ahmed J, Kim S. Effect of cathodic biofilm on the performance of air-cathode single chambermicrobial fuel cells [J]. Bull Korean Chem Soc2011;32:3726-29.
    [237] Zhang X, Cheng S, Wang X, Huang X, Logan BE. Separator characteristics for increasingperformance of microbial fuel cells [J]. Environ Sci Tecnol2009;43:8456-61.
    [238] You SJ, Zhao QL, Zhang JN, Jiang JQ, Zhao SQ. A microbial fuel cell using permanganate asthe cathodic electrode acceptor [J]. J Power Sources2006;162:1409-15.
    [239] Bae W, Rittmann B E. A structured model of dual‐limitation kinetics[J]. Biotechnology andbioengineering,1996,49(6):683-689.
    [240] Oh S E, Kim J R, Joo J K, Logan B E. Effect of applied voltages and dissolved oxygen onsustained power generation by microbial fuel cells [J]. Water Sci Technol,2009,60(5):1311-1317
    [241] Quan X C, Quan Y P, Tao K. Effect of anode aeration on the performance and microbialcommunity of an air-cathode microbial fuel cell [J]. Chem. Eng. J,2012,210:150-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700